JPS6034046B2 - Thin film generation device - Google Patents
Thin film generation deviceInfo
- Publication number
- JPS6034046B2 JPS6034046B2 JP11833479A JP11833479A JPS6034046B2 JP S6034046 B2 JPS6034046 B2 JP S6034046B2 JP 11833479 A JP11833479 A JP 11833479A JP 11833479 A JP11833479 A JP 11833479A JP S6034046 B2 JPS6034046 B2 JP S6034046B2
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- optical fiber
- thickness
- light
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Description
【発明の詳細な説明】
本発明は薄膜生成用ベルジャ内の光ファィバ端面に生成
付着した薄膜による光フアィバ端面の反射率の生成膜厚
に依存した変化をベルジャ外部で他方のフアィバ端面よ
り反射光量の変化として観測し、これによってベルジャ
内の基板面上に生成された薄膜の膜厚をモニ夕する膜厚
モニ夕機能が付加された薄膜生成装置に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION The present invention utilizes changes in the reflectance of the optical fiber end face due to a thin film formed and adhered to the end face of an optical fiber in a belljar for thin film production, which depends on the thickness of the optical fiber end face, to the amount of light reflected from the other end face of the other fiber outside the belljar. This invention relates to a thin film production device that is equipped with a film thickness monitoring function that monitors the thickness of the thin film produced on the substrate surface in the bell jar.
第1図に示すように、屈折率比の物質に屈折率n,の物
質が厚さdだけ付着した場合の比の物質側からみた光の
反射率舷dはよく知られるように、波長入の光に対して
で与えられる。As shown in Figure 1, when a material with a refractive index of n and a thickness of d is attached to a material with a refractive index of is given by for the light of .
比=1.ふn,=2.5、^=8000Aの時のRdを
第2図に示す。反射率は膜厚に対して周期的に変化し、
この反射率の変化より膜厚dの変化をモニタできる。R
dは波長入に対しても依存性を有することからこの膜に
白色光を照射した場合には特定の波長に対して反射率が
強くなり、いわゆる“干渉色”が見られ、従来この効果
を利用して外部より膜厚をモニタすることが試みられて
いる。しかしベルジャまたは窓に用いているガラス等を
通してモニ夕するため正確さに乏しい欠点を有していた
。本発明は光フアィバの片端面に光フアィバと異なる屈
折率の膜が生成することにより、フアィバ側からみた端
面の反射率が変化することを利用してこの光学測定系を
薄膜生成装置に結合させ、生成薄膜の膜厚をモニタする
ことのできる新規有用な薄膜生成装置を提供することを
目的とするものである。Ratio=1. Figure 2 shows Rd when Fn = 2.5 and ^ = 8000A. Reflectance changes periodically with film thickness,
Changes in film thickness d can be monitored from changes in reflectance. R
Since d also has a dependence on wavelength input, when this film is irradiated with white light, the reflectance becomes strong for a specific wavelength, and so-called "interference color" is observed. Attempts have been made to use this method to monitor film thickness from the outside. However, it had the disadvantage of poor accuracy because it was monitored through a bell jar or glass used in windows. The present invention utilizes the fact that a film with a refractive index different from that of the optical fiber is formed on one end face of the optical fiber, thereby changing the reflectance of the end face when viewed from the fiber side, and couples this optical measurement system to a thin film generation device. The object of the present invention is to provide a new and useful thin film production device that can monitor the thickness of the produced thin film.
本発明の他の目的は光フアィバ自体が光の伝送路として
働くため、光フアィバが変質しない条件であれば、光を
取り出す窓のないいかなる装置においても、光フアィバ
を挿入することができ得る限り膜厚をモニタすることが
可能な膜厚モニタ装置を確立することである。また光フ
アィバは低損失であり、外部の影響を受けないため、窓
等から光を取り出す場合に比べ、極めて正確な測定がで
きる。以下、本発明を実施例に従って図面とともに詳説
する。Another object of the present invention is that since the optical fiber itself acts as a light transmission path, the optical fiber can be inserted into any device without a window for extracting light, as long as the optical fiber does not deteriorate. The object of the present invention is to establish a film thickness monitoring device that can monitor film thickness. Furthermore, since optical fibers have low loss and are not affected by external influences, extremely accurate measurements can be made compared to cases where light is extracted through a window or the like. Hereinafter, the present invention will be explained in detail according to examples and with drawings.
第3図は本発明の1実施例で、通常の真空蒸着装直に本
発明を適用した場合の構成説明図である。ベルジャー内
に蒸着源2と薄膜生成用基板3が戦置され、側壁より光
フアィバ4が挿入されている。光フアィバ4の一端は基
板3に近接配置され、端面は蒸着源2に対面している。
光フアィバ4を適して基板3上に生成した薄膜の膜厚を
モニタする手段として、レーザ光源7からの光を結合レ
ンズ5を用いて光フアィバ4に入射させ、基板3と同等
のレベル位置にあって薄膜の被着された光フアィバの片
端面からの反射光を半透鏡6で検出器8に入れ、検出器
8の出力をモニタすることで、第2図のような特性から
基板3上に生成された薄膜の膜厚をモニタすることがで
きる。第3図の破線で囲んだ部分は光検出による測定系
を示す。測定系については第4図に示す他の実施例のよ
うに光源として半導体レーザ9を用いれば、半導体レー
ザ特有の自己結合効果によりフアィバよりも反射光強度
をモニタすることができ、測定系をより簡単なものとす
ることができる。自己結合効果を半導体レーザの光出力
の変化としてとらえる場合には第4図において検出器8
が必要となるが、半導体レーザの端子電圧の変化として
とらえる場合には検出器8は不要となる。半導体レーザ
を用いる場合にはフアィバ光を入射する際、入射端面か
らの光の反射は少ない方が良く、フアィバの入射端面に
譲電体多層膜等の反射防止膜を付けることが望ましい。
本発明によれば、光フアィバのベルジャ内端面に生成さ
れる基板上の薄膜と等価の膜厚を有する薄膜からの反射
帰還光量を光フアィバ伝送によって取り出しこれを検出
することにより基板上に生成されている薄膜の厚さを求
めることができる。即ち、本発明は基板上に生成された
薄膜に直接光照射するものではなく、基板上に生成され
る薄膜と等価の膜厚を有する薄膜を基板に並設された光
フアィバ端面に生成してこの薄膜を利用することにより
基板上の薄膜の膜厚を求めるものであり、基板上に薄膜
が生成されている過程で漸次厚くなる薄膜の生成進行状
態をリアルタイムでモニ夕することが可能となる。FIG. 3 shows one embodiment of the present invention, and is an explanatory diagram of the structure when the present invention is applied directly to a normal vacuum evaporation system. A vapor deposition source 2 and a thin film forming substrate 3 are placed in a bell jar, and an optical fiber 4 is inserted from the side wall. One end of the optical fiber 4 is placed close to the substrate 3, and the end face faces the vapor deposition source 2.
As a means of monitoring the film thickness of the thin film formed on the substrate 3 by using the optical fiber 4, the light from the laser light source 7 is made to enter the optical fiber 4 using the coupling lens 5, and the optical fiber 4 is placed at the same level as the substrate 3. The light reflected from one end of the optical fiber coated with a thin film is input into a detector 8 using a semi-transparent mirror 6, and the output of the detector 8 is monitored. The thickness of the thin film produced can be monitored. The part surrounded by the broken line in FIG. 3 shows a measurement system using optical detection. Regarding the measurement system, if a semiconductor laser 9 is used as the light source as in the other embodiment shown in FIG. 4, the reflected light intensity can be monitored more easily than with a fiber due to the self-coupling effect unique to semiconductor lasers, and the measurement system can be improved. It can be made simple. When considering the self-coupling effect as a change in the optical output of the semiconductor laser, the detector 8 in Fig.
However, if the change is detected as a change in the terminal voltage of the semiconductor laser, the detector 8 is not necessary. When using a semiconductor laser, it is better to have less reflection of light from the input end face when entering the fiber light, and it is desirable to apply an antireflection film such as a conductive multilayer film to the input end face of the fiber.
According to the present invention, the amount of reflected feedback light from a thin film having a film thickness equivalent to that of the thin film on the substrate, which is generated on the inner end face of the bell jar of the optical fiber, is taken out by optical fiber transmission and detected, thereby generating the light on the substrate. The thickness of the thin film can be determined. That is, the present invention does not directly irradiate a thin film formed on a substrate, but instead forms a thin film having a thickness equivalent to that of the thin film formed on the substrate on the end face of optical fibers arranged in parallel with the substrate. By using this thin film, the thickness of the thin film on the substrate can be determined, and it is possible to monitor in real time the progress of thin film formation, which gradually thickens during the process of forming a thin film on the substrate. .
第1図は屈折率〜の物質に、屈折率n,の物質が厚さd
だけ付着した場合の光の反射を説明する説明図である。
第2図は第1図における反射率(=反射光/入射光)の
計算例であり、〜=1.5、n・=2.5の時、波長8
000Aに対する値を計算した結果を示す説明図である
。第3図は本発明を真空蒸着装層に適用した場合の1実
施例を示す構成説明図である。第4図は第3図の波線で
囲んだ測定系を半導体レーザで構成した場合の実施例を
示す説明図である。1・・・・・・ベルジャ、2・・・
・・・黍着源、3・・・・・・基板、4……光フアィバ
、5・・・・・・結合レンズ、6・・・・・・半透鏡、
7・・・・・・レーザ光源、8・・・・・・検出器、9
・・・・・・半導体レーザ。
第1図
第2図
第3図
第4図Figure 1 shows a material with a refractive index of ~, a material with a refractive index of n, and a thickness of d.
FIG. 3 is an explanatory diagram illustrating the reflection of light when the particles are attached. Figure 2 is an example of calculating the reflectance (=reflected light/incident light) in Figure 1, and when ~=1.5 and n.=2.5, the wavelength is 8.
It is an explanatory view showing the result of calculating the value for 000A. FIG. 3 is a structural explanatory diagram showing one embodiment in which the present invention is applied to a vacuum evaporation layer. FIG. 4 is an explanatory diagram showing an embodiment in which the measurement system enclosed by the dotted line in FIG. 3 is constituted by a semiconductor laser. 1... Bellja, 2...
... Dust source, 3 ... Substrate, 4 ... Optical fiber, 5 ... Coupling lens, 6 ... Semi-transparent mirror,
7... Laser light source, 8... Detector, 9
・・・・・・Semiconductor laser. Figure 1 Figure 2 Figure 3 Figure 4
Claims (1)
膜生成装置において、光フアイバの片端面を前記原料源
に対向して前記基板に並設配置するとともに該光フアイ
バの他方端面に出力光源と該出力源より出力された光の
反射帰還光を検出する検出器とを光結合せしめ、前記基
板に順次生成される薄膜の膜厚変化に対応してこれと等
価の膜厚を有する薄膜が生成される前記光フアイバの片
端面上で、前記出力光源より前記光フアイバ内へ出力さ
れた出力光を該薄膜へ照射し、該薄膜の膜厚変化に応じ
て変化する前記出力光の反射光量を前記検出器で検出す
ることにより、前記基板に生成される薄膜厚さを求める
膜厚モニタ機能を具設したことを特徴とする薄膜生成装
置。1. In a thin film production device for producing a raw material as a thin film on a substrate surface, an optical fiber is arranged in parallel on the substrate with one end face facing the raw material source, and an output light source is provided on the other end face of the optical fiber. Optically coupled to a detector that detects the reflected feedback light of the light output from the output source, a thin film having an equivalent film thickness is produced in response to changes in the thickness of the thin films sequentially produced on the substrate. On one end surface of the optical fiber, the output light output from the output light source into the optical fiber is irradiated onto the thin film, and the amount of reflected light of the output light that changes according to a change in the thickness of the thin film is measured. A thin film production device comprising a film thickness monitoring function for determining the thickness of a thin film produced on the substrate by detecting it with the detector.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11833479A JPS6034046B2 (en) | 1979-09-13 | 1979-09-13 | Thin film generation device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11833479A JPS6034046B2 (en) | 1979-09-13 | 1979-09-13 | Thin film generation device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5642106A JPS5642106A (en) | 1981-04-20 |
JPS6034046B2 true JPS6034046B2 (en) | 1985-08-06 |
Family
ID=14734084
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11833479A Expired JPS6034046B2 (en) | 1979-09-13 | 1979-09-13 | Thin film generation device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6034046B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0224347Y2 (en) * | 1984-10-20 | 1990-07-04 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6056375A (en) * | 1983-09-07 | 1985-04-01 | Agency Of Ind Science & Technol | Molten-carbonate-type fuel cell |
-
1979
- 1979-09-13 JP JP11833479A patent/JPS6034046B2/en not_active Expired
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0224347Y2 (en) * | 1984-10-20 | 1990-07-04 |
Also Published As
Publication number | Publication date |
---|---|
JPS5642106A (en) | 1981-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2804073B2 (en) | Apparatus and method for measuring the refractive index of a substance | |
EP0057745A2 (en) | Rate and depth monitor for silicon etching | |
JP2008180736A (en) | Method and apparatus for measuring optical and physical thickness of optically transparent target | |
JPS62190728A (en) | Method and apparatus for monitoring etching end point | |
JPH0972723A (en) | Method and equipment for measuring thickness and refractive index of film | |
JPS58103604A (en) | Method and device for measuring thickness of film | |
JPS6034046B2 (en) | Thin film generation device | |
US4730109A (en) | Apparatus and method for measuring electric field by electroreflectance | |
JPH0345328B2 (en) | ||
JPS62184332A (en) | Tapered waveguide type liquid detector | |
JPS6330739A (en) | Method for measuring back scattering of optical fiber | |
JPS5714729A (en) | Temperature measuring device | |
JPS5948928A (en) | Control device of thickness of weak absorption thin film | |
JPH0346386A (en) | Thickness controlling method and device for reflection preventive film | |
JP2970020B2 (en) | Method of forming coating thin film | |
JPH01320408A (en) | Thin film monitor using laser and film thickness measuring method | |
JPH0325123Y2 (en) | ||
JPS61189431A (en) | Appreciating method for non-reflecting film | |
JP3084862B2 (en) | Optical film thickness monitor | |
JPS60238737A (en) | Uneven thickness detecting method of coating of optical fiber strand | |
KR0146000B1 (en) | Apparatus for coating size and control method thereof | |
JPS6312535B2 (en) | ||
JP2675125B2 (en) | Parameter measurement method for antireflection coating | |
JPH1164220A (en) | Characteristics monitoring device for optical thin film | |
JPS61288107A (en) | Method and device for forming dielectric film |