JPS6027082B2 - magnetic head - Google Patents

magnetic head

Info

Publication number
JPS6027082B2
JPS6027082B2 JP3365276A JP3365276A JPS6027082B2 JP S6027082 B2 JPS6027082 B2 JP S6027082B2 JP 3365276 A JP3365276 A JP 3365276A JP 3365276 A JP3365276 A JP 3365276A JP S6027082 B2 JPS6027082 B2 JP S6027082B2
Authority
JP
Japan
Prior art keywords
magnetic head
alloy
columnar structure
mold
sendust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3365276A
Other languages
Japanese (ja)
Other versions
JPS52117610A (en
Inventor
茂一 大友
哲 谷口
英夫 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Denshi KK
Original Assignee
Hitachi Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Denshi KK filed Critical Hitachi Denshi KK
Priority to JP3365276A priority Critical patent/JPS6027082B2/en
Publication of JPS52117610A publication Critical patent/JPS52117610A/en
Publication of JPS6027082B2 publication Critical patent/JPS6027082B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Description

【発明の詳細な説明】 本発明は磁気ヘッド、特にセンダスト合金を用いた磁気
ヘッドの耐摩耗性改善に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improving the wear resistance of a magnetic head, particularly a magnetic head using a Sendust alloy.

センダスト合金(Si8〜1箱重量%山4〜8重量%残
余Fe)は酸化物磁性材料よりも飽和磁束密度、透磁率
が著しく大きく、また、他の合金磁性材料に較べて比抵
抗が大きく、かつ硬度が著しく大であるため、耐摩耗性
が要求されるビデオ装置用磁気ヘッド材料として用いら
れている。
Sendust alloy (Si 8-1 box weight% peak 4-8 weight% residual Fe) has significantly higher saturation magnetic flux density and magnetic permeability than oxide magnetic materials, and has a higher resistivity than other alloy magnetic materials. Since it has extremely high hardness, it is used as a magnetic head material for video devices that requires wear resistance.

しかし、このセンダスト合金でも、硬度は酸化物磁性材
料より小であり、摩耗速度は酸化物磁性材料より1M音
程度遠いという問題がある。一方、ビデオ用磁気ヘッド
においては、磁気ヘッドとテープとの相対速度は11〜
紙w/secであり、オーディオ用ヘッドでの相対速度
4.8〜斑仇ノsecに比較して10ぴ音も大である。
従って、ビデオ用ヘッドには耐摩耗性の優れた材料を用
いることが極めて重要であり、センダスト合金の耐摩耗
性向上が大きな課題となっている。耐摩耗性の優れたセ
ンダスト合金製磁気ヘッドを得る1つの方法は、単結晶
センダスト合金を用いることである。
However, even with this Sendust alloy, there is a problem that the hardness is lower than that of the oxide magnetic material, and the wear rate is about 1M tone higher than that of the oxide magnetic material. On the other hand, in a video magnetic head, the relative speed between the magnetic head and the tape is 11~
The relative speed of the audio head is 4.8 to 10 seconds, which is 10 phona louder than the relative speed of the audio head.
Therefore, it is extremely important to use materials with excellent wear resistance for video heads, and improving the wear resistance of sendust alloys has become a major issue. One method of obtaining a magnetic head made of Sendust alloy with excellent wear resistance is to use a single crystal Sendust alloy.

センダストは結晶面、および方位により摩耗速度が異な
り、(100)面〈100〉方向、(110)面〈10
0〉方向等の他が結晶面、方位よりも耐摩耗性大である
。したがって、これらの面、方位を磁気ヘッドのテープ
対向面、テープ走行方向に一致させることにより、耐摩
耗性の優れた磁気ヘッドを得ることができる。しかし、
単結晶センダスト合金を作製することは必ずしも容易で
はなく、これを用いた磁気ヘッドは価格が高くなるとい
う欠点がある。
The wear rate of sendust differs depending on the crystal plane and orientation.
Other than the 0> direction etc. have higher wear resistance than crystal planes and orientations. Therefore, by aligning these planes and orientations with the tape facing surface of the magnetic head and the tape running direction, a magnetic head with excellent wear resistance can be obtained. but,
It is not necessarily easy to produce single crystal sendust alloy, and magnetic heads using this have the drawback of being expensive.

本発明の目的は、単結晶センダスト合金を用いることな
く、耐摩耗性の優れたセンダスト合金製磁気ヘッドを得
ることにある。
An object of the present invention is to obtain a magnetic head made of Sendust alloy with excellent wear resistance without using single-crystal Sendust alloy.

上記の目的を達成するために、本発明では、磁気ヘッド
材料として、各結晶粒のく100)方向が互いに、ほぼ
平行に揃っている多結晶センダスト合金を用い、この〈
100〉方向が、磁気ヘッドのテープ走行方向にほぼ一
致するように、(大略士1y程度であろう)磁気ヘッド
を作製する。
In order to achieve the above object, the present invention uses a polycrystalline sendust alloy in which the directions of each crystal grain are substantially parallel to each other as a magnetic head material.
The magnetic head is manufactured so that the 100> direction approximately coincides with the tape running direction of the magnetic head (approximately approximately 1y).

これにより単結晶センダスト合金を用いることなく、従
来の単結晶センダスト合金製磁気ヘッドより耐摩耗性の
優れた磁気ヘッドを得ることができる。一般に、金属材
料を融解後、金属製の鋳型に鋳込んで凝固させた場合、
鋳型に接した部分が鋳型と垂直方向に柱状組織となり得
ることが知られている。この柱状組織は、金属結晶が一
方向に細長く成長してできたものであり、この柱状構造
の軸方向と金属結晶の一定の方向が一致するように成長
する場合がある。Fe−N−Si系合金のように、体0
立方構造を持つ結晶の場合には、例えば「金属物性工学
概論:金子秀夫署、昭和4世年6月15日、朝倉書店発
行、第121頁」にも示されているように、柱状構造の
軸方向は〈100)方向となることが知られている。本
発明に用いられる〈100〉方向の揃った柱状構造を持
つFe−山一Si合金は、上記のように、Fe−AI−
Si合金のィンゴツトにおいて鋳型に接触している部分
またはその周辺の部分で得ることができる。
This makes it possible to obtain a magnetic head with better wear resistance than conventional single-crystal Sendust alloy magnetic heads without using single-crystal Sendust alloy. Generally, when a metal material is melted and then poured into a metal mold and solidified,
It is known that the portion in contact with the mold can form a columnar structure in the direction perpendicular to the mold. This columnar structure is formed by elongated growth of metal crystals in one direction, and may grow so that the axial direction of this columnar structure coincides with a certain direction of the metal crystals. Like Fe-N-Si alloys, body 0
In the case of crystals with a cubic structure, for example, as shown in "Introduction to Metal Physics Engineering: Hideo Kaneko, published by Asakura Shoten, June 15, 1939, p. 121," the crystal has a columnar structure. It is known that the axial direction is the <100) direction. As mentioned above, the Fe-Yamaichi Si alloy having a columnar structure aligned in the <100> direction used in the present invention has a Fe-AI-
It can be obtained from the part of the Si alloy ingot that is in contact with the mold or the part around it.

このような柱状構造は、Fe−N−Si合金が鋳型より
冷却されて急速に凝固する際に生じるものであるから、
柱状構造を得るためにはィンゴット作製条件、すなわち
、鋳型の材質、ィンゴットの形状、寸法、銭込温度を制
御することによって、冷却速度を大ならしめることが必
要である。鋳型の種類は、一般には、砂型等のセラミッ
クス系のものと、金属製の金型に大別されるが、冷却速
度を大きくするためには、熱伝導度の高い金型を用いる
必要がある。
Such a columnar structure is generated when the Fe-N-Si alloy is cooled from the mold and solidifies rapidly.
In order to obtain a columnar structure, it is necessary to increase the cooling rate by controlling the ingot manufacturing conditions, that is, the material of the mold, the shape and size of the ingot, and the temperature. Types of molds are generally divided into ceramic molds such as sand molds and metal molds, but in order to increase the cooling rate, it is necessary to use molds with high thermal conductivity. .

金型の材質は、銅が熱伝導度が高いため好ましいが、落
陽とのぬれ性に関しては軟鉄製の鋳型の方が良好なため
、冷却速度を高める上でより好ましい。さらに、鋳型自
身を冷却するために、鋳型の外部を水冷パイプによって
冷却することがさらに好ましい。また、冷却速度は溶湯
が冷却する際に発生する潜熱を取り去る速度に依存して
おり、潜熱の総量が小さければ冷却速度を高くできる。
As for the material of the mold, copper is preferable because it has high thermal conductivity, but a mold made of soft iron is better in terms of wettability with the setting sun and is therefore more preferable in terms of increasing the cooling rate. Furthermore, in order to cool the mold itself, it is further preferred that the outside of the mold be cooled by a water-cooled pipe. Furthermore, the cooling rate depends on the rate at which latent heat generated when the molten metal is cooled is removed, and the cooling rate can be increased if the total amount of latent heat is small.

従って、ィンゴットの体積が小さいほど冷却速度は高く
なる。また、同一体積であっても、鋳型との接触面積が
大きいほど冷却速度は高くできるため、ィンゴツトの形
状は円柱形より平板状のものが好ましい。
Therefore, the smaller the volume of the ingot, the higher the cooling rate. Further, even if the ingot has the same volume, the larger the contact area with the mold, the higher the cooling rate, so the shape of the ingot is preferably flat rather than cylindrical.

鋳込み温度は、Fe一AI一Si系合金の融点が約13
5び0(但し、Siが卵t.%,山が榊t.%の場合)
であり、これより100〜400℃高い温度で鋳込む必
要がある。
The casting temperature is such that the melting point of the Fe-AI-Si alloy is approximately 13
5 and 0 (However, when Si is egg t.% and the mountain is sakaki t.%)
Therefore, it is necessary to cast at a temperature 100 to 400°C higher than this.

鋳込む温度がこれ以上低い場合は、溶湯の流動性が悪く
、巣ができ易くなる。また、これ以上高い場合には、N
などの成分の蒸発量が多く、組成がずれやすくなる。な
お、柱状構造は鏡込温度が高い場合にでき易い鏡向があ
る。これは、鍵込温度が高い方が凝固界面での温度勾配
が大きく、このため一方向凝固が起りやすいためと考え
られる。上記のように、本願で用いる、結晶方向の揃っ
た多結晶体は、上記のように製造条件を考慮するのみで
容易に製造でき、単結晶を用いる方法より経済的に有利
である。
If the casting temperature is lower than this, the fluidity of the molten metal will be poor and cavities will easily form. In addition, if it is higher than this, N
There is a large amount of evaporation of components such as, and the composition tends to shift. Note that the columnar structure has a mirror orientation that is easily formed when the mirror temperature is high. This is thought to be because the higher the locking temperature, the larger the temperature gradient at the solidification interface, which makes unidirectional solidification more likely to occur. As described above, the polycrystalline body with uniform crystal orientation used in the present application can be easily manufactured simply by considering the manufacturing conditions as described above, and is more economically advantageous than the method using a single crystal.

さらに、Fe−AI−Si合金の多結晶体の柱状組織が
〈100)方向に配向しているか否かを調べる方法の一
つとして、柱状構造の麹方向と垂直な面をX線回折によ
り測定する方法がある。すなわち、く100)方向と垂
直な面は{100}面であるので、完全に〈100)方
向に配向した柱状組織より得られるX線回折パタンには
、{100}面の整数倍の面指数に相当する回折ピーク
のみが得られる。また若干他の方向が混在している場合
でも、無配向のものに比較して、{100}面の整数倍
の面指数の強度比が他の面指数に比較して大きい(例え
ば、「X線回折要論;カリティ著、松村訳、昭和4g王
1月30日、アグネ発行、第277頁〜第278頁」を
参照)。以下本発明を実施例により説明する。
Furthermore, as a method to investigate whether the columnar structure of the polycrystalline structure of the Fe-AI-Si alloy is oriented in the <100) direction, the plane perpendicular to the koji direction of the columnar structure is measured by X-ray diffraction. There is a way to do it. In other words, since the plane perpendicular to the <100) direction is the {100} plane, an X-ray diffraction pattern obtained from a columnar structure completely oriented in the <100) direction has a plane index that is an integral multiple of the {100} plane. Only the diffraction peaks corresponding to are obtained. Furthermore, even when some other directions are mixed, the intensity ratio of the plane index that is an integer multiple of the {100} plane is larger than that of the other plane indexes (for example, "X ``Essentials of Line Diffraction;'' by Currity, translated by Matsumura, published by Agne, January 30, 1947, pp. 277-278). The present invention will be explained below with reference to Examples.

実施例 1 Fe,AIおよびSiを所定量だけ秤量し、真空溶解炉
において溶融し、外部を水冷パイプにより冷却した軟鉄
製の鋳型に、1700qoの鋳込み温度でFe一AI一
Si合金の落陽を鋳込み、幅1.5仇、長さ1比ス、高
さ15仇のFe−AI−Si合金のィンゴットを作製し
た。
Example 1 A predetermined amount of Fe, AI, and Si were weighed and melted in a vacuum melting furnace, and a Fe-AI-Si alloy Rakuyo was cast at a casting temperature of 1700 qo into a soft iron mold whose outside was cooled by a water-cooled pipe. An ingot of Fe-AI-Si alloy with a width of 1.5 mm, a length of 1 mm, and a height of 15 mm was fabricated.

この合金の組成を分析した結果、Siが9.5M.%、
山が跡t.%、残部Feの組成であった。前記ィンゴッ
トの断面を観察した結果、金型に接していた表面より約
3伽までの部分は柱状構造を示していた。この部分を切
断により切り出し、柱状構造の軸方向と垂直な面をX線
回折により観察した結果、{200}および{400}
の面に相当する回折ピークが強く現われ、{200}回
折ピークと{220}回折ピークとの強度比1 {20
0}/1{220}は約5であった。一方、ィンゴツト
中央部の柱状構造を示さない無配向の部分を同様にX線
回折により観察した結果、1 {200}/1 {滋0
}は約0.5であった。以上より、本実施例で用いるィ
ンゴツトの柱状構造の部分は柱状構造の軸万向が〈10
0)方向と一致するように、強く配向していることが明
らかとなった。このようにして製造した、各結晶粒のく
100〉方向が揃った多結晶センダスト合金を用いて、
この〈100)方向がテープ走行方向となるように、第
1図に示す磁気ヘッドを作製した。第1図aはテープ当
り面よりヘッドをみた図、bは断面図である。また、同
一組成の、各結晶粒の方位がランダムな多結晶センダス
ト合金(試料は前記ィンゴットの中央部より採取)を用
いて、第1図と同形の磁気ヘッドを作製した。これらの
磁気ヘッドをVTR装置に組み込み、摩耗試験を行なっ
た。テープは7一Fe203テープを使用した。テープ
走行20畑時間後の磁気ヘッドの摩耗量を第1表に示す
。表より明らかなように、〈100〉方向の揃ったセン
ダスト合金を用いた磁気へッド‘ま、結晶粒の方位がラ
ンダムな多結晶センダスト合金を用いた磁気ヘッドより
も17%摩耗量が少ない。こうして、従来の多結晶セン
ダスト合金を用いた磁気ヘッドよりも耐摩耗性大なる磁
気ヘッドを得ることができた。第1表
As a result of analyzing the composition of this alloy, it was found that Si was 9.5M. %,
The mountain remains. %, the balance was Fe. As a result of observing the cross section of the ingot, it was found that the portion up to about 3 degrees from the surface in contact with the mold had a columnar structure. This part was cut out by cutting, and the plane perpendicular to the axial direction of the columnar structure was observed by X-ray diffraction. As a result, {200} and {400}
A diffraction peak corresponding to the plane appears strongly, and the intensity ratio between the {200} diffraction peak and the {220} diffraction peak is 1 {20
0}/1{220} was approximately 5. On the other hand, as a result of similarly observing the non-oriented part showing no columnar structure in the central part of the ingot by X-ray diffraction, it was found that 1 {200}/1 {200}
} was about 0.5. From the above, in the columnar structure of the ingot used in this example, the axis directions of the columnar structure are <10
It was revealed that the crystals were strongly oriented so as to coincide with the 0) direction. Using the polycrystalline sendust alloy produced in this way, in which each crystal grain is aligned in the 100> direction,
The magnetic head shown in FIG. 1 was manufactured so that the <100) direction was the tape running direction. FIG. 1a is a view of the head viewed from the tape contact surface, and FIG. 1b is a sectional view. Further, a magnetic head having the same shape as that shown in FIG. 1 was fabricated using a polycrystalline sendust alloy having the same composition and in which the orientation of each crystal grain was random (the sample was taken from the center of the ingot). These magnetic heads were incorporated into a VTR device and a wear test was conducted. The tape used was 7-Fe203 tape. Table 1 shows the wear amount of the magnetic head after 20 hours of tape running. As is clear from the table, a magnetic head using Sendust alloy with aligned <100> directions has 17% less wear than a magnetic head using polycrystalline Sendust alloy with random crystal grain orientation. . In this way, a magnetic head with greater wear resistance than conventional magnetic heads using polycrystalline sendust alloys could be obtained. Table 1

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明で実施した磁気ヘッドを示した図である
。 第1図
FIG. 1 is a diagram showing a magnetic head implemented in the present invention. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 1 8〜13重量%のSi,4〜8重量%のAl、残余
がFeからなる組成を有し、各結晶粒の〈100〉方向
が互いに、ほぼ平行に揃つている多結晶合金を用い実質
的にこの〈100〉方向を、磁気ヘツドのテープ走行方
向に一致させたことを特徴とする磁気ヘツド。
1 Using a polycrystalline alloy with a composition consisting of 8 to 13% by weight of Si, 4 to 8% by weight of Al, and the balance Fe, the <100> directions of each crystal grain are aligned almost parallel to each other. A magnetic head characterized in that the <100> direction coincides with the tape running direction of the magnetic head.
JP3365276A 1976-03-29 1976-03-29 magnetic head Expired JPS6027082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3365276A JPS6027082B2 (en) 1976-03-29 1976-03-29 magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3365276A JPS6027082B2 (en) 1976-03-29 1976-03-29 magnetic head

Publications (2)

Publication Number Publication Date
JPS52117610A JPS52117610A (en) 1977-10-03
JPS6027082B2 true JPS6027082B2 (en) 1985-06-27

Family

ID=12392366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3365276A Expired JPS6027082B2 (en) 1976-03-29 1976-03-29 magnetic head

Country Status (1)

Country Link
JP (1) JPS6027082B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0318393Y2 (en) * 1984-05-11 1991-04-18

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0318393Y2 (en) * 1984-05-11 1991-04-18

Also Published As

Publication number Publication date
JPS52117610A (en) 1977-10-03

Similar Documents

Publication Publication Date Title
Okamoto et al. Dendritic structure in unidirectionally solidified aluminum, tin, and zinc base binary alloys
Pettersen et al. Crystallography of directionally solidified magnesium alloy AZ91
JPH0553853B2 (en)
TWI685575B (en) Low thermal expansion alloy with excellent low temperature stability, its manufacturing method, low thermal expansion alloy powder, and laminated forming member
JP2639609B2 (en) Alloy ingot for permanent magnet and method for producing the same
JPS6027082B2 (en) magnetic head
US3234609A (en) Method of making magnetically anisotropic permanent magnets
US5236033A (en) Method for producing a body from a material susceptible to thermal cracking and casting mold for executing the method
JPH0125819B2 (en)
US3545525A (en) Method of manufacturing magnetically anisotropic permanent magnets with a crystal orientation
Cisse et al. Freezing Front Asymmetry During Ingot Solidification of Al and Its Alloys
US5275688A (en) Monocrystal growth method
JPH02251345A (en) Method for continuously casting magnetic alloy
JP2001316782A (en) Amorphous soft magnetic alloy
JPH0137461B2 (en)
JPS6223060B2 (en)
JPS63140739A (en) Mold
JPH0152111B2 (en)
JPH0280538A (en) Permanent magnetic alloy thin band and its manufacture
Esaka et al. Investigation of Formation Mechanism for Equiaxed Grains Using Fe--Ni Alloys
JPS6317504A (en) Permanent magnet and its manufacture
JPS61235548A (en) Manufacture of co-fe-al-b magnetic alloy
JPH02251359A (en) Method for casting magnetic alloy
JPH09206919A (en) Manufacture of rare earth magnet alloy ingot having big columnar crystal
JPS6223059B2 (en)