JPH0280538A - Permanent magnetic alloy thin band and its manufacture - Google Patents
Permanent magnetic alloy thin band and its manufactureInfo
- Publication number
- JPH0280538A JPH0280538A JP63231462A JP23146288A JPH0280538A JP H0280538 A JPH0280538 A JP H0280538A JP 63231462 A JP63231462 A JP 63231462A JP 23146288 A JP23146288 A JP 23146288A JP H0280538 A JPH0280538 A JP H0280538A
- Authority
- JP
- Japan
- Prior art keywords
- molten metal
- denotes
- thin band
- atom
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 8
- 229910001004 magnetic alloy Inorganic materials 0.000 title claims abstract description 5
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 38
- 239000000956 alloy Substances 0.000 claims abstract description 38
- 229910052751 metal Inorganic materials 0.000 claims abstract description 34
- 239000002184 metal Substances 0.000 claims abstract description 34
- 229910052779 Neodymium Inorganic materials 0.000 claims abstract description 7
- 229910052777 Praseodymium Inorganic materials 0.000 claims abstract description 7
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 6
- 229910052733 gallium Inorganic materials 0.000 claims abstract description 5
- 229910052684 Cerium Inorganic materials 0.000 claims abstract description 4
- 229910052692 Dysprosium Inorganic materials 0.000 claims abstract description 4
- 229910052771 Terbium Inorganic materials 0.000 claims abstract description 4
- 229910052802 copper Inorganic materials 0.000 claims abstract description 4
- 229910052735 hafnium Inorganic materials 0.000 claims abstract description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 4
- 229910052715 tantalum Inorganic materials 0.000 claims abstract description 4
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 4
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 4
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 4
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 3
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 3
- 239000000203 mixture Substances 0.000 claims description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract description 13
- 229910052761 rare earth metal Inorganic materials 0.000 abstract description 12
- 229910052742 iron Inorganic materials 0.000 abstract description 5
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 238000001816 cooling Methods 0.000 description 14
- 230000007423 decrease Effects 0.000 description 11
- 230000004907 flux Effects 0.000 description 9
- 238000000034 method Methods 0.000 description 8
- 239000013078 crystal Substances 0.000 description 7
- 238000010008 shearing Methods 0.000 description 7
- 230000005415 magnetization Effects 0.000 description 5
- 238000010791 quenching Methods 0.000 description 5
- 230000000171 quenching effect Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 229910000640 Fe alloy Inorganic materials 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 150000002910 rare earth metals Chemical class 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- -1 tetragonal compound Chemical class 0.000 description 2
- JZQOJFLIJNRDHK-CMDGGOBGSA-N alpha-irone Chemical compound CC1CC=C(C)C(\C=C\C(C)=O)C1(C)C JZQOJFLIJNRDHK-CMDGGOBGSA-N 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000007578 melt-quenching technique Methods 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Continuous Casting (AREA)
- Hard Magnetic Materials (AREA)
Abstract
Description
【発明の詳細な説明】
「産業上の利用分野」
本発明は、希土類元素、鉄、ポロンを主成分とし、溶融
急冷法により作成した永久磁石合金薄帯とその製造方法
に関する。DETAILED DESCRIPTION OF THE INVENTION "Industrial Application Field" The present invention relates to a permanent magnet alloy ribbon containing rare earth elements, iron, and poron as main components and produced by a melt quenching method, and a method for producing the same.
「従来の技術」
近年、各種のコンピュータや通信機器は、小型化、高性
能化が望まれており、そのためそれらに使用する永久磁
石も磁気特性の優れたものが要求されている。"Prior Art" In recent years, various computers and communication devices have been desired to be smaller in size and have higher performance, and therefore, permanent magnets used in these devices are also required to have excellent magnetic properties.
従来、すぐれた磁気特性の永久磁石を作成するため、希
土類元素、鉄、ポロンを主成分とし、それからなる合金
溶湯を冷却速度102〜bで冷却することにより、組織
が5JLm以下の微細な複合組織で構成され、主相が正
方品化合物となるようにしたものが提案されている(特
開昭60−89546号公報)。Conventionally, in order to create permanent magnets with excellent magnetic properties, a fine composite structure with a structure of 5 JLm or less was created by cooling a molten alloy made of rare earth elements, iron, and poron at a cooling rate of 102~b. A compound in which the main phase is a tetragonal compound has been proposed (Japanese Unexamined Patent Publication No. 60-89546).
この場合、希土類元素は8〜30原子%、鉄は42〜9
原子%、ポロンは2〜28原子%の組成とされ、溶湯急
冷のままで保磁力が12KOe以上になるようにしてい
る。In this case, rare earth elements are 8 to 30 at%, iron is 42 to 9
The composition of poron is 2 to 28 atomic %, and the coercive force is 12 KOe or more even when the molten metal is rapidly cooled.
また前記急冷法を適用することなく、所定の材料を溶解
製造するのみで磁気特性の優れた永久磁石も提案されて
いる(特開昭63−114105号公報)、それは、希
土類元素と遷移金属とポロンを主成分とする材料を溶解
鋳造し、得られる磁石のマクロ組成を柱状晶とし、次い
で250℃以上の温度で熱処理して、磁気的に硬化させ
た、永久磁石である。In addition, a permanent magnet with excellent magnetic properties has been proposed by simply melting and producing a predetermined material without applying the quenching method (Japanese Patent Application Laid-open No. 114105/1983). This permanent magnet is obtained by melting and casting a material containing poron as a main component, making the resulting magnet have a macroscopic composition of columnar crystals, and then heat-treating it at a temperature of 250° C. or higher to magnetically harden it.
またこの公報は、前記材料を溶解、鋳造後、500℃以
上の温度で熱間加工することにより、結晶粒の結晶軸を
特定の方向に配向せしめ、次に500℃以上の温度で熱
加工することにより、異方性化した永久磁石の製法を示
している。This publication also discloses that after the material is melted and cast, it is hot worked at a temperature of 500°C or higher to orient the crystal axes of the crystal grains in a specific direction, and then heat worked at a temperature of 500°C or higher. This shows a method for producing anisotropic permanent magnets.
さらに、希土類、鉄系合金溶湯を1表面速度3〜20履
/秒の回転冷却体で急冷した場合、得られる薄帯は薄帯
面に対して垂直方向にC軸が配向するということに基づ
いて、磁気特性の優れた永久磁石の製法が提案されてい
る(特開昭83−18802号公報)。Furthermore, it is based on the fact that when a molten rare earth or iron alloy is rapidly cooled with a rotating cooling body at a surface speed of 3 to 20/sec, the C-axis of the resulting ribbon is oriented perpendicular to the ribbon surface. A method for manufacturing a permanent magnet with excellent magnetic properties has been proposed (Japanese Patent Laid-Open No. 18802/1983).
「発明が解決しようとする課題」
従来、希土類元素、鉄、ポロンを主成分とした合金溶湯
を急冷して、組成を5弘腸以下の微細な複合組織にし、
主相が正方晶化合物になるようにした永久磁石があるが
、それは15KOe以上の保磁力であるものの飽和磁化
(e■u/g)は88以下とあまり大きなものではなか
った。``Problem to be solved by the invention'' Conventionally, a molten alloy containing rare earth elements, iron, and poron as its main components was rapidly cooled to form a fine composite structure with a composition of 5 gases or less.
There is a permanent magnet in which the main phase is a tetragonal compound, but although it has a coercive force of 15 KOe or more, the saturation magnetization (e•u/g) is not so large as 88 or less.
また希土類元素と遷移金属とポロンを主成分とする材料
を溶解鋳造して1組織を柱状晶とし、さらに熱間加工で
結晶軸を特定の方向に配向するものは、熱間加工しなけ
れば磁気特性が、向上せず、満足できるものではなかっ
た。In addition, materials whose main components are rare earth elements, transition metals, and poron are melted and cast to form a columnar structure, and the crystal axes are oriented in a specific direction by hot processing. The characteristics did not improve and were not satisfactory.
さらに、希土類鉄系合金溶湯を、表面速度が3〜20■
/秒の回転冷却体で急冷することによりC軸を配向させ
る場合、保磁力が10800〜140000e、残留磁
束密度が11400〜12800G、エネルギー積が3
0〜39MGOeであって、磁気特性にバラツキがあり
、十分に満足できるものではない。Furthermore, the surface velocity of molten rare earth iron alloy is 3 to 20
When the C-axis is oriented by rapid cooling with a rotary cooling body at a speed of
0 to 39 MGOe, the magnetic properties vary and are not fully satisfactory.
「課題を解決するための手段」
第1の発明は、溶湯急冷法により作成されたRuFev
CowBxMy (u、v、w、i、rは原子%)
ここでR: Nd、 Pr、 Ce、 Dy、Tbの1
種以上であって(Nd+ Pr) / R≧0.7
M : Ti、Zr、 Hf、Ta、Mo、W、A
l、Si、Ga、 Zn、Cuの少なくとも1種、
u:11〜18at%
v : (+00−u −w −x −y ) a
t%w: 0〜30at%
! = 3〜11at%
!二 〇〜3at%
で表わされる組成の永久磁石合金薄帯であり、その永久
磁石合金薄帯の厚さが80〜10001h aであって
、薄帯の厚さ方向の異方性配向度が70%以上であるこ
とを特徴とする永久磁石合金薄帯である。"Means for solving the problem" The first invention is a RuFev produced by a molten metal quenching method.
CowBxMy (u, v, w, i, r are atomic %) where R: 1 of Nd, Pr, Ce, Dy, Tb
(Nd+Pr)/R≧0.7 M: Ti, Zr, Hf, Ta, Mo, W, A
l, at least one of Si, Ga, Zn, and Cu, u: 11 to 18 at% v: (+00-u-w-x-y) a
t%w: 0~30at%! = 3~11at%! The permanent magnet alloy ribbon has a composition of 20 to 3 at%, the thickness of the permanent magnet alloy ribbon is 80 to 10,001 ha, and the degree of anisotropic orientation in the thickness direction of the ribbon is 70. % or more.
第2の発明は、第1の発明と同一組成の合金溶湯を12
00〜1450℃とし、この溶湯を回転ロールで急冷し
て合金薄帯を作成する際に、回転ロールに接する部分で
帯状の溶湯の表面側と裏面側との間に 1〜15■/秒
の速度差が生じるようにしたことを特徴とする永久磁石
合金薄帯の製造方法である。The second invention uses a molten alloy having the same composition as the first invention.
00 to 1450°C, and when the molten metal is rapidly cooled with a rotating roll to create an alloy ribbon, a heating rate of 1 to 15 μ/sec is applied between the front side and the back side of the strip-shaped molten metal at the part in contact with the rotating roll. This is a method for producing a permanent magnet alloy ribbon, characterized in that a speed difference is generated.
磁気特性のよい永久磁石合金薄帯を作成するのに希土類
元素(R)は必須元素であり、磁石合金組成中、Rが1
1at%以下であると、結晶構造がα−鉄と同一構造の
立方晶組織となるため保磁力が低下し、Rが18at%
以上になると非磁性相が多くなって残留磁束密度が低下
する。なお希土類元素R中、NdとPrは高い残留磁束
密度を得るのに適しており、 NdとPrの和がHに対
して0.7以上含まれることが望ましい、なお、希土類
元素DF、 Tb等は保磁力の向上に有効であり、含有
させるのが望ましい、又CeはHに対して0.3未満で
あれば磁気特性を劣化させないため、原料に含まれてい
てもよい。A rare earth element (R) is an essential element to create a permanent magnet alloy ribbon with good magnetic properties, and R is 1 in the magnet alloy composition.
If it is 1 at% or less, the crystal structure becomes a cubic structure that is the same as α-iron, so the coercive force decreases and R becomes 18 at%.
If it exceeds the amount, the amount of non-magnetic phase increases and the residual magnetic flux density decreases. In addition, among the rare earth elements R, Nd and Pr are suitable for obtaining a high residual magnetic flux density, and it is desirable that the sum of Nd and Pr is 0.7 or more with respect to H. Furthermore, rare earth elements DF, Tb, etc. Ce is effective in improving the coercive force and is desirable to be included.If Ce is less than 0.3 with respect to H, the magnetic properties will not deteriorate, so it may be included in the raw material.
Feは、磁石組成中、約40%未満では残留磁束密度が
低下し、約86%を超過すると保磁力が低下するので、
40〜86%の範囲で含ませるが、FeはR1Ca、B
、Mの含有量を差引いた量が望ましい範囲に該当するよ
うにした。When Fe is less than about 40% in the magnet composition, the residual magnetic flux density decreases, and when it exceeds about 86%, the coercive force decreases.
It is included in the range of 40 to 86%, but Fe is included in R1Ca, B
, M content is subtracted so that the amount falls within the desired range.
Goは、磁石の温度特性の改善(午ユリー温度の上昇)
ができるとともに、耐食性を向上できるが30at%以
上になると保磁力が低下するので、それ以下にした。Go improves the temperature characteristics of the magnet (increases the temperature)
It is possible to improve corrosion resistance as well as to improve corrosion resistance, but if it exceeds 30 at %, the coercive force decreases, so it was set to less than that.
Bは、磁石組成中、3at%以下では菱面体組織となっ
て保磁力が低下し、11at%以上になるとBリッチな
非磁性相が多くなり、残留磁束密度が低下するので、そ
れぞれの含有%を限度にした。If B is less than 3 at% in the magnet composition, it will form a rhombohedral structure and the coercive force will decrease, and if it is more than 11 at%, B-rich nonmagnetic phase will increase and the residual magnetic flux density will decrease, so the respective content percentages should be adjusted accordingly. was set as a limit.
Ti、 Al、 Ga等のMは、保磁力が向上するとと
もに耐食性も向−卜するので、それらを1種以上含むこ
とが望ましい、しかし、Mが3at%以上になると残留
磁束密度が低下するので、それ以下にした。M such as Ti, Al, and Ga improves coercive force and corrosion resistance, so it is desirable to include one or more of them.However, if M exceeds 3 at%, the residual magnetic flux density decreases. , I made it less than that.
永久磁石合金薄帯の厚ざが80ル■以下になると、異方
性配向度分布が低下し、1000.1以上になると十分
な保磁力が得られにくいので、合金薄帯の厚さを制限し
た0本発明において、異方性配向度は、残留磁束密度と
、飽和磁化の比で定義する。If the thickness of the permanent magnet alloy ribbon is less than 80 l, the anisotropic orientation distribution will decrease, and if it is more than 1000.1, it will be difficult to obtain sufficient coercive force, so limit the thickness of the alloy ribbon. In the present invention, the degree of anisotropic orientation is defined by the ratio of residual magnetic flux density to saturation magnetization.
ただし、飽和磁化は、飽和磁化が既知であるR2Fe1
4B化合物が含まれる量より推定した。However, the saturation magnetization is R2Fe1 whose saturation magnetization is known.
Estimated based on the amount of 4B compound contained.
永久磁石合金薄帯の異方性配向度を70%以上としたの
は、それ以下では着磁がしにくいためである。The reason why the degree of anisotropic orientation of the permanent magnet alloy ribbon is set to be 70% or more is because it is difficult to magnetize the permanent magnet alloy ribbon if it is less than 70%.
次に永久磁石合金薄帯の製造において、合金溶湯温度を
1200〜1450℃としたのは、1200℃以下では
合金が溶湯にならず、1450℃以上では溶湯の粘性が
小さくて、帯状溶湯に剪断力が作用しに〈〈異方性化し
にくくなるためである。Next, in the production of permanent magnetic alloy ribbons, the temperature of the molten alloy was set at 1200 to 1450°C, because below 1200°C the alloy does not become molten, and above 1450°C the molten metal has low viscosity and is sheared into a strip-like molten metal. This is because it becomes difficult to become anisotropic when force acts on it.
また、合金溶湯を流出させた場合、回転ロールに接する
部分での帯状の溶湯の表面側と裏面側との間に 1〜1
5 tm/秒の速度差を生じさせたが、それは、その速
度差により帯状の溶湯の凝固時に剪断力を生じさせて、
異方性配向度を向上させるためである。なお、速度差が
15腸/秒以上になると、凝固速度が大きすぎるため等
吉凶結晶核生成が盛んになり、異方性配向度が低下して
望ましくない、また、速度差が11/秒未満の時は、溶
湯に剪断力が作用しにくいため、異方性配向度が低下し
て望ましくない。In addition, when the alloy molten metal flows out, 1 to 1
A speed difference of 5 tm/sec was generated, which caused a shearing force during solidification of the band-shaped molten metal.
This is to improve the degree of anisotropic orientation. In addition, if the speed difference is 15/sec or more, the solidification rate is too high, so that the formation of benevolent crystal nucleation becomes active, and the degree of anisotropic orientation decreases, which is undesirable. In this case, it is difficult for shearing force to act on the molten metal, so the degree of anisotropic orientation decreases, which is undesirable.
「作用」
上記手段の永久磁石合金薄帯を溶湯急冷法で製造する場
合、急冷却用の回転ロールに溶湯が接する部分で、帯状
の溶湯の表面側と裏面側との間に所定の速度差を生じさ
せると、その速度差により帯状の溶湯の表面に平行な方
向に剪断力が生じる。"Operation" When producing the permanent magnet alloy ribbon of the above means by the molten metal quenching method, a predetermined speed difference is created between the front side and the back side of the molten metal strip at the part where the molten metal contacts the rotating roll for quenching. When this occurs, a shearing force is generated in a direction parallel to the surface of the band-shaped molten metal due to the speed difference.
そのため、剪断力の作用方向に結晶が生じて、磁化容易
軸が薄帯面に垂直な方向に集積し、異方性配向度が向上
する。Therefore, crystals are generated in the direction of action of the shearing force, and the easy axis of magnetization is accumulated in the direction perpendicular to the ribbon surface, improving the degree of anisotropic orientation.
「実施例」
希土類元素NdとPrとD!とでteat%[ただし、
(Nd+Pr) / (Nd+Pr+[lt) =
0.8] 、 Goを20at%Bを Efat%、
Slを0.5at%、Gaを0.5at%、残部がFe
である組成のインゴットを作成した。このインゴットを
アルゴン雰囲気中、石英るつぼ内で高周波溶解した。"Example" Rare earth elements Nd, Pr and D! and treat% [however,
(Nd+Pr) / (Nd+Pr+[lt) =
0.8], Go20at%B Efat%,
0.5at% of Sl, 0.5at% of Ga, balance is Fe
An ingot with the following composition was created. This ingot was radiofrequency melted in a quartz crucible in an argon atmosphere.
この合金溶湯を1300℃に加熱し、第1図に示すよう
に、縦0.5層層、MIJ5層層のスリットのノズル
!から200rp−で回転する直径(480鳳鵬)のロ
ール2上に流出させ、帯状の溶湯の表面側と裏面側との
間に10層/秒の速度差が生じるようにした。なお、ノ
ズル1の先端とロール2の表面との間隔を70〜110
0#L■とじて、各種の厚さの合金薄帯を得た。また本
実施例のノズルにおけるロールの回転方向側のリップl
aの長さは500〜3000 p腸としたが、このリッ
プの長さはある程度長い方が、帯状の溶湯に剪断力が生
じやすい。This molten alloy was heated to 1300°C, and as shown in Figure 1, a slit nozzle of 0.5 vertical layers and 5 MIJ layers was
! The molten metal was poured onto a roll 2 having a diameter of 480 rpm rotating at 200 rpm, so that a speed difference of 10 layers/second was generated between the front side and the back side of the band-shaped molten metal. Note that the distance between the tip of the nozzle 1 and the surface of the roll 2 is 70 to 110 mm.
0#L■ was used to obtain alloy ribbons of various thicknesses. In addition, the lip l on the rotation direction side of the roll in the nozzle of this example
The length of a was set to 500 to 3000 p, but if the length of this lip was long to some extent, shearing force would be more likely to be generated in the band-shaped molten metal.
そして、ノズル1から溶湯をロール2上に流出して、急
冷させることにより得た各厚さの永久磁石合金薄帯の保
磁力(iHc)と残留磁束密度(Br)と異方性配向度
とを測定して、第1表に示した。Then, the coercive force (iHc), residual magnetic flux density (Br), and degree of anisotropic orientation of the permanent magnet alloy ribbon of each thickness obtained by flowing the molten metal from the nozzle 1 onto the roll 2 and rapidly cooling it. were measured and shown in Table 1.
第1表から明らかなように、薄帯の厚さが80〜100
0 p−raの間で保磁力が1OKOe以上、残留磁束
密度が10.3K G以上であり、磁気特性が優れたも
のであることがわかる。As is clear from Table 1, the thickness of the ribbon is 80 to 100.
It can be seen that the coercive force is 1 OK Oe or more and the residual magnetic flux density is 10.3 K G or more between 0 p-ra, and the magnetic properties are excellent.
前記実施例では、合金溶湯を単ロールで急冷させ、帯状
溶湯の表面側と表面側との間に10m/秒の速度差を生
じさせたが、 1〜15 層/秒の速度差の範囲で帯状
の溶湯に剪断力を生じさせることができ、異方性配向度
分布向上に効果があると考えられる。In the above example, the molten alloy was rapidly cooled with a single roll to create a speed difference of 10 m/sec between the surface side of the strip-shaped molten metal, but within the range of a speed difference of 1 to 15 layers/sec. It is possible to generate shearing force in the band-shaped molten metal, which is thought to be effective in improving the anisotropic orientation degree distribution.
また溶湯冷却方法として、第2図に示すように双ロール
3,4間に、ノズル1から溶湯を流出させてもよい、こ
の場合、2つのロール3,4の回転速度に 1〜15m
/秒の差をつけることにより、帯状溶湯の表面側と裏面
側との間に1〜15 m7秒の速度差を生じさせること
ができる。As a method of cooling the molten metal, the molten metal may be flowed out from the nozzle 1 between the twin rolls 3 and 4 as shown in FIG. 2. In this case, the rotation speed of the two rolls 3 and 4 is 1 to 15 m
By setting a difference of 1 to 15 m7 seconds between the front side and the back side of the strip-shaped molten metal, it is possible to create a speed difference of 1 to 15 m7 seconds.
2つのロール周速差に対する急冷永久磁石合金薄帯の保
磁力(iHc)と残留磁束密度(Or)と、異方性配向
度とを測定した結果を第2表に示した0組成はNd、4
Fe76 (:o2 B 6 All Sil 、ロ
ール径 150mm、遅いロール周速は51I/秒とし
た。Table 2 shows the results of measuring the coercive force (iHc), residual magnetic flux density (Or), and degree of anisotropic orientation of the rapidly solidified permanent magnet alloy ribbon for the difference in circumferential speed of two rolls. 4
Fe76 (:o2 B 6 All Sil , roll diameter 150 mm, slow roll circumferential speed was 51 I/sec.
さらに、第3図に示すように、溶湯槽5内の溶湯表面に
回転ロール6を接しさせて、合金薄帯を作成してもよい
(メルトエトラクシカン法)、この場合、回転ロール6
の回転速度を1〜+5 ra/秒にすれば、帯状溶湯の
表面側と裏面側との間に 1〜15m/秒の速度差を生
じネせることができる。Furthermore, as shown in FIG. 3, an alloy ribbon may be created by bringing a rotating roll 6 into contact with the surface of the molten metal in the molten metal bath 5 (melt etlaxican method). In this case, the rotating roll 6
By setting the rotational speed to 1 to +5 ra/sec, a speed difference of 1 to 15 m/sec can be generated between the front side and the back side of the molten metal strip.
なお、第1〜3図に示す急冷法以外であっても、帯状溶
湯の表面側と裏面との間に1〜15 m7秒の速度差を
生じさせる装置であれば、本発明に適用できる。Note that even a rapid cooling method other than the quenching method shown in FIGS. 1 to 3 can be applied to the present invention as long as it is an apparatus that generates a speed difference of 1 to 15 m7 seconds between the front side and the back side of the strip-shaped molten metal.
以りの説明では、合金溶湯を急冷することにより永久磁
石合金薄帯を作成したが、さらに熱間加工することによ
り異方性をさらに向りできる0例えば、合金薄帯を50
0℃以上の温度で熱間加工することにより、異方性を向
」−させて、磁気的に硬化することかできる。In the following explanation, a permanent magnet alloy ribbon was created by rapidly cooling the molten alloy, but the anisotropy can be further improved by further hot working.
By hot working at a temperature of 0° C. or higher, the anisotropy can be improved and magnetically hardened.
「発明の効果」
本発lJ1では、合金溶湯を急冷する場合、溶湯が回転
ロールと接する部分で、帯状の溶湯の表面側と裏面側と
で1〜15鵬/秒の速度差を生じさせることにより帯状
の溶湯の表面と平行に剪断力を生じさせることができる
ので、永久磁石合金薄帯の異方性配向度を向」二するこ
とができ6磁気特性の優れたものとなる。また異方性配
向度の向上した本発明の永久磁石合金薄帯を粉砕して、
ポンド磁石を作成する場合、磁気特性の優れたものを得
ることができる。"Effects of the Invention" In the present IJ1, when rapidly cooling the molten alloy, a speed difference of 1 to 15 h/sec is created between the front side and the back side of the strip-shaped molten metal at the part where the molten metal contacts the rotating roll. Since it is possible to generate a shearing force parallel to the surface of the strip-shaped molten metal, the degree of anisotropic orientation of the permanent magnet alloy ribbon can be directed, resulting in excellent magnetic properties. In addition, the permanent magnet alloy ribbon of the present invention with an improved degree of anisotropic orientation is crushed,
When making a pound magnet, one with excellent magnetic properties can be obtained.
第1図は合金溶湯を冷却する単ロール冷却装置の概略図
、第2図は双ロール冷却装置の概略図、第3図はメルト
エトラクシカン法による冷却方法を示す概略図である。
l;ノズル 2.3.4 、8; ロール5
;溶湯槽FIG. 1 is a schematic diagram of a single-roll cooling device for cooling a molten alloy, FIG. 2 is a schematic diagram of a twin-roll cooling device, and FIG. 3 is a schematic diagram showing a cooling method using the melt etlaxican method. l; Nozzle 2.3.4, 8; Roll 5
; Molten metal tank
Claims (2)
、yは原子%) ここでR:Nd、Pr、Ce、Dy、Tbの1種以上で
あって(Nd+Pr)/R≧0.7 M:Ti、Zr、Hf、Ta、Mo、W、Al、Si、
Ga、Zn、Cuの少なくとも1種、 u:11〜18at% v:(100−u−w−x−y)at% w:0〜30at% x:3〜11at% y:0〜3at% で表わされる組成の永久磁石合金薄帯であり、その永久
磁石合金薄帯の厚さが80〜1000μmであって、薄
帯の厚さ方向の異方性配向度が70%以上であることを
特徴とする永久磁石合金薄帯。(1) R_uFe_vCo_wB_xM_y (u, v, w, x
, y is atomic%) where R: one or more of Nd, Pr, Ce, Dy, Tb, (Nd+Pr)/R≧0.7 M: Ti, Zr, Hf, Ta, Mo, W, Al ,Si,
At least one of Ga, Zn, and Cu, u: 11 to 18 at% v: (100-u-w-x-y) at% w: 0 to 30 at% x: 3 to 11 at% y: 0 to 3 at% A permanent magnet alloy ribbon having the composition shown below, characterized in that the thickness of the permanent magnet alloy ribbon is 80 to 1000 μm, and the degree of anisotropic orientation in the thickness direction of the ribbon is 70% or more. Permanent magnetic alloy ribbon.
w、x、yは原子%) ここでR:Nd、Pr、Ce、Dy、Tbの1種以上で
あって(Nd+Pr)/R≧0.7 M:Ti、Zr、Hf、Ta、Mo、W、Al、Si、
Ga、Zn、Cuの少なくとも1種、 u:11〜18at% v:(100−u−w−x−y)at% w:0〜30at% x:3〜11at% y:0〜3at% で表わされる組成の合金溶湯を1200℃〜1450℃
とし、この溶湯を回転ロールで急冷して合金薄帯を作成
する際に、回転ロールに接する部分で帯状の溶湯の表面
側と裏面側との間に1〜15m/秒の速度差が生じるよ
うにしたことを特徴とする永久磁石合金薄帯の製造方法
。(2) R_uFe_vCo_wB_xM_y(u, v,
w, x, y are atomic %) where R: one or more of Nd, Pr, Ce, Dy, Tb, (Nd+Pr)/R≧0.7 M: Ti, Zr, Hf, Ta, Mo, W, Al, Si,
At least one of Ga, Zn, and Cu, u: 11 to 18 at% v: (100-u-w-x-y) at% w: 0 to 30 at% x: 3 to 11 at% y: 0 to 3 at% A molten alloy having the composition shown is heated to a temperature of 1200°C to 1450°C.
Then, when this molten metal is rapidly cooled with a rotating roll to create an alloy ribbon, a speed difference of 1 to 15 m/sec is created between the front side and the back side of the strip-shaped molten metal at the part in contact with the rotating roll. A method for producing a permanent magnetic alloy ribbon, characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63231462A JPH0280538A (en) | 1988-09-17 | 1988-09-17 | Permanent magnetic alloy thin band and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63231462A JPH0280538A (en) | 1988-09-17 | 1988-09-17 | Permanent magnetic alloy thin band and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0280538A true JPH0280538A (en) | 1990-03-20 |
Family
ID=16923888
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63231462A Pending JPH0280538A (en) | 1988-09-17 | 1988-09-17 | Permanent magnetic alloy thin band and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0280538A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0529148A2 (en) * | 1991-08-29 | 1993-03-03 | TDK Corporation | Permanent magnet material and method for making |
JP2012023208A (en) * | 2010-07-14 | 2012-02-02 | Toyota Motor Corp | Method of producing magnet material |
-
1988
- 1988-09-17 JP JP63231462A patent/JPH0280538A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0529148A2 (en) * | 1991-08-29 | 1993-03-03 | TDK Corporation | Permanent magnet material and method for making |
JP2012023208A (en) * | 2010-07-14 | 2012-02-02 | Toyota Motor Corp | Method of producing magnet material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2250524C2 (en) | Nanocomposite magnets of iron base alloy incorporating rare-earth element | |
JPH09170055A (en) | Alloy for rare earth magnet, its production and production of permanent magnet | |
JP4879503B2 (en) | Alloy block for RTB-based sintered magnet, manufacturing method thereof and magnet | |
JP2014223652A (en) | Production method of rare earth-iron-based alloy material, rare earth-iron-based alloy material, production method of rare earth-iron-nitrogen-based alloy material, rare earth-iron-nitrogen-based alloy material and rare earth magnet | |
JP3801456B2 (en) | Iron-based rare earth permanent magnet alloy and method for producing the same | |
JPH10317110A (en) | Raw material alloy for rare earth magnet and its production | |
JP3264664B1 (en) | Permanent magnet having a plurality of ferromagnetic phases and manufacturing method thereof | |
JPH0280538A (en) | Permanent magnetic alloy thin band and its manufacture | |
JP4715245B2 (en) | Iron-based rare earth nanocomposite magnet and method for producing the same | |
JP3721831B2 (en) | Rare earth magnet alloy and method for producing the same | |
JP2007201102A (en) | Iron group rare-earth permanent magnet and manufacturing method therefor | |
JPH03149804A (en) | Fibrous anisotropic permanent magnet and manufacture thereof | |
JP4644986B2 (en) | Anisotropic iron-based permanent magnet and method for producing the same | |
JP2003334643A (en) | Method for manufacturing rare earth alloy, alloy lump for r-t-b magnet, r-t-b magnet, r-t-b bonded magnet, alloy lump for r-t-b exchangeable spring magnet, r-t-b exchangeable spring magnet and r-t-b exchangeable spring bonded magnet | |
CN1021607C (en) | Producing method and apparatus of anisotropic micro rare earth permanent magnetic material | |
JP4529198B2 (en) | Iron-based permanent magnet containing a small amount of rare earth metal and method for producing the same | |
JPH01261803A (en) | Manufacture of rare-earth permanent magnet | |
JP3763774B2 (en) | Quenched alloy for iron-based rare earth alloy magnet and method for producing iron-based rare earth alloy magnet | |
JP2003158005A (en) | Nanocomposite magnet and its manufacturing method | |
JPH02101710A (en) | Permanent magnet and manufacture thereof | |
JP2561704B2 (en) | Method for manufacturing rare earth-Fe-B magnet | |
JPH05295489A (en) | Alloy for bond magnet and its manufacture | |
JP3536943B2 (en) | Alloy for rare earth magnet and method for producing the same | |
JP3380575B2 (en) | RB-Fe cast magnet | |
JP2002343660A (en) | Permanent magnet having a plurality of ferromagnetic phases and manufacturing method therefor |