JPS6031268A - Mis type semiconductor memory device - Google Patents

Mis type semiconductor memory device

Info

Publication number
JPS6031268A
JPS6031268A JP58139007A JP13900783A JPS6031268A JP S6031268 A JPS6031268 A JP S6031268A JP 58139007 A JP58139007 A JP 58139007A JP 13900783 A JP13900783 A JP 13900783A JP S6031268 A JPS6031268 A JP S6031268A
Authority
JP
Japan
Prior art keywords
groove
substrate
semiconductor substrate
capacitance
memory device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58139007A
Other languages
Japanese (ja)
Inventor
Kunio Nakamura
中村 邦雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58139007A priority Critical patent/JPS6031268A/en
Priority to US06/635,538 priority patent/US4717942A/en
Publication of JPS6031268A publication Critical patent/JPS6031268A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/37DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor being at least partially in a trench in the substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/038Making the capacitor or connections thereto the capacitor being in a trench in the substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To accomplish the reduction of inter-element dimensions and the increase of the capacitance of a charge accumulated section at the same time by a method wherein grooves are formed in a semiconductor substrate, which are used as the insulation among the capacitance sections of a memory cell, and further the side surface section of the groove is utilized as the capacitor. CONSTITUTION:The grooves 20 are formed in the semiconductor substrate corresponding to the insulation region among the capacitance sections adjacent to each other of a memory device having one insulation gate type FET and the capacitor provided adjacent thereto on a semiconductor substrate as the unit of information. An impurity layer of the same conductivity type as the semiconductor substrate and higher concentration than the substrate is formed in the substrate at the bottom of this groove. An insulation film is formed in the grooves and on the surface of the substrate corresponding to the capacitance sections 21, and a conductive substance is deposited in the grooves and on the insulation film at the capacitance sections, being thus constructed as the capacitance electrode of the memory device. In this manner, the formation of the inversion layer on the groove side surface is enabled by diffusion of the impurity of reverse conductivity type to that of the substrate into the groove side surface, resulting in contribution to the increase of capacitance.

Description

【発明の詳細な説明】 この発明は半導体記憶装置にかかり1%に記憶機能を有
する半導体装置の記憶容餉部及び記憶容量部間の絶縁部
の構成に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a structure of an insulating part between a storage capacitor part and a storage capacitor part of a semiconductor memory device having a storage function in 1%.

絶縁ゲート型電界効果トランジスタを用いた記憶装置と
して今日最も広く用いられているものは一個のトランジ
スタ及びそれに隣接して設けられた容量とによって構成
された謂ゆる″1トランジスタ型”記憶装置である。本
記憶装置に於てはトランジスタのゲートはワード線に接
続され、ソース、ドレイン拡散層の一方はディジット線
に接続され、1容量ゲート下に蓄積された電荷の有無が
反転情報に対応する。
The most widely used memory device today that uses insulated gate field effect transistors is the so-called "one-transistor type" memory device, which is composed of one transistor and a capacitor provided adjacent to the transistor. In this memory device, the gate of the transistor is connected to the word line, one of the source and drain diffusion layers is connected to the digit line, and the presence or absence of charge accumulated under one capacitor gate corresponds to inversion information.

1トランジスタ型の記憶装置としてMIS型電界効果ト
ランジスタを用いた場合、電荷蓄積部の容量CsはCs
=ε8/lで与えられる。ここでεは絶縁膜の誘電率、
Sは容量部の電接面fIi1.【は絶縁膜の膜厚である
When a MIS field effect transistor is used as a one-transistor type memory device, the capacitance Cs of the charge storage section is Cs
= ε8/l. Here, ε is the dielectric constant of the insulating film,
S is the electrical contact surface fIi1. of the capacitive part. [ is the thickness of the insulating film.

近年、半導体装置の集積化の進展に伴い、素子の微細化
が要請されている。1トランジスタ型記憶装置の微細化
に於ては、情報判定の芥易さ、放射線への耐性変維持す
るためにCsの値の減少は極力避けねばならない。この
ため、従来技術に於ては絶縁膜の膜厚を薄くすることに
よってC8の低下を抑えていたが、この方法も薄膜化に
伴うピンホール密度の増加、或いは耐圧の低下等のため
に必ずしも充分な方法とは言えなかった。
In recent years, as the integration of semiconductor devices has progressed, there has been a demand for miniaturization of elements. In miniaturizing a one-transistor type memory device, a decrease in the value of Cs must be avoided as much as possible in order to maintain ease of information determination and resistance to radiation. For this reason, in the conventional technology, the decrease in C8 was suppressed by reducing the thickness of the insulating film, but this method also does not always work because of the increase in pinhole density or the decrease in breakdown voltage due to thinning of the film. It was not a sufficient method.

本発明は半導体基板内に溝を形成し、該溝を記憶セルの
容量部間の絶縁に使用し、更に、前記溝の側面部を容量
として利用することにより、素子間寸法の縮少とCsの
増加を同時に行おうとするものである。本発明は近年、
開発された半導体素子の尚形成による素子間絶縁法に本
発明で新たに考案された工夫を導入することにより、前
記効果が実現可能となったものである。記憶セルの容量
部間の絶縁部分は通常容量電極によって被われているこ
とが多い。
The present invention forms a groove in a semiconductor substrate, uses the groove for insulation between capacitive parts of a memory cell, and further utilizes the side surfaces of the groove as a capacitor, thereby reducing the inter-element dimension and Cs. The aim is to simultaneously increase the The present invention has been developed in recent years.
The above effects have been made possible by introducing the newly devised device of the present invention into the developed inter-element insulation method for forming semiconductor elements. Insulating portions between capacitive portions of a memory cell are often covered with capacitive electrodes.

容量tinを接地した状態で使用ずれは絶縁部の基板濃
度を充分に高めることにより絶縁部の絶縁膜厚が薄くて
も寄生トランジスタがON L漏洩電流が流れることを
防止することができる。この場合容量電極下に反転層が
形成される様にするため、基板表面には基板と反対導電
型の不純物を導入し、を円値電圧を低下することが必を
である。本発明では、溝側面に基板と反対導電型の不純
物を拡散することにより溝側面での反転層形成を可能な
らしめ、 C8の増大に寄与する様に工夫されている。
If the capacitor tin is not used with the capacitor tin grounded, by sufficiently increasing the substrate concentration of the insulating part, even if the insulating film thickness of the insulating part is thin, it is possible to prevent the ON L leakage current from flowing in the parasitic transistor. In this case, in order to form an inversion layer under the capacitor electrode, it is necessary to introduce impurities of the opposite conductivity type to the substrate surface to lower the circular value voltage. In the present invention, an inversion layer can be formed on the groove side surface by diffusing an impurity having a conductivity type opposite to that of the substrate on the groove side surface, thereby contributing to an increase in C8.

次に、図面を用いて本発明の実施例について説明する。Next, embodiments of the present invention will be described using the drawings.

本実施例ではnチャンネル型シリコングー、)FETを
用いた半導体装置について説明する。
In this embodiment, a semiconductor device using an n-channel type silicon FET will be described.

第1図に於て、p型シリコン基[1上には通常の選択酸
化法により、記憶セルの容邪部間絶縁部となるべき部分
以外の素子間絶縁領域には厚いフィールド酸化膜2がが
形成されている。次に%第2図に示す様に基板上に酸化
膜3を形成した後、全面にフォトレジスト4を被着し、
;11+當の丸部)’C或いは電子ビーム露光によシセ
ル部の答用部間の領域となるべき部分の前記フォトレジ
スト4に開口を形成する。前記酸化膜3はフォトレゾス
ト4と基板との密着性を保つために使用するものである
In FIG. 1, a thick field oxide film 2 is formed on the p-type silicon base 1 by a normal selective oxidation method in the interelement insulation region other than the part that should become the insulation part between the storage cells. is formed. Next, as shown in Figure 2, after forming an oxide film 3 on the substrate, a photoresist 4 is deposited on the entire surface.
; 11+(circled part)'C or by electron beam exposure, an opening is formed in the photoresist 4 in a portion that is to be a region between the answering parts of the cell part. The oxide film 3 is used to maintain adhesion between the photoresist 4 and the substrate.

次に、第3図に示す様に、リアクティブイオンエツチン
グにより基板中に溝を形成する。エツチングに用いるガ
スとしてはCCl4.CCl3F、CCl2F2などク
ロロカーボン系ガスを用いるのが良い。
Next, as shown in FIG. 3, grooves are formed in the substrate by reactive ion etching. The gas used for etching is CCl4. It is preferable to use a chlorocarbon gas such as CCl3F or CCl2F2.

プラズマを誘起するための高囚波電力の周波数が13、
56 MHzである場合、圧力は1〜10Pa程度が適
当である。シリコン基板のエツチング速度は電力に依存
するが0.1〜1.OW/Cni程度の電力の場合50
0〜2000 X/分程度のエツチング速度が得られる
。深い溝を形成する場合には、フォトレジストとクリコ
ンとのエツチング速度の選択比が充分得られないため、
前記酸化膜を気相成長の厚い酸化膜としエツチングに於
るスペーサーとして使用することも可能である。この場
合には、前記酸化膜のエツチングにij CF4 +H
2系のりアクティブイオンエツチングを用いるのが適当
である。
The frequency of high trapped wave power for inducing plasma is 13,
When the frequency is 56 MHz, the appropriate pressure is about 1 to 10 Pa. The etching speed of a silicon substrate depends on the electric power, but is between 0.1 and 1. 50 for power of about OW/Cni
Etching rates of the order of 0 to 2000 X/min are obtained. When forming deep grooves, it is difficult to obtain a sufficient etching rate selectivity between photoresist and cricon.
It is also possible to make the oxide film a thick oxide film grown in a vapor phase and use it as a spacer in etching. In this case, ij CF4 +H is used for etching the oxide film.
It is appropriate to use a two-system glue active ion etching.

次に、第4図に示す様に、フォトレジスト4を残したま
まの状態で、口型不純物5をイオン注入し、溝底部にp
型不純物拡散層6を形成する。不純物としてボロンを使
用した場合、エネルギは50〜150KeV、注入量は
1013〜l O”/crl程度が適当である。次に、
第5図に示す様にフォトレジスト4を除去し、全面にn
型不純物をドープした酸化膜7を形成する。不純物とし
てリンを用いた場合、形成温度400〜500℃にて、
PH3/8jH4の混合比数多の条件で2000〜30
00にの膜厚9リンドーグ酸化膜を気相成長法で成長し
、900〜1000℃の温度で拡散を行うことにより第
6図に示した様に表面濃度が1018/m程度のn型拡
散層8を得ることができる。溝部以外のシリコン基板表
面は酸化膜で被われているため、n型不純物は拡散され
ない。次に、第7図に示す様に、n型不純物をドープさ
れた酸化膜7をエツチングにより除去し、新たに絶縁膜
9を形成した後、フォトレジスト10によるパターンを
形成し、容鄭部となるべきシリコン基板表面に選択的に
口型不純物11をイオン注入し、n型不純物層12を形
成する。不純物として砒素を用いた場合、注入量は10
12〜1013/cr11エネルギは50〜1501(
eV程度が適当である。溝底部にはn型不純物が2回拡
散されるが、素子間絶縁を充分に保つため、第4図にて
示したイオン注入の注入量はn型不純物導入量を上回る
値に設定しておく必要がある。
Next, as shown in FIG. 4, mouth-type impurity 5 is ion-implanted into the bottom of the trench while leaving the photoresist 4.
A type impurity diffusion layer 6 is formed. When boron is used as an impurity, the appropriate energy is 50 to 150 KeV and the implantation amount is approximately 1013 to 1 O"/crl. Next,
As shown in FIG. 5, the photoresist 4 is removed and the entire surface is covered with n
An oxide film 7 doped with type impurities is formed. When phosphorus is used as an impurity, at a formation temperature of 400 to 500°C,
2000-30 under various conditions of mixing ratio of PH3/8jH4
By growing a phosphorus oxide film with a thickness of 9.00% by vapor phase growth and performing diffusion at a temperature of 900 to 1000°C, an n-type diffusion layer with a surface concentration of about 1018/m is formed as shown in Figure 6. You can get 8. Since the surface of the silicon substrate other than the groove portion is covered with an oxide film, n-type impurities are not diffused. Next, as shown in FIG. 7, the oxide film 7 doped with n-type impurities is removed by etching, a new insulating film 9 is formed, and a pattern is formed using photoresist 10 to form the capping portion. An n-type impurity layer 12 is formed by selectively implanting mouth-type impurity 11 into the surface of the silicon substrate. When arsenic is used as an impurity, the implantation amount is 10
12~1013/cr11 energy is 50~1501 (
Approximately eV is appropriate. The n-type impurity is diffused twice into the groove bottom, but in order to maintain sufficient insulation between elements, the amount of ion implantation shown in Figure 4 is set to a value higher than the amount of n-type impurity introduced. There is a need.

次にm 8 +=に示した様に、全面に多結晶シリコン
13を被着し、溝内部に埋め込む。溝幅が1μm1 溝
深さが2μm程度の場合、多結晶シリコン13の厚さは
1μm程度以上必要である。
Next, as shown in m 8 +=, polycrystalline silicon 13 is deposited on the entire surface and buried inside the groove. When the groove width is about 1 μm1 and the groove depth is about 2 μm, the thickness of the polycrystalline silicon 13 needs to be about 1 μm or more.

前記多結晶シリコン13は梼電性不純物があらかじめド
ープされていても良いし、被着後熱拡散法により導電性
不Jtl物をドーグしても良い。
The polycrystalline silicon 13 may be doped with a permeability impurity in advance, or may be doped with a conductive impurity by a thermal diffusion method after being deposited.

次にb CFJ系ガスを用いた通常のグ2ズマエッチン
グにより第9図に示した様に、多結晶シリコン13iエ
ツチングし、溝内の部分のみ残す。
Next, as shown in FIG. 9, the polycrystalline silicon 13i is etched by normal grating etching using CFJ-based gas, leaving only the portion inside the groove.

次にs fAL t o図に示す柿に、多結晶シリコン
14を被着し、フォトエツチング工程により容量電極及
びゲート電極を形成する。本実雄側では。
Next, polycrystalline silicon 14 is deposited on the persimmon shown in the s fAL t o diagram, and a capacitor electrode and a gate electrode are formed by a photo-etching process. On Honjio's side.

一層の多結晶シリコンを使用したが、2j@の多結晶シ
リコンを用い、容量電極とゲート電極を別々に形成し容
楚電極上にゲート電極全オーバーラツプさせ容逍都とス
イッチングトランジスタのチャンネル領域とを直結させ
た構造すなわち間のソース、ドレインの一方を省略した
構造も可能である。次に、第11図に示す様に□型不純
物15たとえば砒素をイオン注入し、ソース及びドレイ
ン拡散層16雀形成する。注入量は1015〜1o16
/cdl、また、エネルギは50〜150KeV程度が
適当である。
Although a single layer of polycrystalline silicon was used, 2J@ polycrystalline silicon was used to form the capacitor electrode and the gate electrode separately, and the gate electrode was completely overlapped on the capacitor electrode to separate the capacitor and the channel region of the switching transistor. A directly connected structure, that is, a structure in which one of the source and drain in between is omitted, is also possible. Next, as shown in FIG. 11, □-type impurities 15, such as arsenic, are ion-implanted to form source and drain diffusion layers 16. Injection amount is 1015-1o16
/cdl, and the appropriate energy is about 50 to 150 KeV.

次に、第12図に示す様に、酸化或いは気相成長法によ
り多結晶シリコン表面を絶縁膜で被覆し。
Next, as shown in FIG. 12, the polycrystalline silicon surface is covered with an insulating film by oxidation or vapor phase growth.

フォトエツチング工程によりコンタクト開口を形成し、
次に、余端を被着し、更にフォトエツチング工程により
電彬配線層を形成し、集子を完成できる。
A contact opening is formed by a photoetching process,
Next, the remaining end is attached, and a conductive wiring layer is formed by a photo-etching process to complete the assembly.

本発明を適用した場合の記憶セルの平面パターンの例を
第13図に示す。図中右上シの斜雅部で示した魚の管状
の部分が爵部2oのパターンであり、セル容量部21の
側面のうち3面を容量として使用できるため、C5は著
しく増加する。この第13図で0−O−0−Qで矩形に
囲まitがり右上シの斜線で示したところがゲート電極
22であシ、このゲート電極22iI中央のチャンネル
領域23上にゲート絶w +ib *介して設けられ両
側(図面で上下側)はフィールド絶縁膜(右下り斜線)
24上を一部延在している。容邪電給30はその左右の
縁線28 、29 (o −o−o−oのl1Iil)
の間りの間の全体に設けられている(図面が煩雑になる
ので斜線は示していない)。N型のビット拡散7125
が延在しこれとチャンネル領域23との間の部分がトラ
ンジスタのN型のソース、ドレインの一方の領域26と
なり、チャンネル領域23と容量部21との間にはN型
のソース、ドレイン領域の他方の領域27が設けられて
いる。この他方の領域27は、ゲート電接22と容量電
極30とを絶縁膜ゲ介して重畳させる構造分用いれば、
省略することができる。そして上層としてアルミニウム
からなるワード線31がピット線25と直角に延在しゲ
ート電極22とコンタクト孔32全通して接続される。
FIG. 13 shows an example of a planar pattern of a memory cell to which the present invention is applied. The fish tube-shaped part shown by the oblique part in the upper right corner of the figure is the pattern of the part 2o, and three of the side surfaces of the cell capacitor part 21 can be used as a capacitor, so that C5 increases significantly. In FIG. 13, the area surrounded by a rectangle 0-O-0-Q and indicated by diagonal lines in the upper right corner is the gate electrode 22, and there is a gate electrode 22i on the channel region 23 in the center of the gate electrode 22iI. The field insulation film (lower right diagonal line) is provided on both sides (upper and lower sides in the drawing).
It extends partially over 24. The power supply 30 has its left and right edge lines 28 and 29 (l1Iil of o-o-o-o)
It is provided throughout the space between the holes (the diagonal lines are not shown because the drawing would be complicated). N-type bit spreading 7125
extends, and the part between this and the channel region 23 becomes one of the N-type source and drain regions 26 of the transistor, and the N-type source and drain regions are located between the channel region 23 and the capacitor section 21. The other area 27 is provided. If this other region 27 is used for the structure in which the gate electrical contact 22 and the capacitor electrode 30 are overlapped via the insulating film,
Can be omitted. A word line 31 made of aluminum as an upper layer extends perpendicularly to the pit line 25 and is connected to the gate electrode 22 through the entire contact hole 32.

このコンタクト孔31社第13図ではチャンネル領域上
に設けられているが、勿論フィールド絶縁膜上の部分に
設けてもよい。尚1m13図では図面が煩雑になるので
1本のワード線のみを図示しているがこれに平行に複数
のワード線が設けられそれぞれのゲート電極にコンタク
ト孔を介して接続するものであることは当然である。
Although the contact hole 31 is provided on the channel region in FIG. 13, it may of course be provided on the field insulating film. Note that in the 1m13 diagram, only one word line is shown to avoid complication, but it is possible that multiple word lines are provided in parallel and connected to each gate electrode via a contact hole. Of course.

第14図には容量部が5μmX5μmの場合について、
溝の深さとセル容量の関係を示す。容弊間の分離を通常
の半導体基板に押設するフィールド酸化膜の絶縁分離法
で行った場合には、フィールド絶縁膜の横方向への食い
込みがあるため、セルの容量は更に減少する。一方。
Figure 14 shows the case where the capacitive part is 5 μm x 5 μm.
The relationship between groove depth and cell capacity is shown. If isolation between the regions is performed using a conventional insulation isolation method using a field oxide film pressed onto a semiconductor substrate, the cell capacitance is further reduced due to lateral encroachment of the field insulation film. on the other hand.

本発明を適用した場合には、上配食い込み分による容量
部の面積減少は防止できる。溝の深さを2μmとした場
合、 Csは従来法の約3倍の値が得られ、平面上のパ
ターンの面積が縮少されてもCsとして極めて大きな値
が得られる。第15図の構造を用いて素子間の漏洩電流
音測定した結果を第16図にかす。洛幅1μm程度の場
合、容量電極の電位を接地すれば漏洩電流の値としては
実用上問題の無い値であると言える。
When the present invention is applied, it is possible to prevent the area of the capacitor portion from decreasing due to the biting of the upper portion. When the depth of the groove is 2 μm, a value of Cs approximately three times that of the conventional method is obtained, and even if the area of the pattern on the plane is reduced, an extremely large value of Cs can be obtained. Figure 16 shows the results of measuring leakage current noise between elements using the structure shown in Figure 15. In the case of a loop width of about 1 μm, it can be said that the leakage current value is a value that causes no practical problems if the potential of the capacitor electrode is grounded.

【図面の簡単な説明】[Brief explanation of drawings]

111図乃至第12図は本発明の詳細な説明するための
断面図である。第13図は本発明の実施例の平面図であ
る。第14図は本発明の効果を示す図である。第15図
は本発明におけるセル間のh洩電流を泗定するための実
験@慣の断面図であり、第16図は第15図によって得
られたデータを示す図である。 図に於て、 l・・・・・・シリコン基板、2・・・・・・フィール
ド酸化膜、3・・・・・・酸化膜、4・・・・・・フォ
トレジスト、5・・・・・・n型不純物イオン、6・・
・・・・p型拡散層、7・・・・・・n型不純物ドープ
酸化膜、8・・・・・・n型拡散層、9・・・・・・絶
縁膜、10・・・・・・フォトレジスト、11・・・・
・・n3Jl不純物イオン、12・・・・・・n型拡散
層、13・・・・・・多結晶シリコン、14・・・・・
・多結晶シリコン、15・・・・・・n型不純物イオン
、16・・・・・・n型拡散層、17・・・・・・金属
配線、20・・・・・・溝部、21・・・・・・セル容
量部、22・・・・・・ゲート電極、23・・・・・・
チャンネル領域、24・・・・・・フィールド絶118
!膜、25・・・・・・ビット趣、26・・・・・・ソ
ース、ドレインのうちの一方の領域、27・・・・・・
ンース、ドレインのうちの他方の領域、28.29・・
・・・・容量電接の平面形状の端部を示ず線、30・・
・・・・容量電極、31・・・・パワード線、32・・
・・・・コンタクトである。 1り\ 代理人 弁理士 内 原 日1 ) 第1図 第7図 第3凶 1111Ltヒ 84凶 85図 り LIIJJM〜/l 第 13図 0 / 2 34 5 溝の1さ0tvrジ f5 /4図 第1辻 otz 3 a V谷(V) 第1b図
111 to 12 are sectional views for explaining the present invention in detail. FIG. 13 is a plan view of an embodiment of the present invention. FIG. 14 is a diagram showing the effects of the present invention. FIG. 15 is a cross-sectional view of an experiment to determine the leakage current between cells in the present invention, and FIG. 16 is a diagram showing data obtained by FIG. 15. In the figure, 1... Silicon substrate, 2... Field oxide film, 3... Oxide film, 4... Photoresist, 5... ...n-type impurity ion, 6...
...P type diffusion layer, 7...N type impurity doped oxide film, 8...N type diffusion layer, 9...Insulating film, 10... ...Photoresist, 11...
...n3Jl impurity ion, 12...n-type diffusion layer, 13...polycrystalline silicon, 14...
・Polycrystalline silicon, 15...n-type impurity ion, 16...n-type diffusion layer, 17...metal wiring, 20...groove, 21... ...Cell capacitance section, 22...Gate electrode, 23...
Channel area, 24...Field 118
! Film, 25...Bit effect, 26...One region of source and drain, 27...
source, the other region of the drain, 28.29...
・・・The end of the planar shape of the capacitive connection is not shown, and the line 30...
... Capacitive electrode, 31 ... Powered line, 32 ...
...It's a contact. 1 ri\ Agent Patent Attorney Uchihara Hi 1) Figure 1 Figure 7 Figure 3 1111 Lt Hi 84 85 Figure LIIJJM~/l Figure 13 0 / 2 34 5 Groove 1 Sa0tvrji f5 / 4 Figure 1 Tsuji otz 3 a V Valley (V) Figure 1b

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上の1個の絶縁ゲート型電界効果トランジス
タ及びそれに隣接して設けられた容量を情報単位とする
記憶装置に於て、該ie憶架装置隣接する’8%部間の
絶縁領域に相当する前記半治体基板に溝を形成し、該溝
の底部の前記半導体基板内には該半涛体基板と同導電型
でありかつ該半漕体基4Fjより高濃度の不純物層が形
成され、前記溝内及び容量部に相当する前記半導体基板
表面には絶縁膜が形成され、前記溝内部及びUN部の前
記絶は膜上には導電性物質が堆積されて前記記憶装置の
容量電極となっていること(11−特徴とするMIa型
半導体記憶装置。
In a storage device whose information unit is one insulated gate field effect transistor on a semiconductor substrate and a capacitance provided adjacent to it, it corresponds to the insulation area between the adjacent '8% parts of the IE storage device. A groove is formed in the semiconductor substrate at the bottom of the groove, and an impurity layer having the same conductivity type as the semi-circular substrate and having a higher concentration than the semi-circular substrate 4Fj is formed in the semiconductor substrate at the bottom of the groove. An insulating film is formed inside the trench and on the surface of the semiconductor substrate corresponding to the capacitive part, and a conductive material is deposited inside the trench and on the insulating film in the UN part to serve as the capacitive electrode of the storage device. (11-Featured MIa type semiconductor memory device.
JP58139007A 1983-07-29 1983-07-29 Mis type semiconductor memory device Pending JPS6031268A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58139007A JPS6031268A (en) 1983-07-29 1983-07-29 Mis type semiconductor memory device
US06/635,538 US4717942A (en) 1983-07-29 1984-07-30 Dynamic ram with capacitor groove surrounding switching transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58139007A JPS6031268A (en) 1983-07-29 1983-07-29 Mis type semiconductor memory device

Publications (1)

Publication Number Publication Date
JPS6031268A true JPS6031268A (en) 1985-02-18

Family

ID=15235300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58139007A Pending JPS6031268A (en) 1983-07-29 1983-07-29 Mis type semiconductor memory device

Country Status (1)

Country Link
JP (1) JPS6031268A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61194768A (en) * 1985-02-22 1986-08-29 Nec Corp Mis type semiconductor memory and manufacture thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51130178A (en) * 1975-05-07 1976-11-12 Hitachi Ltd Semiconductor memory
JPS5643171B2 (en) * 1978-08-04 1981-10-09
JPS59117258A (en) * 1982-12-24 1984-07-06 Hitachi Ltd Semiconductor device and manufacture thereof
JPS6012752A (en) * 1983-07-01 1985-01-23 Nippon Telegr & Teleph Corp <Ntt> Semiconductor memory device and manufacture thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51130178A (en) * 1975-05-07 1976-11-12 Hitachi Ltd Semiconductor memory
JPS5643171B2 (en) * 1978-08-04 1981-10-09
JPS59117258A (en) * 1982-12-24 1984-07-06 Hitachi Ltd Semiconductor device and manufacture thereof
JPS6012752A (en) * 1983-07-01 1985-01-23 Nippon Telegr & Teleph Corp <Ntt> Semiconductor memory device and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61194768A (en) * 1985-02-22 1986-08-29 Nec Corp Mis type semiconductor memory and manufacture thereof

Similar Documents

Publication Publication Date Title
US4717942A (en) Dynamic ram with capacitor groove surrounding switching transistor
KR900000170B1 (en) Dynamic memory cell and method of producing it
US4646118A (en) Semiconductor memory device
JPH0365905B2 (en)
US5041887A (en) Semiconductor memory device
JP3272979B2 (en) Semiconductor device
JPS6012752A (en) Semiconductor memory device and manufacture thereof
US5654573A (en) Semiconductor device having SOI structure and manufacturing method therefor
US4977436A (en) High density DRAM
JPS60136369A (en) Manufacture of semiconductor device
KR0140044B1 (en) Semiconductor memory device having improved isolation structure among memory cells
KR920010695B1 (en) D-ram cell and its manufacturing method
KR100517219B1 (en) Dram cell arrangement with dynamic gain memory cells, and method for the production thereof
JPS59181661A (en) Semiconductor memory device
KR960005249B1 (en) Dram manufacture method
JPS6031268A (en) Mis type semiconductor memory device
JPH077823B2 (en) Semiconductor integrated circuit device
JPH0365904B2 (en)
JPS627153A (en) Semiconductor memory
JPS6190395A (en) Semiconductor memory cell
KR100275114B1 (en) Semiconductor device having low bit line capacitance and method for forming the same
JP2790167B2 (en) Semiconductor device and manufacturing method thereof
JPH0740592B2 (en) Semiconductor memory
JPS63184367A (en) Mos nonvolatile semiconductor storage device
JPS59175157A (en) Metal insulator semiconductor type semiconductor memory device and manufacture thereof