JPH02260368A - Organic electrolyte battery - Google Patents

Organic electrolyte battery

Info

Publication number
JPH02260368A
JPH02260368A JP1081682A JP8168289A JPH02260368A JP H02260368 A JPH02260368 A JP H02260368A JP 1081682 A JP1081682 A JP 1081682A JP 8168289 A JP8168289 A JP 8168289A JP H02260368 A JPH02260368 A JP H02260368A
Authority
JP
Japan
Prior art keywords
electrolyte
battery
organic electrolyte
dialkylamide
saturated hydrocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1081682A
Other languages
Japanese (ja)
Inventor
Fusaji Kita
房次 喜多
Akira Kawakami
章 川上
Kozo Kajita
梶田 耕三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP1081682A priority Critical patent/JPH02260368A/en
Publication of JPH02260368A publication Critical patent/JPH02260368A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/164Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by the solvent

Abstract

PURPOSE:To increase the storage stability of a battery by containing a specific N-dialkylamide in an organic electrolyte containing LiPF6. CONSTITUTION:In a battery having an organic electrolyte prepared by dissolving electrolytes containing LiPF6 in a nonaqueous solvent, N-dialkylamide represented by the general formula (a) (Wherein R1 and R2 are a saturated hydrocarbon group which may contain oxygen atom or nitrogen atom, R3 is hydrogen atom or the same saturated hydrocarbon group as R1 and R2, and two of R1-R3 may be linked together circularly.) is contained in the electrolyte. Good storage stability is obtained. The content of the N-dialkylamide in the electrolyte is generally 0.1-20vol.%, preferably 1-10vol.%.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はリチウム電池などの有機電解液を使用した電
池に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a battery using an organic electrolyte, such as a lithium battery.

〔従来の技術〕[Conventional technology]

この種の電池に使用される有機電解液としては、プロピ
レンカーボネート、γ−ブチロラクトン、ジメトキシエ
タン、ジオキソランなどの非水系溶媒中にリチウム塩か
らなる電解質を溶解させたものがよく知られている。
As an organic electrolyte used in this type of battery, one in which an electrolyte consisting of a lithium salt is dissolved in a nonaqueous solvent such as propylene carbonate, γ-butyrolactone, dimethoxyethane, or dioxolane is well known.

上記のリチウム塩としては、L i Cl 04 、L
iAsF、 、LiPF6などが一般的に用いられてい
るが、このうちLiCIO4は過放電した際に発火する
などの安全性の面での問題があり、またLiAsF6は
Asを含んでいるという点で日本の消費者には毒性上受
は入れられにくい。このため、このような安全性や毒性
の問題のないLiPF、が実用的には最も好ましいもの
として賞用されている。
The above lithium salts include L i Cl 04 , L
iAsF, , LiPF6, etc. are commonly used, but among these, LiCIO4 has safety problems such as ignition when over-discharged, and LiAsF6 contains As, so it is not popular in Japan. It is difficult for consumers to accept it due to its toxicity. For this reason, LiPF, which does not have such safety and toxicity problems, is practically used as the most preferable material.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかるに、LiPF6を電解質として用いた有機電解液
電池は、熱安定性が悪く、高温下で貯蔵した場合にLi
PF、の分解を招いて電解液が着色し、これに伴って電
池性能が著しく劣化するという問題があった。
However, organic electrolyte batteries that use LiPF6 as an electrolyte have poor thermal stability and lose Li when stored at high temperatures.
There was a problem in that the electrolyte solution was colored due to decomposition of PF, and battery performance was significantly deteriorated.

そこで、このような問題を回避するために、有機電解液
中にベキサメチルホスホリックトリアミド(以下、HM
PAという)やテトラメチルエチレンジアミン(以下、
TMEDAという)などを添加する試みもなされている
が、これらの添加剤では充分な効果が得られず、特にH
MPAなどは負極Liと反応するおそれがあって、貯蔵
安定性の改善効果はあまり望めなかった。
Therefore, in order to avoid such problems, bexamethylphosphoric triamide (hereinafter referred to as HM) was added to the organic electrolyte.
PA) and tetramethylethylenediamine (hereinafter referred to as PA) and tetramethylethylenediamine (hereinafter referred to as
Attempts have been made to add additives such as TMEDA, but these additives do not have sufficient effects, especially when
Since MPA and the like may react with the negative electrode Li, it was not possible to expect much improvement in storage stability.

この発明は、上述の情況に鑑みて、負極Liとの反応性
の低い特定の添加剤を有機電解液中に含ませることによ
って、電解質としてLiPF6を用いた有機電解液電池
の貯蔵安定性を大幅に改善することを目的としている。
In view of the above-mentioned circumstances, this invention significantly improves the storage stability of an organic electrolyte battery using LiPF6 as an electrolyte by including a specific additive with low reactivity with negative electrode Li in the organic electrolyte. The aim is to improve.

〔課題を解決するための手段〕[Means to solve the problem]

この発明者らは、上記の目的を達成するために鋭意検討
した結果、l、1PF6を含む有機電解液中に特定のN
−ジアルキルアミド化合物を含ませるようにしたときに
は、電池の貯蔵安定性が著しく改善されたものとなるこ
とを知り、この発明を完成するに至った。
As a result of intensive studies to achieve the above object, the inventors found that a specific N
- It was found that the storage stability of the battery was significantly improved when a dialkylamide compound was included, and this invention was completed.

すなわち、この発明は、電解液が非水系溶媒中にl、i
PF、を含む電解質を溶解させた有機電解液からなる電
池において、上記の電解液中にっぎの一般式(a): (式中、RI、 Rzは炭素鎖中に酸素原子または窒素
原子を含むことがある飽和炭化水素基、R1は水素原子
または上記のRI、  Rzと同様の飽和炭化水素基で
、R1−R3のうちの2個が互いに環状につながってい
てもよい)で表されるN−ジアルキルアミド化合物が含
有されていることを特徴とする有機電解液電池に係るも
のである。
That is, in this invention, the electrolyte is in a non-aqueous solvent with l, i
In a battery made of an organic electrolyte in which an electrolyte containing PF is dissolved, the general formula (a) in the above electrolyte is: (where RI and Rz contain an oxygen atom or a nitrogen atom in the carbon chain) R1 is a hydrogen atom or a saturated hydrocarbon group similar to the above RI, Rz, and two of R1-R3 may be connected to each other in a cyclic form) - An organic electrolyte battery characterized by containing a dialkylamide compound.

〔発明の構成・作用〕[Structure and operation of the invention]

この発明の電池の有機電解液は、上記のように、LiP
F、を含む電解質を溶解させた非水系溶媒中に、一般式
(a)で表される特定のN−ジアルキルアミド化合物を
含有させるようにしたものであり、これにより特に良好
な貯蔵安定性が得られる理由は今のところ必ずしも明ら
かとはいえない。推測では、窒素原子部分に強いL+イ
オン求引性を有しているため、L i P F bの如
き不安定なイオンを安定化する作用が強く現れる一方、
Li極との反応性がそれほど強くないことに基づくもの
と推定される。
As mentioned above, the organic electrolyte of the battery of this invention is LiP
A specific N-dialkylamide compound represented by the general formula (a) is contained in a non-aqueous solvent in which an electrolyte containing F is dissolved, and this provides particularly good storage stability. The reasons for this are not necessarily clear at present. It is speculated that because the nitrogen atom part has a strong L+ ion attracting property, it has a strong stabilizing effect on unstable ions such as L i P F b.
This is presumed to be due to the fact that the reactivity with the Li electrode is not so strong.

この発明で用いる上記のN−ジアルキルアミド化合物は
、前記の一般式(alで表される化合物であって、式中
のR,、R,は炭素鎖中に酸素原子または窒素原子を含
むことがある炭素数が通常1〜10個、特に好適には1
〜3個の飽和炭化水素基で、またR3は水素原子または
上記のRI、Rzと同様の飽和炭化水素基であって、R
1−R3のうちの2個が互いに環状につながっていても
よいものである。なお、たとえばR,とR1とが互いに
つながっている場合は、炭素数は前記の炭素数の2倍に
なってもよい。
The above N-dialkylamide compound used in the present invention is a compound represented by the general formula (al), in which R, R, may contain an oxygen atom or a nitrogen atom in the carbon chain. A certain number of carbon atoms is usually 1 to 10, particularly preferably 1
~3 saturated hydrocarbon groups, and R3 is a hydrogen atom or a saturated hydrocarbon group similar to the above RI, Rz, and R
Two of 1-R3 may be connected to each other in a ring. Note that, for example, when R and R1 are connected to each other, the number of carbon atoms may be twice the number of carbon atoms described above.

このようなN−ジアルキルアミド化合物の具体例として
は、1−メチル−2−ピペリドン、1−メチル−2−ピ
ロリジノン、1−エチル−2−ピロリジノン、N−N−
ジメチルアセトアミド、N・N−ジエチルアセトアミド
、N−N−ジメチルホルムアミド、N−N−ジメチルプ
ロピオンアミド、■・5−ジメチル−2−ピロリジノン
、1・3−ジメチル−3・4・5・6−チトラヒドロー
2(IH)−ピリミジノン、4−ホルミルモルフォリン
、l−ホルミルピペリジン、1−(3−メチル−ブチリ
ル)ピロリジン、N−メチルカプロラクタム、ビスペン
タメチレンウレア、1−シクロへキシル−2−ピロリジ
ノン、N−N−ジメチルドデカンアミド、N・N−ジエ
チルホルムアミド、N−N−ジエチルプロピオンアミド
、1・3−ジメチル−2−イミダゾリジノンなどが挙げ
られる。
Specific examples of such N-dialkylamide compounds include 1-methyl-2-piperidone, 1-methyl-2-pyrrolidinone, 1-ethyl-2-pyrrolidinone, N-N-
Dimethylacetamide, N・N-diethylacetamide, N-N-dimethylformamide, N-N-dimethylpropionamide, ■・5-dimethyl-2-pyrrolidinone, 1,3-dimethyl-3,4,5,6-titrahydro 2(IH)-pyrimidinone, 4-formylmorpholine, l-formylpiperidine, 1-(3-methyl-butyryl)pyrrolidine, N-methylcaprolactam, bispentamethyleneurea, 1-cyclohexyl-2-pyrrolidinone, N -N-dimethyldodecanamide, N·N-diethylformamide, N-N-diethylpropionamide, 1,3-dimethyl-2-imidazolidinone, and the like.

このN−ジアルキルアミド化合物の電解液中の含有量と
しては、一般に0.1〜b 好ましくは1〜b この含有量が過少では所期の効果が得られないし、過多
となると電池性能を損なうおそれがあり、いずれも好ま
しくない。
The content of this N-dialkylamide compound in the electrolytic solution is generally 0.1-b, preferably 1-b. If this content is too small, the desired effect cannot be obtained, and if it is too large, there is a risk of impairing battery performance. Both are undesirable.

電解液に使用する非水系溶媒としては、プロピレンカー
ボネート、γ−ブチロラクトン、ジメチルスルホキシド
、エチレンカーボネート、1・2−ジメトキシエタン、
テトラヒドロフラン、1・3−ジオキソラン、4−メチ
ル−1・3−ジオキソラン、2−メチルテトラヒドロフ
ラン、その他の脂肪族モノエーテルおよびポリエーテル
などが挙げられる。
Non-aqueous solvents used in the electrolyte include propylene carbonate, γ-butyrolactone, dimethyl sulfoxide, ethylene carbonate, 1,2-dimethoxyethane,
Examples include tetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, 2-methyltetrahydrofuran, other aliphatic monoethers and polyethers.

また、電解質としては、LiPF、をこれ単独で使用で
きるほか、これと他の電解質、たとえばL I Cjl
! 04 、L I CF 3 S O:l 、L I
 B F a、LiCFsCO□、LiAsF6、Li
B (C。
In addition, as an electrolyte, LiPF can be used alone, or it can be used with other electrolytes, such as LiPF.
! 04 , L I CF 3 S O:l , L I
B F a, LiCFsCO□, LiAsF6, Li
B (C.

H5)4 、Li5bl”、などとを併用したものであ
ってもよい。上記他の電解質を併用する場合、これら他
の電解質は安全性や毒性などの面で問題のない適宜の使
用量範囲に抑えるべきであり、その適正範囲は各電解質
に応じて個々に決められるものである。
H5)4, Li5bl”, etc. When using the other electrolytes mentioned above, these other electrolytes should be used within an appropriate amount range that does not pose any problems in terms of safety or toxicity. The appropriate range should be determined individually depending on each electrolyte.

また、電解質全体の使用量は、電解液の25℃での電気
伝導度が通常3ms/a++以上となるように、一般に
0.2〜1.5モル/lの範囲の中から電解質の種類に
応じた最適の使用量を選択するのが好ましい。
In addition, the total amount of electrolyte used is generally determined by the type of electrolyte from a range of 0.2 to 1.5 mol/l so that the electrical conductivity of the electrolyte at 25°C is usually 3 ms/a++ or more. It is preferable to select the optimum usage amount depending on the situation.

この発明の電池は、上述の非水系溶媒にLiPF6を含
む電解質を溶解し、これにさらに前記の一般式(a)で
表されるN−ジアルキルアミド化合物を含有させてなる
有機電解液を使用したものであり、正極および負極に使
用する活物質の組み合わせによって構成される種々の一
次電池および二次電池を包含する。
The battery of the present invention uses an organic electrolyte solution obtained by dissolving an electrolyte containing LiPF6 in the above-mentioned non-aqueous solvent and further containing an N-dialkylamide compound represented by the above-mentioned general formula (a). It includes various primary batteries and secondary batteries constructed by combinations of active materials used for positive and negative electrodes.

正極活物質としては、MnO□、■201、MO03%
 Pb30a 、Bi:+ Os 、CO:+ 04、
Ti0z 、Cr+ Os 、Cr、O,、LiCoO
2などの金属酸化物ならびにこれらの複合酸化物、T 
iS z 、Cu S s F e Sなどの金属硫化
物、さらにはこれらの混合物が挙げられる。なお、これ
らの中でもMnO□は、単極電位が高く、負極活物質と
してリチウムを使用した電池では約3vという高電圧が
得られることから好適であり、かつ最近登場している複
合MnO□や改質MnO□はすぐれたサイクル特性を付
与しうるという利点がある。
As the positive electrode active material, MnO□, ■201, MO03%
Pb30a, Bi:+Os, CO:+04,
Ti0z, Cr+Os, Cr, O,, LiCoO
Metal oxides such as 2 and their composite oxides, T
Examples include metal sulfides such as iS z , Cu S s Fe S, and mixtures thereof. Among these, MnO□ is suitable because it has a high single-electrode potential and a high voltage of about 3V can be obtained in a battery using lithium as the negative electrode active material. High quality MnO□ has the advantage of providing excellent cycle characteristics.

一方、負極活物質としては、リチウム、カリウム、ナト
リウム、カルシウム、マグネシウムの如き軽金属、なら
びにリチウム合金が挙げられ、これらの中でもとくにリ
チウムが好適である。
On the other hand, examples of the negative electrode active material include light metals such as lithium, potassium, sodium, calcium, and magnesium, as well as lithium alloys, and among these, lithium is particularly preferred.

第1図はこの発明を適用した渦巻型の筒形電池の構成例
を示す。この図において、lは正極、2は負極、3は正
極1を包む袋状のセパレータ、4は前記構成の有機電解
液であり、両極1.2は帯状のものを重ねて渦巻状に巻
回した状態で負極缶をなす筒形のステンレス鋼製電池ケ
ース5内に装填され、その全体が電解液4に浸漬してい
る。
FIG. 1 shows an example of the configuration of a spiral cylindrical battery to which the present invention is applied. In this figure, l is a positive electrode, 2 is a negative electrode, 3 is a bag-shaped separator that encloses the positive electrode 1, 4 is an organic electrolyte having the above structure, and both electrodes 1.2 are formed by overlapping strips and winding them in a spiral shape. In this state, it is loaded into a cylindrical stainless steel battery case 5 that forms a negative electrode can, and the entire battery case is immersed in an electrolytic solution 4.

なお、この発明は、例示した渦巻型以外の各種筒形電池
、ボタン形、コイン形の如き薄型電池など、種々の電池
形態に適用可能である。
Note that the present invention is applicable to various battery forms, such as various cylindrical batteries other than the illustrated spiral type, and thin batteries such as button-shaped and coin-shaped batteries.

〔発明の効果〕〔Effect of the invention〕

この発明の有機電解液電池は、電解質としてLiPFh
を含む有機電解液中に特定のN−ジアルキルアミド化合
物を含有させるようにしたことにより、安全性や毒性の
問題がないうえに、貯蔵安定性にすぐれるという利点を
有している。
The organic electrolyte battery of this invention uses LiPFh as the electrolyte.
By incorporating a specific N-dialkylamide compound into the organic electrolyte containing the organic electrolyte, there is no problem of safety or toxicity, and there is an advantage of excellent storage stability.

〔実施例〕〔Example〕

以下に、この発明の実施例を記載してより具体的に説明
する。
EXAMPLES Below, examples of the present invention will be described in more detail.

実施例1 外径15mのステンレス鋼製の電池ケース内に、厚さ0
.17w、幅30龍のリチウムからなる帯状負極と、微
孔性ポリプロピレンからなる袋状セパレータに包んだ厚
さ0.4 +n、幅30龍のMnO□合剤などからなる
帯状正極とを重ねて渦巻状に巻回した状態でかつ正負両
極のリード体を取付けて装填するとともに、プロピレン
カーボネートとテトラヒドロフランと1・2−ジメトキ
シエタンとの重量比1:1:1の混合溶媒に0.6モル
/lのLiPFbを電解質として溶解し、水分の除去後
5容量%の1−メチル−2−ピペリドンを加えてなる水
分含量が50ppm以下の有機電解液を注入した。
Example 1 Inside a stainless steel battery case with an outer diameter of 15 m, a battery with a thickness of 0
.. A strip-shaped negative electrode made of lithium with a width of 17 W and a width of 30 mm and a strip-shaped positive electrode made of a MnO□ mixture with a thickness of 0.4+n and a width of 30 mm wrapped in a bag-shaped separator made of microporous polypropylene are stacked and swirled. The lead body of both positive and negative poles was attached and loaded in a wound state, and 0.6 mol/l was added to a mixed solvent of propylene carbonate, tetrahydrofuran, and 1,2-dimethoxyethane in a weight ratio of 1:1:1. An organic electrolyte having a water content of 50 ppm or less was injected into the tank by dissolving LiPFb as an electrolyte and adding 5% by volume of 1-methyl-2-piperidone after removing water.

ついで、電池を封口し、安定化、エージングを行って、
第1図で示す構造の渦巻型の筒型電池を作製した。
Next, the battery is sealed, stabilized, and aged.
A spiral cylindrical battery having the structure shown in FIG. 1 was manufactured.

比較例I 電解液の添加剤である5容量%の1−メチル−2−ピペ
リドンを用いなかった以外は、実施例1と同様にして渦
巻型の筒型電池を作製した。
Comparative Example I A spiral cylindrical battery was produced in the same manner as in Example 1, except that 5% by volume of 1-methyl-2-piperidone, which is an additive for the electrolytic solution, was not used.

比較例2 電解液の添加剤として、5容量%の1−メチル2−ピペ
リドンに代えて5容量%のHM P Aを用いるように
した以外は、実施例1と同様にして渦巻型の筒型電池を
作製した。
Comparative Example 2 A spiral cylindrical cell was prepared in the same manner as in Example 1, except that 5% by volume of HMPA was used as an additive for the electrolytic solution instead of 5% by volume of 1-methyl-2-piperidone. A battery was created.

これら実施例1および比較例1,2の電池について、6
0℃で20日間貯蔵し、経口的に3A。
Regarding the batteries of Example 1 and Comparative Examples 1 and 2, 6
Stored at 0°C for 20 days, 3A orally.

0.5秒後の閉路電圧を調べた結果は、第2図に示され
るとおりであった0図中、曲線−aは実施例1、曲線−
bは比較例1、曲線−〇は比較例2、の各電池の試験結
果である。また、上記の各電池に使用した有機電解液に
つき、つぎの安定化試験を行った結果は、後記の第1表
に示されるとおりであった。
The results of examining the closed circuit voltage after 0.5 seconds were as shown in Figure 2. In Figure 0, curve -a is Example 1, curve -
b is the test result of each battery of Comparative Example 1, and curve -0 is Comparative Example 2. Further, the following stabilization test was conducted on the organic electrolyte used in each of the above batteries, and the results were as shown in Table 1 below.

〈安定化試験〉 有機電解液のl Qmlを同容量のバイアルビンに入れ
、これに1cmX4cmの大きさのLi片を投入し、ポ
リエチレンの中栓をしてアルミキャップで密閉する。8
0℃で10日間貯蔵したのち開放し、電解液の色を調べ
た。
<Stabilization test> 1 Qml of organic electrolyte is placed in a vial with the same capacity, a Li piece of 1 cm x 4 cm is placed in the vial, the vial is covered with a polyethylene stopper, and the vial is sealed with an aluminum cap. 8
After being stored at 0°C for 10 days, it was opened and the color of the electrolyte was examined.

第1表 上記の第1表および第2図から明らかなように、電解液
中に1−メチル−2−ピペリドンを添加した実施例1の
電池は、上記添加剤のLtPF、、に対する安定化効果
が良好であるとともに、Li極と反応しにくい性質を有
していることから、非常にすぐれた貯蔵安定性を示すも
のであることが判る。
Table 1 As is clear from Table 1 and Figure 2 above, the battery of Example 1 in which 1-methyl-2-piperidone was added to the electrolyte had a stabilizing effect of the additive on LtPF It can be seen that it exhibits very good storage stability because it has good properties and has a property of not easily reacting with Li electrodes.

一方、添加剤として従来公知のHMPAを用いた比較例
2の電池では、L i P F hの安定化効果は良好
であるものの、Li極との反応性の問題があることなど
に起因して、電池の貯蔵安定性の改良効果が劣るもので
あることが判る。
On the other hand, in the battery of Comparative Example 2 using the conventionally known HMPA as an additive, although the stabilizing effect of L i P F h was good, there was a problem of reactivity with the Li electrode, etc. , it can be seen that the effect of improving the storage stability of the battery is inferior.

実施例2〜4 電解液の添加剤として、っぎの第2表に記載のものを用
いるようにした以外は、実施例1と同様にして3種の渦
巻型の筒型電池を作製した。
Examples 2 to 4 Three types of spiral cylindrical batteries were produced in the same manner as in Example 1, except that the additives listed in Table 2 were used as additives for the electrolytic solution.

第   2   表 な安定性を示した。なお、前記同様の安定化試験の結果
は、上記の第2表に併記されるとおりであった。
Table 2 shows excellent stability. The results of the stabilization test similar to the above were also listed in Table 2 above.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の有機電解液電池の構成例を示す縦断
面図、第2図は実施例1および比較例1゜2の各電池の
貯蔵安定性の試験結果を示す特性図である。 特許出願人  日立マクセル株式会社 上記の各電池の貯蔵安定性を前記同様にして調べたとこ
ろ、いずれも実施例1と変わらない良好第 図 図 Wカ代日委父−(El)
FIG. 1 is a longitudinal cross-sectional view showing an example of the structure of an organic electrolyte battery of the present invention, and FIG. 2 is a characteristic diagram showing the storage stability test results of each battery of Example 1 and Comparative Example 1.2. Patent Applicant: Hitachi Maxell Co., Ltd. When the storage stability of each of the above batteries was examined in the same manner as above, all of them were found to be in good condition, same as in Example 1.

Claims (1)

【特許請求の範囲】[Claims] (1)電解液が非水系溶媒中にLiPF_6を含む電解
質を溶解させた有機電解液からなる電池において、上記
の電解液中につぎの一般式(a);▲数式、化学式、表
等があります▼ (式中、R_1、R_2、は炭素鎖中に酸素原子または
窒素原子を含むことがある飽和炭化水素基、R_3、は
水素原子または上記のR_1、R_2と同様の飽和炭化
水素基で、R_1〜R_3、のうちの2個が互いに環状
につながつていてもよい)で表されるN−ジアルキルア
ミド化合物が含有されていることを特徴とする有機電解
液電池。
(1) In a battery where the electrolyte is an organic electrolyte in which an electrolyte containing LiPF_6 is dissolved in a non-aqueous solvent, the above electrolyte contains the following general formula (a); ▲ mathematical formula, chemical formula, table, etc. ▼ (In the formula, R_1 and R_2 are saturated hydrocarbon groups that may contain an oxygen or nitrogen atom in the carbon chain, R_3 is a hydrogen atom or a saturated hydrocarbon group similar to R_1 and R_2 above, and R_1 An organic electrolyte battery comprising an N-dialkylamide compound represented by R_3, two of which may be connected to each other in a ring.
JP1081682A 1989-03-31 1989-03-31 Organic electrolyte battery Pending JPH02260368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1081682A JPH02260368A (en) 1989-03-31 1989-03-31 Organic electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1081682A JPH02260368A (en) 1989-03-31 1989-03-31 Organic electrolyte battery

Publications (1)

Publication Number Publication Date
JPH02260368A true JPH02260368A (en) 1990-10-23

Family

ID=13753127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1081682A Pending JPH02260368A (en) 1989-03-31 1989-03-31 Organic electrolyte battery

Country Status (1)

Country Link
JP (1) JPH02260368A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03274670A (en) * 1990-03-23 1991-12-05 Sanyo Electric Co Ltd Nonaqueous electrolytic battery
JP2004296116A (en) * 2003-03-25 2004-10-21 Mitsubishi Chemicals Corp Nonaqueous electrolytic solution for secondary battery, and nonaqueous electrolyte secondary battery
JP2004296104A (en) * 2003-03-25 2004-10-21 Sanyo Electric Co Ltd Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
JP2006059797A (en) * 2004-07-22 2006-03-02 Mitsubishi Chemicals Corp Nonaqueous electrolyte solution and lithium secondary battery
JP2010135330A (en) * 2008-12-08 2010-06-17 Samsung Sdi Co Ltd Electrolyte for lithium secondary battery, and lithium secondary battery containing it

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03274670A (en) * 1990-03-23 1991-12-05 Sanyo Electric Co Ltd Nonaqueous electrolytic battery
JP2004296116A (en) * 2003-03-25 2004-10-21 Mitsubishi Chemicals Corp Nonaqueous electrolytic solution for secondary battery, and nonaqueous electrolyte secondary battery
JP2004296104A (en) * 2003-03-25 2004-10-21 Sanyo Electric Co Ltd Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
JP4524543B2 (en) * 2003-03-25 2010-08-18 三洋電機株式会社 Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
JP2006059797A (en) * 2004-07-22 2006-03-02 Mitsubishi Chemicals Corp Nonaqueous electrolyte solution and lithium secondary battery
JP2010135330A (en) * 2008-12-08 2010-06-17 Samsung Sdi Co Ltd Electrolyte for lithium secondary battery, and lithium secondary battery containing it
US8945765B2 (en) 2008-12-08 2015-02-03 Samsung Sdi Co., Ltd. Secondary lithium battery electrolyte and secondary lithium battery including the same

Similar Documents

Publication Publication Date Title
JP2582893B2 (en) Organic electrolyte battery
US6077628A (en) Nonaqueous electrolytic solution for battery and nonaqueous electrolytic solution battery
US6235431B1 (en) Nonaqueous electrolytic solution for battery and nonaqueous electrolytic solution battery using the same
US7749660B2 (en) Electrolyte for improving life characteristics at high temperature and lithium secondary battery comprising the same
EP1209754B1 (en) Non-aqueous electrolyte cell
KR20020018184A (en) Lithium secondary cell
US6632564B1 (en) Non-aqueous electrolyte and non-aqueous electrolyte cell
JPH11111332A (en) Nonaqueous electrolyte battery
JP2002319430A (en) Nonaqueous electrolyte secondary cell
JPS6023973A (en) Organic electrolyte battery
JPH02260368A (en) Organic electrolyte battery
WO2012086507A1 (en) Nonaqueous electrolyte secondary battery
JPH08241731A (en) Organic electrolytic secondary battery
US6221533B1 (en) Nonaqueous electrolyte battery
US20050053838A1 (en) Non-aqueous electrolyte secondary battery
JP2004095325A (en) Lithium secondary battery
JPS62271370A (en) Electrolyte for lithium battery
JP2000323171A (en) Nonaqueous electrolyte secondary battery
JPH0487155A (en) Nonaqueous electrolyte battery
JPH0711967B2 (en) Non-aqueous electrolyte battery
JPH02239571A (en) Battery of organic electrolyte
JPH10334944A (en) Lithium battery
JPH0935716A (en) Lithium battery
JPH053114B2 (en)
JPH02126554A (en) Nonaqueous solvent secondary cell