JPS6219683B2 - - Google Patents

Info

Publication number
JPS6219683B2
JPS6219683B2 JP13685479A JP13685479A JPS6219683B2 JP S6219683 B2 JPS6219683 B2 JP S6219683B2 JP 13685479 A JP13685479 A JP 13685479A JP 13685479 A JP13685479 A JP 13685479A JP S6219683 B2 JPS6219683 B2 JP S6219683B2
Authority
JP
Japan
Prior art keywords
film thickness
film
fiber
dielectric film
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13685479A
Other languages
Japanese (ja)
Other versions
JPS5660310A (en
Inventor
Yoichi Oosawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP13685479A priority Critical patent/JPS5660310A/en
Publication of JPS5660310A publication Critical patent/JPS5660310A/en
Publication of JPS6219683B2 publication Critical patent/JPS6219683B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】 本発明は光学的反射防止膜などの目的に用いる
誘電体膜形成に際しての膜厚制御装置に関し、と
くに半導体レーザダイオードの反射面保護(以下
パシベーシヨンと称す)におけるパシベーシヨン
膜の厚さ制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a film thickness control device for forming a dielectric film used for purposes such as an optical antireflection film, and particularly to a film thickness control device for forming a dielectric film used for purposes such as an optical antireflection film. The present invention relates to a thickness control device.

半導体素子製造プロセスでは、誘電体膜や酸化
膜を付着形成する工程は、一般に多く行なわれて
おり、不可欠のものである。特に近年、半導体レ
ーザダイオードの反射面にSiO2等をパシベーシ
ヨン膜として施す事によつて、反射面の劣化が抑
えられ、素子の寿命が著しく改善され、それに伴
い実用化が開始されようとしている。しかし、半
導体レーザダイオードのパシベーシヨン膜の厚さ
制御は数%以内に抑えなければ反射率の変化によ
る発振閾値の増加をもたらし、半導体レーザダイ
オードの諸特性に悪影響を与える。
In the semiconductor device manufacturing process, the process of depositing and forming dielectric films and oxide films is generally performed frequently and is indispensable. Particularly in recent years, by applying SiO 2 or the like as a passivation film to the reflective surface of a semiconductor laser diode, deterioration of the reflective surface is suppressed and the life of the device is significantly improved, and practical use is about to begin. However, if the thickness of the passivation film of a semiconductor laser diode is not controlled within several percent, the oscillation threshold will increase due to a change in reflectance, which will adversely affect various characteristics of the semiconductor laser diode.

それにも拘らず、従来は例えばスパツタ法では
スパツタ時間のみによる経験的な制御であり膜厚
の再現性は極めて乏しかつた。これは、誘電体膜
形成時の条件が高温であり、かつ高周波電源によ
る電磁的障害が大きく、従来の機械的および電気
的な膜厚測定法が適用できないためであつた。
In spite of this, in the past, for example, in the sputtering method, the reproducibility of the film thickness was extremely poor because control was performed empirically based only on the sputtering time. This was because the dielectric film was formed under high temperature conditions and the electromagnetic interference caused by the high frequency power source was large, making it impossible to apply conventional mechanical and electrical film thickness measurement methods.

本発明の目的は、上記の問題点を解消し、容易
に膜厚を制御できる新しい膜厚制御装置を提供す
ることにある。
An object of the present invention is to solve the above-mentioned problems and provide a new film thickness control device that can easily control film thickness.

本発明では、誘電体薄膜の形成過程において、
その膜厚が連続的にモニターされる。即ち誘電体
薄膜を形成する装置内に、形成時の高温および高
周波による電磁的障害を受けないフアイバーを屈
折率が誘電体薄膜より大きい基盤の両側に設置
し、その基盤と誘電体薄膜を通過する光の量が、
検出されることによつて誘電体薄膜の膜厚が制御
される。
In the present invention, in the process of forming a dielectric thin film,
The film thickness is continuously monitored. That is, in an apparatus for forming a dielectric thin film, fibers that are not subject to electromagnetic interference due to high temperatures and high frequencies during formation are installed on both sides of a substrate whose refractive index is higher than that of the dielectric thin film, and the fibers are passed through the substrate and the dielectric thin film. The amount of light is
The thickness of the dielectric thin film is controlled by the detection.

本発明によれば誘電体薄膜形成装置内に試料上
に同じ膜厚が生ずるモニターとなるべき位置に屈
折率が誘電体薄膜より大きい基盤物質を設置し、
その基盤物質の付着面に誘電体薄膜の形成を妨げ
ない程度離した所に入射光の導入部もしくは受光
部として、フアイバーを配置し、かつ導入部とな
るフアイバー先端面への付着物質の付着を防ぐた
めおおいを取り付ける。又、基盤の非付着面側
に、集光レンズを介してフアイバーを配置した透
過光の受光部もしくは発光部を有せしめ、これら
の入射光の導入および受光を形成装置の外で行な
わしめることを特徴とする膜厚制御装置が得られ
る。
According to the present invention, a base material having a refractive index higher than that of the dielectric thin film is installed in a dielectric thin film forming apparatus at a position where the same film thickness is formed on the sample and is to be used as a monitor.
A fiber is placed as an introduction part or a light receiving part for the incident light at a distance that does not interfere with the formation of the dielectric thin film on the surface to which the base material is attached, and the adhesion substance is not allowed to adhere to the tip surface of the fiber that serves as the introduction part. Attach a cover to prevent this. In addition, it is possible to provide a light-receiving section or a light-emitting section for transmitted light, in which a fiber is arranged through a condensing lens, on the non-adhesive side of the substrate, and to introduce and receive the incident light outside the forming apparatus. A film thickness control device with characteristics can be obtained.

以下、図面を参照して本発明を説明する。 The present invention will be described below with reference to the drawings.

本発明の装置の原理は、第1図に示されてい
る。第1図においてn0は真空の屈折率、nは誘電
体薄膜の屈折率、nsは基盤の屈折率である。厚
い基盤10上に薄膜11が形成される場合の反射
率は薄膜の膜厚がλ/4n(λは光の波長)毎に
極小,極大をくり返す事が光受の教科書で知られ
ている(第2図a)。第2図にn0=1、n=1.48
(SiO2)、ns=3.37(GaP)としたときの反射率の
変化を示す。以上のことから第1図に示すように
例えば基盤の付着面と反対側から、一定波長λの
光を入射させ、基盤の反対側から受光すれば第2
図bに示すように、光出力の変化が検出される。
この変化を連続的にモニターすることによつて形
成過程の膜厚を知ることができ容易に膜厚を制御
することが可能になる。とくにλ/4nの整数倍
の位置は透過率の最大,最小位置のため制御し易
い。最大値と最小値の差は基盤10の屈折率ns
と誘電体薄膜11の屈折率nとの差が大きい程、
又、基盤10及び誘電体薄膜11への光の入射角
が垂直に近い程大きい。一般に膜厚制御はこの差
が大きい程し易い。
The principle of the device of the invention is illustrated in FIG. In FIG. 1, n 0 is the refractive index of vacuum, n is the refractive index of the dielectric thin film, and ns is the refractive index of the substrate. It is known from light receiving textbooks that when the thin film 11 is formed on a thick substrate 10, the reflectance repeats minimum and maximum every λ/4n (λ is the wavelength of light) of the thickness of the thin film. (Figure 2a). In Figure 2, n 0 = 1, n = 1.48
(SiO 2 ), ns = 3.37 (GaP). From the above, as shown in FIG.
As shown in Figure b, a change in light output is detected.
By continuously monitoring this change, the film thickness during the formation process can be known and the film thickness can be easily controlled. In particular, positions at integral multiples of λ/4n are easy to control because they are the maximum and minimum transmittance positions. The difference between the maximum and minimum values is the refractive index ns of the substrate 10
The larger the difference between and the refractive index n of the dielectric thin film 11,
Furthermore, the closer the angle of incidence of light to the substrate 10 and the dielectric thin film 11 is perpendicular, the greater it is. Generally, the larger the difference, the easier it is to control the film thickness.

このように本発明の採用によつて高精度の膜厚
制御が高い信頼性で得られることになり、素子製
造プロセスにおいて、歩留りが大幅に増大する。
As described above, by employing the present invention, highly accurate film thickness control can be achieved with high reliability, and the yield in the device manufacturing process can be greatly increased.

次にSiO2スパツタ法を用いた半導体レーザダ
イオードの反射面のパシベーシヨンに、本発明の
膜厚制御装置を適用した実施例を、非付着面側を
発光側として図面を参照して述べる。
Next, an embodiment in which the film thickness control device of the present invention is applied to passivation of the reflective surface of a semiconductor laser diode using the SiO 2 sputtering method will be described with reference to the drawings, with the non-adhesive surface side as the light emitting side.

第1図に示すように、スパツタ装置19の内部
に基盤の表面の高さが被膜基板(半導体レーザの
反射面)18の表面の高さと同じになるように、
基盤10を設置し、基盤10への付着を妨げない
ような位置に、付着物質11の回わりこみによる
フアイバー先端面への付着を防止するための覆い
15を取り付けた透過光の受光用フアイバー12
を設置する。次に基盤10の非付着面側に集光レ
ンズ13を介して入射光導入用フアイバー14を
設置する。両フアイバー12及び14は光軸調整
されている。両フアイバー12及び14は、スパ
ツタ装置の真空チヤンバーから封止を十分にし
て、外部に取り出す。入射光をうるために、例え
ば8300Åの一定波長の発光ダイオード又はレーザ
ダイオード17と設置し、受光側にはフオトダイ
オード16を設置する。以上の配置によつて、ス
パツタ過程での温度および高周波による電磁的障
害を全く受けない膜厚制御装置が構成される。
As shown in FIG. 1, inside the sputtering device 19, the height of the surface of the substrate is the same as the height of the surface of the coated substrate (reflecting surface of the semiconductor laser) 18.
A fiber 12 for receiving transmitted light is installed with a base 10 and a cover 15 is attached to the base 10 in a position that does not interfere with the adhesion to the base 10 to prevent the adhesion substance 11 from wrapping around and adhering to the fiber tip surface.
Set up. Next, a fiber 14 for introducing incident light is installed on the non-attached side of the substrate 10 via a condensing lens 13. Both fibers 12 and 14 have their optical axes adjusted. Both fibers 12 and 14 are taken out of the vacuum chamber of the sputtering device with sufficient sealing. In order to receive incident light, a light emitting diode or laser diode 17 with a constant wavelength of, for example, 8300 Å is installed, and a photodiode 16 is installed on the light receiving side. With the above arrangement, a film thickness control device is constructed that is completely free from electromagnetic interference due to temperature and high frequency waves during the sputtering process.

スパツタリング法によるパシベーシヨン用の薄
膜形成過程では、第1図に示すように、基盤10
上に誘電体薄膜11(SiO2)が付着するにつれて
反射率が低下し、透過光が増加する。膜厚がλ/
4nの所、すなわちd≒1400Åの所で反射率が極
小になり透過光が極大となる。続いて透過光が減
少し、初期の光出力の点、即ち薄膜付着のない初
期の反射率に戻る。この点が膜厚λ/2nであ
り、d≒2800Åとなつてパシベーシヨン膜が半導
体レーザの反射面に反射コーテイングされたこと
を示す。即ち、発振閾値及び微分量子効率がパシ
ベーシヨン前と同じになる。
In the process of forming a thin film for passivation using the sputtering method, as shown in FIG.
As the dielectric thin film 11 (SiO 2 ) is deposited thereon, the reflectance decreases and the amount of transmitted light increases. Film thickness is λ/
At 4n, that is, d≈1400 Å, the reflectance becomes minimum and the transmitted light becomes maximum. Subsequently, the transmitted light decreases and returns to the point of initial light output, ie, the initial reflectance without film deposition. This point has a film thickness of λ/2n, and d≈2800 Å, indicating that the passivation film is reflectively coated on the reflective surface of the semiconductor laser. That is, the oscillation threshold and differential quantum efficiency become the same as before passivation.

以上のように本発明の実施によつて保護膜の形
成過程を連続的にモニターしながら任意の膜厚を
容易に形成することが可能になる。即ち、パシベ
ーシヨン工程が高い信頼性を持つようになり、生
産性が向上する。
As described above, by implementing the present invention, it becomes possible to easily form a protective film of any thickness while continuously monitoring the formation process of the protective film. That is, the passivation process becomes highly reliable and productivity is improved.

本発明の装置は、透明な誘電体薄膜の膜厚制御
に広く応用でき、さらに、屈折率の適当な組合せ
により、InGaAsP等の四元化合物半導体レーザ
等にも適用が可能である。尚フアイバーと薄膜形
成装置間の真空封止に関してはフアイバーコネク
ターを用いる等、種々の方法が用いられる。ま
た、フアイバーも光通信用の細径なものではな
く、太径なもの又は、フアイバーバンドルを用い
ても光軸調整上便利である。
The device of the present invention can be widely applied to controlling the thickness of transparent dielectric thin films, and can also be applied to quaternary compound semiconductor lasers such as InGaAsP by appropriate combinations of refractive indexes. Various methods can be used for vacuum sealing between the fiber and the thin film forming apparatus, such as using a fiber connector. Further, the fibers are not of small diameter for optical communication, but it is also convenient to use large diameter fibers or fiber bundles for adjusting the optical axis.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の膜厚制御装置の構成断面図、
第2図は膜厚dの増加による反射率の変化および
透過光の変化を示した特性図。 10……モニター用基盤、11……誘電体薄
膜、12……受光用フアイバー、13……入射光
導入用の集光レンズ、14……入射光導入フアイ
バー、15……覆い、16……フオトダイオー
ド、17……発光ダイオード又はレーザダイオー
ド、18……被膜基板、19……スパツタ装置。
FIG. 1 is a cross-sectional view of the structure of the film thickness control device of the present invention;
FIG. 2 is a characteristic diagram showing changes in reflectance and transmitted light as the film thickness d increases. DESCRIPTION OF SYMBOLS 10... Base for monitoring, 11... Dielectric thin film, 12... Light receiving fiber, 13... Condensing lens for introducing incident light, 14... Fiber introducing incident light, 15... Cover, 16... Photo Diode, 17... Light emitting diode or laser diode, 18... Coated substrate, 19... Sputtering device.

Claims (1)

【特許請求の範囲】[Claims] 1 誘電体膜形成装置内に置かれた屈折率が付着
誘電体膜物質より大きい膜厚モニター用基盤物質
の誘電体膜付着面側に前記基盤への付着形成を妨
げない位置に、先端面への付着防止の覆いを取り
付けたフアイバーを配置し、かつ前記基盤の非付
着面側に、他のフアイバーの先端面を配置し、前
記基盤と両フアイバー間に集光レンズを一方もし
くは両方に配置し、かつ前記両フアイバーを介し
て誘電体膜形成装置外に発光部及び受光部を有す
ることを特徴とする膜厚制御装置。
1. On the dielectric film adhesion surface side of a film thickness monitoring substrate material placed in a dielectric film forming apparatus and having a refractive index higher than that of the deposited dielectric film material, a layer is placed on the tip surface at a position that does not interfere with the formation of adhesion to the substrate. A fiber to which an adhesion prevention cover is attached is arranged, and the tip end surface of another fiber is arranged on the non-adhesive side of the base, and a condenser lens is arranged between the base and both fibers on one or both sides. , and a film thickness control device comprising a light emitting section and a light receiving section outside the dielectric film forming device via both the fibers.
JP13685479A 1979-10-23 1979-10-23 Film thickness control device Granted JPS5660310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13685479A JPS5660310A (en) 1979-10-23 1979-10-23 Film thickness control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13685479A JPS5660310A (en) 1979-10-23 1979-10-23 Film thickness control device

Publications (2)

Publication Number Publication Date
JPS5660310A JPS5660310A (en) 1981-05-25
JPS6219683B2 true JPS6219683B2 (en) 1987-04-30

Family

ID=15185051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13685479A Granted JPS5660310A (en) 1979-10-23 1979-10-23 Film thickness control device

Country Status (1)

Country Link
JP (1) JPS5660310A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2779741B2 (en) * 1992-09-11 1998-07-23 新日本製鐵株式会社 Condition determination method for film formation

Also Published As

Publication number Publication date
JPS5660310A (en) 1981-05-25

Similar Documents

Publication Publication Date Title
CA2128743C (en) An optical film, an antireflection film, a reflection film, a method for forming the optical film, the antireflection film or the reflection film and an optical device
US6411639B1 (en) Semiconductor laser module with an external resonator including a band-pass filter and reflective element
KR100532281B1 (en) Side illuminated refracting-facet photodetector and method for fabricating the same
FR2474694A1 (en)
US6347107B1 (en) System and method of improving intensity control of laser diodes using back facet photodiode
KR20040084494A (en) Optical device using vertical photo detector
KR100464333B1 (en) Photo detector and method for fabricating thereof
US7630590B2 (en) Optical sensor for measuring thin film disposition in real time
JPS6219683B2 (en)
EP0466598A1 (en) Method and apparatus for deposition of antireflection coatings and control of their thickness
CN101523262A (en) Optical device and optical device manufacturing method
EP0935131A2 (en) Surface plasmon resonance sensor with wavelength-stabilized laser light source
US4730109A (en) Apparatus and method for measuring electric field by electroreflectance
KR19980050571A (en) How to make Bragg Reflective Film
US7764851B2 (en) Optical modulators
JPH06125149A (en) Semiconductor element and manufacture thereof
CN206291985U (en) Tiltedly polish fine low pressure sensor
US6695455B1 (en) Fabrication of micromirrors on silicon substrate
JPS6034046B2 (en) Thin film generation device
JPH0231811B2 (en)
JPS6135492B2 (en)
KR100291555B1 (en) Substrate etching device, and silicon membrain manufacturing method using the substrate etching device
JPS6262513A (en) Amorphous silicon film manufacturing apparatus
Maeda et al. Effect of Anti-Reflective Coating for Si Optical Resonator Biosensors
JPH0518278B2 (en)