JPS6031275A - Transistor element - Google Patents

Transistor element

Info

Publication number
JPS6031275A
JPS6031275A JP14009183A JP14009183A JPS6031275A JP S6031275 A JPS6031275 A JP S6031275A JP 14009183 A JP14009183 A JP 14009183A JP 14009183 A JP14009183 A JP 14009183A JP S6031275 A JPS6031275 A JP S6031275A
Authority
JP
Japan
Prior art keywords
region
electrode
emitter
collector
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14009183A
Other languages
Japanese (ja)
Inventor
Kazuo Yamagishi
和夫 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Original Assignee
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Semiconductor Manufacturing Co Ltd, Kansai Nippon Electric Co Ltd filed Critical Renesas Semiconductor Manufacturing Co Ltd
Priority to JP14009183A priority Critical patent/JPS6031275A/en
Publication of JPS6031275A publication Critical patent/JPS6031275A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To facilitate the mounting of the emitter ground by a method wherein an emitter electrode is formed on the side of the element back surface, and a collector electrode and a base electrode on the side of the front surface. CONSTITUTION:A P type epitaxial layer 10 is formed as the base region B on a substrate 9 made N type. Next, an N<-> type epitaxial layer 13 serving as the collector region C is formed on the layer 10. Then, a P<+> diffusion source 14 is deposited on the layer 13. A base take-out region B' is formed by diffusing the diffusion source 14, and the layer 13 surrounded thereby is made as the collector region C. Besides, an N<+> diffusion source 11 is diffused and made as the emitter region E. An N<+> layer 15 is selectively diffused on the region C. Finally, the emitter electrode 16, collector electrode 18, and base electrode 19 are formed.

Description

【発明の詳細な説明】 イ、産業上の利用分野 この発明は特にエミッタ接地の実装に好適なトランジス
タ素子に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention particularly relates to a transistor element suitable for mounting with a common emitter.

口、従来技術 現在主流を占めているトランジスタ素子は第1図に示す
ようにコレクタ領域Cとなる一導電型の例えばN型基板
(1)の表面側にP型不純物を選択的に熱拡散してベー
ス領域Bを形成し、ベース領域BにN型不純物を選択的
に熱拡散してエミッタ領域Eを形成し、基板(1)の裏
面にコレクタ電極(2)を、基板(1)の表面にこの表
面の絶縁膜(3)を選択的に除去してベース電極(4)
とエミッタ電極(5)を形成した構造である。このよう
なNPN型トランジスタ素子(6)を有するトランジス
タはコレクタ接地の実装に適するが、最近の傾向がある
エミッタ接地の実装には不適な場合があった。
As shown in Fig. 1, the current mainstream transistor element is based on selective thermal diffusion of P-type impurities onto the surface side of a substrate (1) of one conductivity type, for example, N-type, which becomes the collector region C. A base region B is formed by selectively thermally diffusing N-type impurities into the base region B, and an emitter region E is formed by selectively thermally diffusing N-type impurities into the base region B. A collector electrode (2) is formed on the back surface of the substrate (1) and The insulating film (3) on this surface is then selectively removed to form a base electrode (4).
This is a structure in which an emitter electrode (5) is formed. A transistor having such an NPN type transistor element (6) is suitable for mounting with a common collector, but may not be suitable for mounting with a common emitter, which is a recent trend.

例えば高い直流増幅率(hFE)を得るトランジスタア
レイ回路は複数のトランジスタのエミッタを共通に接地
して使用しているが、このような回路に上述構造のトラ
ンジスタ素子をコレクタ側放熱板上にマウントして使用
する場合は各トランジスタ素子を放熱板上にコレクタ電
極を絶縁した状態でマウントして、外部リード側で各ト
ランジスタ素子表面のエミッタ接地を共通化する等の工
夫が必要であり、構造的に且つ特性的に好ましくなかっ
た。そこでトランジスタアレイ回路などエミッタ共通接
地の要求増大化に応じ、裏面側にエミッタ電極を、表面
側にコレクタ電極とベース電極を配したトランジスタ素
子の出現が要望されているが、未だ適当なものが無いの
が現状である。
For example, a transistor array circuit that obtains a high direct current amplification factor (hFE) uses the emitters of multiple transistors that are commonly grounded. In order to use the transistors in the Moreover, the characteristics were unfavorable. Therefore, in response to the increasing demand for common emitter grounding in transistor array circuits, there is a desire for a transistor element with an emitter electrode on the back side and a collector electrode and base electrode on the front side, but there is no suitable one yet. is the current situation.

尚、第1図構造のコレクタをエミッタに、エミッタをコ
レクタとして使用することは原理的には可能である。し
かし、この場合はエミ・ツタ領域にベース領域を、不純
物熱拡散で形成し、ベース領域にコレクタ領域を不純物
熱拡散で形成するため、コレクタ領域とベース領域の不
純物濃度がどうしても高くなってコレクターベース間の
C−B耐圧が小さくなり (高くても20V程度)、従
って特にトランジスタアレイ回路など高C−B耐圧が要
求される回路のトランジスタには不通である。
Incidentally, it is possible in principle to use the collector having the structure shown in FIG. 1 as an emitter and the emitter as a collector. However, in this case, the base region is formed in the emitter/vine region by thermal impurity diffusion, and the collector region is formed in the base region by thermal impurity diffusion, so the impurity concentration in the collector region and base region inevitably becomes high. The C-B withstand voltage between them becomes small (about 20V at the most), and therefore, it is not possible to connect transistors in circuits that require a high C-B withstand voltage, such as transistor array circuits.

ハ1発明の目的 本発明は上記問題点を解決したトランジスタ素子を提供
することを目的とする。
C.1 Objective of the Invention An object of the present invention is to provide a transistor element that solves the above-mentioned problems.

二0発明の措成 本発明は素子表面側に少なくともコレクタとベースの各
電極を設けた構造のトランジスタ素子で、エミッタ領域
となる一導電型基板の表面側に異なる導電型のベース領
域となる第1エピタキシャル層と、前記基板と同一導電
型のコレクタ領域となる第2エピタキシャル層を積層し
て、第2エピタキシャル層上に少なくともコレクタ電極
とベース電極を選択的に形成したことを特徴とする。こ
のような構造によりコレクタ領域は所望の厚さで且つ所
望の不純物濃度で形成でき、従って特性面に関しては従
来品と同等若しくはそれ以上のものが得られる。また素
子裏面側にエミッタ電極が特性上問題無く形成されるの
で、トランジスタアレイ回路のようなエミッタ共通接地
配線等が容易で実装上好都合なトランジスタが提供でき
る。
20 Construction of the Invention The present invention relates to a transistor element having a structure in which at least collector and base electrodes are provided on the surface side of the element, and a first conductivity type substrate serving as an emitter region and a base region of a different conductivity type are provided on the front side of the substrate serving as an emitter region. It is characterized in that an epitaxial layer and a second epitaxial layer serving as a collector region having the same conductivity type as the substrate are laminated, and at least a collector electrode and a base electrode are selectively formed on the second epitaxial layer. With such a structure, the collector region can be formed to have a desired thickness and a desired impurity concentration, and therefore characteristics that are equal to or better than conventional products can be obtained. In addition, since the emitter electrode is formed on the back side of the element without any problem in terms of characteristics, a transistor can be provided which is convenient for mounting because emitter common ground wiring, etc., as in a transistor array circuit, is easy.

ホ、実施例 第2図に本考案の一実施例であるトランジスタ素子(8
)を示し、これの構造を第3図乃至第9図により説明す
る。尚、トランジスタ素子(8)は一般的なNPN型で
説明する。
E. Embodiment FIG. 2 shows a transistor element (8) which is an embodiment of the present invention.
), and its structure will be explained with reference to FIGS. 3 to 9. Note that the transistor element (8) will be described as a general NPN type.

先ず第3図に示す半導体の約200μmの厚さの基板で
あるサブストレート(9)を用意し、これにN型不純物
を比較高濃度に拡散してN型にする。次にサブストレー
ト(9)上に第4図に示すように厚さ寸法Tが約10μ
mでP型の第1エピタキシャル層(10)をベース領域
Bとして形成する。而して第1エピタキシャル層(10
)上に第5図に示すように1拡散源(11)とP−拡散
源(12)を順次選択的にデポディジョンして付着形成
する。
First, a semiconductor substrate (9) having a thickness of about 200 μm as shown in FIG. 3 is prepared, and an N-type impurity is diffused into it at a relatively high concentration to make it N-type. Next, the thickness dimension T is approximately 10μ as shown in Figure 4 on the substrate (9).
A P-type first epitaxial layer (10) is formed as a base region B at m. Then, the first epitaxial layer (10
), as shown in FIG. 5, a 1 diffusion source (11) and a P- diffusion source (12) are sequentially and selectively deposited to form an adhesion.

次に第6図に示すように第1エピタキシャル層(lO)
上に約40〜100μmの厚さでコレクタ領域Cとなる
N−型の第2エピタキシャル層(13)を形成する。そ
して第2エピタキシャル層(13)上に第7図に示すよ
うに前記P+拡散源(12) と対向する部分にP“拡
散源(14)を選択的にデポディジョンする。
Next, as shown in FIG.
An N-type second epitaxial layer (13), which will become the collector region C, is formed thereon to a thickness of about 40 to 100 μm. Then, as shown in FIG. 7, a P" diffusion source (14) is selectively deposited on the second epitaxial layer (13) in a portion facing the P+ diffusion source (12).

而る後全体を加熱して各拡散源(11) (12)、結
合させてベース取出し領域B゛を形成し、これに囲まれ
る第2エピータキシヤル層(13)をコレクタ領域Cと
する。またN十拡散源(11〉を第1エビクキシヤル層
(10)に押し込み拡散してサブストレート(9)と第
2エピタキシャル層(13)を直結してエミッタ領域E
とする。次にコレクタ領域C上に金属とのコンタクト性
を良くするためN+層(15)を選択拡散する。また放
熱性を良くするためサブストレート(9)を裏面側から
第8図の破線X−Xで示す所望の位置まで研磨する。
Thereafter, the whole is heated and the respective diffusion sources (11) and (12) are combined to form a base extraction region B', and the second epitaxial layer (13) surrounded by this is defined as a collector region C. In addition, a nitrogen diffusion source (11) is pushed into the first epitaxial layer (10) and diffused to directly connect the substrate (9) and the second epitaxial layer (13) to form an emitter region E.
shall be. Next, an N+ layer (15) is selectively diffused onto the collector region C to improve contact with metal. Further, in order to improve heat dissipation, the substrate (9) is polished from the back side to a desired position indicated by the broken line XX in FIG.

而る後第9図に示すようにサブストレート(9)の裏面
にエミッタ電極(16)を形成し、コレクタ電極(1B
)とベース電極(19)を選択的に形成してから、第9
図の破線Yl −Yl、Y2−Y2箇所を切断すれば第
2図のトランジスタ素子(8)が複数個一括して得られ
る。
After that, as shown in FIG. 9, an emitter electrode (16) is formed on the back surface of the substrate (9), and a collector electrode (1B
) and the base electrode (19) are selectively formed, and then the ninth
By cutting along two broken lines Yl-Yl and Y2-Y in the figure, a plurality of transistor elements (8) shown in FIG. 2 can be obtained at once.

このトランジスタ素子(8)の場合、ヘース領域Bとコ
レクタ領域Cはエピタキシャル成長層で形成されるので
不純物濃度は十分低く設定でき、エミッタ領域EがN十
であっても相対的に濃度と等価となり、従ってC−B間
耐圧を大きくすること容易であり、また他の特性(飽和
状態におけるコレクターエミッタ間電圧VCE(SAT
 )など)も第1図の一般的トランジスタ素子と同等若
しくはそれ以上のものが得られる。また表面側にコレク
タ電極(18)とベース電極(19)の形成が容易で、
このような電極配置によりトランジスタアレイ回路等の
構成が容易になる。
In the case of this transistor element (8), since the heath region B and the collector region C are formed by epitaxial growth layers, the impurity concentration can be set sufficiently low, and even if the emitter region E is N0, the concentration is relatively equivalent to Therefore, it is easy to increase the C-B breakdown voltage, and other characteristics (collector-emitter voltage VCE (SAT
) etc.) can also be obtained that is equivalent to or better than the general transistor element shown in FIG. In addition, it is easy to form the collector electrode (18) and base electrode (19) on the front side.
Such an electrode arrangement facilitates the construction of a transistor array circuit or the like.

尚、エミッタ電極(16)は素子裏面側に形成したが、
これはエミッタ領域Eがベース領域Bを囲んで表面側ま
で延びているので工しツタ電極を素子表面側に形成する
ことも可能である。
In addition, although the emitter electrode (16) was formed on the back side of the element,
This is because the emitter region E surrounds the base region B and extends to the surface side, so that it is also possible to form the vine electrode on the surface side of the element.

また本発明はPNP型トランジスタ素子にも同様に適用
し得る。
Further, the present invention can be similarly applied to a PNP type transistor element.

へ4発明の詳細 な説明したように、本発明のトランジスタ素子は特性的
に問題無く素子裏面側にエミッタ電極と、素子表面側に
コレクタ電極とベース電極が形成されるので、エミッタ
接地の実装タイプに有利であり、特に十うンジスタアレ
イ回路の構成トランジスタの適用にその実施効果が大で
ある。
As described in detail in Section 4 of the invention, the transistor element of the present invention has an emitter electrode on the back side of the element and a collector electrode and a base electrode on the front side of the element without any problems in terms of characteristics, so it can be used as an emitter-grounded mounting type. The present invention is particularly advantageous when applied to transistors constituting a ten transistor array circuit.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のトランジスタ素子の断面図、第2図は本
発明の一実施例を示す断面図、第3図乃至第9図は第2
図のトランジスタ素子の製造工程を説明するための各工
程での部分断面図である。 (9)・一基板(サブストレート)、(10)・−・第
1エピタキシャル層、(IIL−第2エピタキシャル層
、(18L−コレクタ電極、(19) −ベース電極、
E・−エミッタ領域、c −コレクタ領域、B−ベース
領域。 E 第6図 第8図
FIG. 1 is a sectional view of a conventional transistor element, FIG. 2 is a sectional view showing an embodiment of the present invention, and FIGS. 3 to 9 are sectional views of a conventional transistor element.
FIG. 3 is a partial cross-sectional view at each step for explaining the manufacturing process of the transistor element shown in the figure. (9) - One substrate (10) - First epitaxial layer, (IIL - Second epitaxial layer, (18L - Collector electrode, (19) - Base electrode,
E - emitter region, c - collector region, B - base region. E Figure 6 Figure 8

Claims (1)

【特許請求の範囲】[Claims] (1) エミッタ領域となる一導電型基板の片面側に他
導電型のベース領域となる第1エピタキシャル層と、前
記基板と同一導電型のコレクタ領域となる第2エピタキ
シャル層を積層して、第2エピタキシャル層上に少なく
ともコレクタ電極とベース電極を形成したことを特徴と
するトランジスタ素子。
(1) A first epitaxial layer serving as a base region of another conductivity type and a second epitaxial layer serving as a collector region having the same conductivity type as the substrate are laminated on one side of a substrate of one conductivity type serving as an emitter region, and 1. A transistor element comprising at least a collector electrode and a base electrode formed on two epitaxial layers.
JP14009183A 1983-07-29 1983-07-29 Transistor element Pending JPS6031275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14009183A JPS6031275A (en) 1983-07-29 1983-07-29 Transistor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14009183A JPS6031275A (en) 1983-07-29 1983-07-29 Transistor element

Publications (1)

Publication Number Publication Date
JPS6031275A true JPS6031275A (en) 1985-02-18

Family

ID=15260741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14009183A Pending JPS6031275A (en) 1983-07-29 1983-07-29 Transistor element

Country Status (1)

Country Link
JP (1) JPS6031275A (en)

Similar Documents

Publication Publication Date Title
JPH01146352A (en) Integrated structure which contains active and passive devices in insulatng pocket and operates at voltage higher than breakdown strength between respective devices and pocket containing them power semiconductor device
JPS6031275A (en) Transistor element
JPS5925390B2 (en) darlington transistor
JPS6133261B2 (en)
JPH0464178B2 (en)
JPH08227941A (en) Composite semiconductor element
JPH04152577A (en) Variable capacitance diode device
JPS6410101B2 (en)
JPS6060753A (en) Semiconductor device
JPH0425706B2 (en)
JPH06151900A (en) Semiconductor device
JP2910456B2 (en) Master slice type integrated circuit device
JPH0695522B2 (en) Method for manufacturing semiconductor device
JP3128958B2 (en) Semiconductor integrated circuit
JPS601843A (en) Semiconductor integrated circuit
JP2953623B2 (en) Planar thyristor
JPS634715B2 (en)
JPH07104743B2 (en) Power supply circuit
JPS5882562A (en) Semiconductor device
JPS59207649A (en) Multiple transistor device
JPS6058652A (en) Semiconductor integrated circuit device
JPH0337739B2 (en)
JPH06204372A (en) Power transistor
JPS6080273A (en) Semiconductor device of high withstand voltage
JPH0472390B2 (en)