JPS6035461A - Organic electrolyte battery - Google Patents

Organic electrolyte battery

Info

Publication number
JPS6035461A
JPS6035461A JP14303683A JP14303683A JPS6035461A JP S6035461 A JPS6035461 A JP S6035461A JP 14303683 A JP14303683 A JP 14303683A JP 14303683 A JP14303683 A JP 14303683A JP S6035461 A JPS6035461 A JP S6035461A
Authority
JP
Japan
Prior art keywords
active material
battery
chelating agent
electrolyte
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14303683A
Other languages
Japanese (ja)
Inventor
Teruyoshi Morita
守田 彰克
Nobuo Eda
江田 信夫
Takafumi Fujii
隆文 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14303683A priority Critical patent/JPS6035461A/en
Publication of JPS6035461A publication Critical patent/JPS6035461A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/168Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve the preservation characteristic of an organic electrolyte battery by either adding a chelating agent, which can combine with metal existing in a positive active material to form a complex, to make the positive active material or dissolving said chelating agent in electrolyte. CONSTITUTION:In an organic electrolyte battery constituted by using Li as its negative electrode, a chelating agent such as phenanthroline which can combine with a metal contained in a positive active material to form a complex is added to make the positive active material. In another method, the chelating agent is dissolved in organic electrolyte. The chelating agen tends to dissolve in electrolyte or immediately combines with dissolved metallic ions to form a complex. Since the thus formed complex does not pass through a porous separator due to its large molecular size, any decrease in the characteristic of the battery which might be caused due to depositions formed on the negaitve electrode is prevented.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、正極活物質に二酸化マンガン、酸化銅、酸化
鉛などの金属酸化物および硫化鉄、硫化銅、硫化ニッケ
ル、硫化モリブデンなどの金属硫化物を用い、負極活物
質にリチウム、カリウム、ナトリウム、アルεニウム、
マグネシウム、それらを主体とする合金外どの軽金属を
用い、電解液として、プロピレンカーボネート、エチレ
ンカーボネート、γ−ブチロラクトン々どのエステル、
テトラヒドロフラン、1.2−ジメトキシエタン、1.
3−ジオキソランなどのエーテルの単独もしくは2種以
上の混合溶媒中に過塩素酸リチウム、ホウフッ化リチウ
ム、塩化アルεニウムなどの無機塩を溶解したものを用
いる有機電解質電池、特に負極にリチウムを用いる有機
電解質リチウム電池の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention uses metal oxides such as manganese dioxide, copper oxide, and lead oxide, and metal sulfides such as iron sulfide, copper sulfide, nickel sulfide, and molybdenum sulfide as positive electrode active materials. The negative electrode active materials include lithium, potassium, sodium, aluminum,
Light metals other than magnesium and alloys mainly composed of them are used, and esters such as propylene carbonate, ethylene carbonate, γ-butyrolactone, etc. are used as the electrolyte.
Tetrahydrofuran, 1,2-dimethoxyethane, 1.
An organic electrolyte battery that uses an inorganic salt such as lithium perchlorate, lithium borofluoride, or aluminum chloride dissolved in a single or mixed solvent of ether such as 3-dioxolane, especially when lithium is used for the negative electrode. Concerning improvements in organic electrolyte lithium batteries.

従来例の構成とその問題点 従来、有機電解質リチウム電池の正極としては、金属ハ
ロゲン化物、酸化物、硫化物などの金属化合物およびフ
ッ化炭素などの固体活物質、塩化チオニル、塩化スルフ
リル々どの液体活物質、二酸化イオウなどの気体活物質
が検討されてきた。これらの内でも固体活物質は取り扱
いの容易さから特に注目され、なかでもフッ化炭素、二
酸化マンガン、硫化鉄、酸化銅を正極活物質としたリチ
ウム電池はすでに実用化されている。
Structure of conventional examples and their problems Conventionally, positive electrodes for organic electrolyte lithium batteries have been made of metal compounds such as metal halides, oxides, and sulfides, solid active materials such as fluorocarbon, and liquids such as thionyl chloride and sulfuryl chloride. Active materials, gaseous active materials such as sulfur dioxide have been considered. Among these, solid active materials have attracted particular attention because of their ease of handling, and among them, lithium batteries using carbon fluoride, manganese dioxide, iron sulfide, and copper oxide as positive electrode active materials have already been put into practical use.

一方、金属ハロゲン化物はエネルギー密度が大きく反応
性に富むことなどからすぐれた活物質ではあるが一電解
液への溶解、ひいては電池の自己放電の大きさなどから
現在のところ実用化に到ってはいない。
On the other hand, metal halides are excellent active materials due to their high energy density and high reactivity, but they have not been put into practical use at present due to their dissolution in electrolyte solutions and the magnitude of self-discharge in batteries. Not there.

しかしながら−二酸化マンガン、酸化銅などの金属酸化
物〜硫化鉄などの金属硫化物も、電解液への溶解は全く
零ということではなく、電池の長期保存、特に高温での
長期保存中には電解液中に溶解が進み、溶解した金属イ
オンがセパレータを通過し、負極リチウム上に析出し、
電池の内部jJ(杭の増大など電池特性の低下を引き起
こす結果となる。
However, metal oxides such as manganese dioxide and copper oxide to metal sulfides such as iron sulfide are not completely dissolved in the electrolyte, and during long-term storage of batteries, especially at high temperatures, electrolytic As dissolution progresses in the liquid, the dissolved metal ions pass through the separator and are deposited on the negative electrode lithium.
This results in deterioration of battery characteristics, such as an increase in the number of piles inside the battery.

発明の目的 本発明は一正極活物質の金属酸化物もしくは、金属硫化
物が電解液中に溶解することによって、上記のような不
都合を生じるのをなくし、保存特性のすぐれた有機電解
質電池を提供することを目的とする。
Purpose of the Invention The present invention eliminates the above-mentioned disadvantages caused by the dissolution of metal oxides or metal sulfides of a positive electrode active material into an electrolytic solution, and provides an organic electrolyte battery with excellent storage characteristics. The purpose is to

発明の構成 本発明は、正極活物質の金属酸化物もしくは金属硫化物
を構成する金属と錯化合物を形成するキレート化剤を正
極中に混入するが、あるいは電解液中に溶解しておくこ
とを特徴とする。このキレート化剤によって、電解液中
に溶解しようとし、あるいは電解液中に溶解した前記金
属のイオンと直ちに錯化合物を形成するのである。この
錯化合物は、金属イオンとくらべて、遥かに分子が大き
いので、多孔性のセパレータを通過し得す、負極上に析
出して電池特性を低下させるのを防止することができる
Components of the Invention The present invention is characterized in that a chelating agent that forms a complex compound with a metal constituting a metal oxide or metal sulfide of a positive electrode active material is mixed into the positive electrode or dissolved in an electrolytic solution. Features. With this chelating agent, a complex compound is immediately formed with the ions of the metal that is about to be dissolved in the electrolytic solution or dissolved in the electrolytic solution. Since this complex compound has a much larger molecule than a metal ion, it can pass through a porous separator and can be prevented from being deposited on the negative electrode and deteriorating battery characteristics.

ここに使用するキレート化剤は、活物質化合物を構成し
ている金属に最も適合するものが選ばれるべきであり、
かつキレート化剤を電解液中に溶解して使用する場合、
キレート化剤はリチウム等の負極金属と反応するもので
あってはならないことは勿論のことであるが、正極活物
質中に混入する場合はこの限りではない。ただし、正極
活物質中に混入する場合は、電解液中に溶解させる場合
とくらべて、よυ多量のキレート化剤を必要とする。
The chelating agent used here should be selected to be the one that is most compatible with the metal constituting the active material compound.
And when using the chelating agent dissolved in the electrolyte,
It goes without saying that the chelating agent must not react with the negative electrode metal such as lithium, but this is not the case when it is mixed into the positive electrode active material. However, when the chelating agent is mixed into the positive electrode active material, a larger amount of the chelating agent is required than when it is dissolved in the electrolyte.

これまで特定の金属と錯化合物をつくるキレート化剤は
数多く知られているが、特にリチウムと反応しないもの
と言えば限定される。代表的なものとしては、フェナン
トロリン、272/−ジピリジル(ビピリジン)などが
挙げられ、これらは、正極活物質中への混入、電解液中
への溶解のいずれにも使用し得る。
Many chelating agents that form complex compounds with specific metals have been known, but there are only a limited number of chelating agents that do not react with lithium. Typical examples include phenanthroline, 272/-dipyridyl (bipyridine), and the like, which can be mixed into the positive electrode active material or dissolved into the electrolyte.

なお、本発明を電解液中への溶解度が大きい金属ハロゲ
ン化物を正極活物質とする電池に適用すると、この活物
質の溶解による電池の自己放電が犬きく、またこれらの
溶解した金属イオンをすべて錯化合物とするには多量の
キレート化剤が必要となり、むしろ電池の特性自体も低
下するため不適であり、比較的溶解度の小さい、金属酸
化物、金属硫化物を正極活物質とする電池に対し特に有
効である。
Note that when the present invention is applied to a battery that uses a metal halide with high solubility in the electrolyte as a positive electrode active material, self-discharge of the battery due to dissolution of this active material increases, and all of these dissolved metal ions are removed. A large amount of chelating agent is required to form a complex compound, which actually deteriorates the characteristics of the battery, making it unsuitable for batteries that use metal oxides or metal sulfides as positive electrode active materials, which have relatively low solubility. Particularly effective.

実施例の説明 実施例1 正極活物質として天然の黄鉄鉱(Fed2)を精製し、
二硫化鉄の純度を約96チとした黄鉄鉱粉末を用いる。
Description of Examples Example 1 Natural pyrite (Fed2) was purified as a positive electrode active material,
Pyrite powder with iron disulfide purity of about 96% is used.

この黄鉄鉱粉末と導電材のアセチレンブラックと結着剤
のポリ四フッ化エチレンを重量比で100:5:5の割
合で混合し、その1gをニッケルネット上に加圧成形し
たものを正極とした。電極の大きさは20X20mmで
ある。
This pyrite powder, acetylene black as a conductive material, and polytetrafluoroethylene as a binder were mixed in a weight ratio of 100:5:5, and 1 g of the mixture was pressure-molded on a nickel net to form a positive electrode. . The size of the electrode is 20x20mm.

負極は0.2gのリチウムシートをニッケルネットに圧
着したものを用いた。電極の大きさは正極と同様20X
20mmである0 正iをポリプロピレンの不織布で包んだものの両側に負
極を配置し、ポリプロピレン製の容器に組ミ込み、プロ
ピレンカーボネートと、1,2−ジメトキシエタンを体
積比で1:1に混合した溶媒中に過塩素酸リチウムを1
モル/β の割合で溶解した電解液を注入し、封口して
電池とした。この電池を人とする。
The negative electrode used was a 0.2 g lithium sheet crimped onto a nickel net. The size of the electrode is 20X, same as the positive electrode.
Negative electrodes were placed on both sides of a 20 mm 0 positive i wrapped in polypropylene nonwoven fabric, and the mixture was placed in a polypropylene container, and propylene carbonate and 1,2-dimethoxyethane were mixed at a volume ratio of 1:1. 1 lithium perchlorate in the solvent
An electrolytic solution dissolved at a ratio of mol/β was injected and the cell was sealed to form a battery. Let's say this battery is a person.

次に前記と同様の電解液に7エナントロリンを2 g、
Q の割合で溶解させ、その電解液を用いて電池人と同
様に構成した電池をBとする。
Next, add 2 g of 7enanthroline to the same electrolyte as above,
B is a battery constructed in the same manner as the battery man using the electrolyte solution dissolved at a ratio of Q.

また、正極活物質である黄鉄鉱粉末中に2重量%のフェ
ナントロリンを混入し、電池Aと同様に構成した電池を
Cとする〇 これらの電池を20℃で4m人の定電流で放電した特性
を第1図に示す。
In addition, let C be a battery constructed in the same manner as Battery A by mixing 2% by weight of phenanthroline into the pyrite powder, which is the positive electrode active material. The characteristics of these batteries when discharged at a constant current of 4 m at 20°C are as follows. Shown in Figure 1.

第1図から明らかなように、電池i、tz(1,1いず
れも、はぼ同様の特性を示している。
As is clear from FIG. 1, both batteries i and tz (1, 1) exhibit nearly the same characteristics.

次に電池ム、B 、Cとそれぞれ同じ構成の電池A’、
A”:B’、B”: C’l 0%つ(−+り。
Next, batteries A', which have the same configuration as battery groups B and C, respectively,
A": B', B": C'l 0% (-+ri.

電池人/ 、 B/ 、 C/につぃては60℃で6力
月〜電池A”、B″、C“につめては60’Cで12力
月それぞ横 れ保存した20℃で4mAの定電流で放電した。
Batteries /, B/, and C/ were stored at 60°C for 6 months to batteries A'', B'', and C'' were stored at 60'C for 12 months at 20°C. Discharge was performed at a constant current of 4 mA.

ハ その結果を第2図に示す。また、これらの電池の製造直
後及び保存後の内部抵抗を次表に示す。
The results are shown in Figure 2. The internal resistance of these batteries immediately after manufacture and after storage is shown in the table below.

第2図から明らかなように、電池の正極活物質中、又は
電解液中にキレート化剤であるフェナントロリンを混入
した電池CまたはBを60℃で保存した場合でもわずか
に放電初期の電圧が低下するのみで、殆んど特性の劣化
は認められなかった。
As is clear from Figure 2, even when batteries C or B containing the chelating agent phenanthroline in the positive electrode active material or electrolyte are stored at 60°C, the voltage at the initial stage of discharge decreases slightly. However, almost no deterioration of characteristics was observed.

これに対し、全くキレート化剤を混入していない電池A
は、高温保存中に、正極活物質である二硫化鉄が電解液
中に溶解し、更に負極リチウム上に鉄が析出することか
ら、表にみられるように電池の内部抵抗が増大し、保存
期間が長くなるに従って放電電圧の低下が認められる。
On the other hand, battery A which does not contain any chelating agent
During high-temperature storage, iron disulfide, which is the positive electrode active material, dissolves in the electrolyte, and iron further precipitates on the negative electrode lithium, which increases the internal resistance of the battery as shown in the table. As the period becomes longer, a decrease in discharge voltage is observed.

1だ、これらの効果は単にフェナントロリンを用いる場
合のみでなぐ、正極活物質化合物を構成する金属と錯化
合物を形成するキレート化剤を適切に選択した場合にも
同様に得られる。例えば、2.2′−ジピリジルを混入
した場合も同様な効果が得られた。
1. These effects can be obtained not only when phenanthroline is used, but also when a chelating agent that forms a complex with the metal constituting the positive electrode active material compound is appropriately selected. For example, a similar effect was obtained when 2,2'-dipyridyl was mixed.

実施例2 次に正極活物質として酸化銅(Cub)を用いる。Example 2 Next, copper oxide (Cub) is used as a positive electrode active material.

この場合も実施例1と同様の方法で電池を構成した○ 即ち、酸化銅粉末とアセチレンブラックとポリ四フッ化
エチレンとを重量比で100:5:6の割合で混合し、
その1gをニッケルネット上に加圧成形した。大きさば
20X20mmの正極を用いるO 負極は0.2 gのリチウムシートを大きさ2o×20
mmのニッケルネットに圧着し、ボυプロピレンの不繊
布で包んだ正極の両側に配置した。
In this case as well, a battery was constructed in the same manner as in Example 1. That is, copper oxide powder, acetylene black, and polytetrafluoroethylene were mixed in a weight ratio of 100:5:6.
1 g of it was pressure molded onto a nickel net. A positive electrode with a size of 20 x 20 mm is used. A 0.2 g lithium sheet is used as a negative electrode with a size of 2 x 20 mm.
It was crimped onto a nickel net of mm in diameter and placed on both sides of a positive electrode wrapped in a nonwoven fabric made of polypropylene.

これらをポリプロピレン製の容器に組み込み、プロピレ
ンカーボネートと1.2−ジメトキシエタンを体積比で
1=1に混合した溶媒中に過塩素酸リチウムを1モル/
β の割合で溶解した電解液を注入し、封口して電池と
した。この電池をDI、・よびD′とする。
These were assembled in a polypropylene container, and lithium perchlorate was added in a solvent containing 1 mole/1 mole of propylene carbonate and 1,2-dimethoxyethane mixed in a volume ratio of 1.
An electrolyte solution dissolved at a ratio of β was injected and sealed to form a battery. These batteries are designated as DI and D'.

次に電解液に2,2′−ジピリジルを2g/l(0割合
で溶解させたものを用いた電池をE 、 E’と17、
正極活物質の酸化銅粉末中に2重量係の2,2′〜ジピ
リジルを混入した電池をF、?’とする。
Next, batteries using 2 g/l (0 ratio) of 2,2'-dipyridyl dissolved in the electrolyte were prepared as E, E' and 17.
A battery in which 2,2'~dipyridyl of 2 parts by weight is mixed into the copper oxide powder of the positive electrode active material is called F,? '.

電池D 、E 、Fを製作直後、電池n/、y、′、 
F/を60℃12力月保存後にそれぞれ、20℃で4m
Aの定電流で放電した時の特性を第3図に示す。
Immediately after manufacturing batteries D, E, and F, batteries n/, y,′,
After storing F/ at 60℃ for 12 months, each was heated to 4m at 20℃.
Figure 3 shows the characteristics when discharging at a constant current of A.

第3図から明らかなように、電池り、E、Fは殆んど同
様な特性を示し、電池E/ 、 F/もそれぞれ電池E
、Fとくらべ殆んど特性劣化は認められないのに対し、
電池D′は放電初期の電圧が低下している。
As is clear from Fig. 3, batteries E and F have almost the same characteristics, and batteries E/ and F/ are also similar to battery E.
, while there is almost no characteristic deterioration compared to F,
Battery D' has a lower voltage at the beginning of discharge.

これは酸化銅を正極活物質とした場合、黄鉄鉱を活物質
とした程ではないが、高温保存中には酸化鋼が電解液に
徐々に溶解し、負極リチウム表面に銅が析出することに
より電池の内部抵抗が増大し、放電開始時の電圧の立ち
上りに遅れを生じるという結果が表われだものである。
When copper oxide is used as the positive electrode active material, this is not as great as when pyrite is used as the active material, but during high-temperature storage, oxidized steel gradually dissolves in the electrolyte, and copper is deposited on the negative electrode lithium surface, causing the battery The result is that the internal resistance of the battery increases, causing a delay in the rise of the voltage at the start of discharge.

これに対し、電池E′、F′はキレート化剤である2、
2′−ジピリジルの混入により、溶解した銅イオンと錯
化合物を形成し、銅イオンの負極リチウム上への析出が
妨げられ、長期高温保存後も殆んど特性の低下を示さな
い。
On the other hand, batteries E' and F' are chelating agents 2,
The incorporation of 2'-dipyridyl forms a complex compound with dissolved copper ions, preventing copper ions from being deposited on the negative electrode lithium, and shows almost no deterioration in properties even after long-term high-temperature storage.

まだキレート化剤の最適混入量も種々検討したが、平均
的に最も効果の良く表われる割合としては、電解液中へ
溶解させる場合は、電解液11に対し0.006モルか
ら0.05モルの範囲であシ、正極活物質中へ混入する
場合は活物質に対し、重量比で0,2係から2%の範囲
が最適であった。
Various studies have been carried out regarding the optimum amount of the chelating agent to be added, but the ratio that gives the best effect on average is 0.006 mol to 0.05 mol per 11 mol of the electrolytic solution when dissolved in the electrolytic solution. However, when mixed into the positive electrode active material, the optimal range was 0.2% to 2% by weight relative to the active material.

発明の効果 以上のように一本発明によれば金属酸化物もしくは金属
硫化物を活物質とする有機電解質電池の長期保存、特に
高温での長期保存特性を向上することができる。
Effects of the Invention As described above, according to the present invention, the long-term storage, particularly the long-term storage characteristics at high temperatures, of an organic electrolyte battery using a metal oxide or metal sulfide as an active material can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は二硫化鉄−リチウム電池の初期特性を比較した
図、第2図は保存後の特性を比較した図、第3図は酸化
銅−1ノチウム電池の初期および保存後の特性を比較し
た図である。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 放電時間 (針S) @2図 放電時間(光is) 第3図 放電脚間(is)
Figure 1 compares the initial characteristics of iron disulfide-lithium batteries, Figure 2 compares the characteristics after storage, and Figure 3 compares the initial and storage characteristics of copper oxide-1notium batteries. This is a diagram. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2: Discharge time (needle S) Figure 2: Discharge time (light IS) Figure 3: Between discharge legs (IS)

Claims (1)

【特許請求の範囲】[Claims] 金属の酸化物もしくは硫化物を活物質とする正極、軽金
属を活物質とする負極および有機電解液を有し、前記正
極もしくは電解液中に、上記正極活物質を構成する金属
と錯化合物を形成するキ1/−ト化剤を混入もしくは溶
解したことを特徴とする有機電解質電池。
It has a positive electrode using a metal oxide or sulfide as an active material, a negative electrode using a light metal as an active material, and an organic electrolyte, and forms a complex compound with the metal constituting the positive electrode active material in the positive electrode or electrolyte. An organic electrolyte battery characterized in that it contains or dissolves a quenching agent.
JP14303683A 1983-08-03 1983-08-03 Organic electrolyte battery Pending JPS6035461A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14303683A JPS6035461A (en) 1983-08-03 1983-08-03 Organic electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14303683A JPS6035461A (en) 1983-08-03 1983-08-03 Organic electrolyte battery

Publications (1)

Publication Number Publication Date
JPS6035461A true JPS6035461A (en) 1985-02-23

Family

ID=15329408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14303683A Pending JPS6035461A (en) 1983-08-03 1983-08-03 Organic electrolyte battery

Country Status (1)

Country Link
JP (1) JPS6035461A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011002739A1 (en) 2009-07-01 2011-01-06 Eveready Battery Company, Inc. Removal of impurities from lithium-iron disulfide electrochemical cells
CN102437371A (en) * 2010-09-29 2012-05-02 比亚迪股份有限公司 Electrolyte of lithium iron phosphate battery and lithium iron phosphate battery containing same
US20130130093A1 (en) * 2009-11-19 2013-05-23 The Gillette Company Alkaline battery separators with ion-trapping molecules
CN103400699A (en) * 2013-08-05 2013-11-20 哈尔滨工业大学 Quantum dot-modified ZnO nanorod array electrode and preparation method thereof
JP2017106105A (en) * 2015-11-27 2017-06-15 新日鐵住金株式会社 Method for producing sulfur-added steel

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011002739A1 (en) 2009-07-01 2011-01-06 Eveready Battery Company, Inc. Removal of impurities from lithium-iron disulfide electrochemical cells
EP2449615A1 (en) * 2009-07-01 2012-05-09 Eveready Battery Company, Inc. Removal of impurities from lithium-iron disulfide electrochemical cells
EP2449615A4 (en) * 2009-07-01 2013-12-18 Eveready Battery Inc Removal of impurities from lithium-iron disulfide electrochemical cells
AU2010266488B2 (en) * 2009-07-01 2014-05-29 Energizer Brands, Llc Removal of impurities from lithium-iron disulfide electrochemical cells
US20130130093A1 (en) * 2009-11-19 2013-05-23 The Gillette Company Alkaline battery separators with ion-trapping molecules
CN102437371A (en) * 2010-09-29 2012-05-02 比亚迪股份有限公司 Electrolyte of lithium iron phosphate battery and lithium iron phosphate battery containing same
CN103400699A (en) * 2013-08-05 2013-11-20 哈尔滨工业大学 Quantum dot-modified ZnO nanorod array electrode and preparation method thereof
CN103400699B (en) * 2013-08-05 2016-03-09 哈尔滨工业大学 A kind of quantum dot modifies ZnO nanorod array electrode and preparation method thereof
JP2017106105A (en) * 2015-11-27 2017-06-15 新日鐵住金株式会社 Method for producing sulfur-added steel

Similar Documents

Publication Publication Date Title
JP2000353543A (en) Nonaqueous electrolyte secondary battery
JPH05182689A (en) Nonaqueous electrolyte secondary battery
JP2735842B2 (en) Non-aqueous electrolyte secondary battery
JPS6035461A (en) Organic electrolyte battery
JPH1092467A (en) Nonaqueous electrolyte secondary battery
JPH08241731A (en) Organic electrolytic secondary battery
JPH03152879A (en) Nonaqueous electrolyte secondary battery
JPH03291863A (en) Secondary cell
JPS60131768A (en) Organic electrolyte battery
JPH04171659A (en) Nonaqueous-electrolyte secondary battery
JPH04104468A (en) Nonaqueous electrolyte battery
JPH11250933A (en) Nonaqueous electrolyte secondary battery
JP2994705B2 (en) Non-aqueous electrolyte battery
JPS62217567A (en) Nonaqueous electrolyte battery
JPH04351860A (en) Non-aqueous electrolyte battery
JPS6037656A (en) Nonaqueous chemical battery
JPH0574490A (en) Nonaqueous electrolyte secondary battery
JP3418715B2 (en) Organic electrolyte secondary battery
JP2004047406A (en) Nonaqueous electrolyte secondary battery
JPH09120825A (en) Nonaqueous electrolyte battery
JPH02260368A (en) Organic electrolyte battery
JPH0652848A (en) Nonaqueous electrolytic secondary battery
JPS59134567A (en) Organic electrolytic battery
JPH05198316A (en) Nonaqueous electrolyte battery
JPH053114B2 (en)