JP2561704B2 - Method for manufacturing rare earth-Fe-B magnet - Google Patents

Method for manufacturing rare earth-Fe-B magnet

Info

Publication number
JP2561704B2
JP2561704B2 JP63152919A JP15291988A JP2561704B2 JP 2561704 B2 JP2561704 B2 JP 2561704B2 JP 63152919 A JP63152919 A JP 63152919A JP 15291988 A JP15291988 A JP 15291988A JP 2561704 B2 JP2561704 B2 JP 2561704B2
Authority
JP
Japan
Prior art keywords
rare earth
magnet
casting
mold
columnar crystals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63152919A
Other languages
Japanese (ja)
Other versions
JPH023903A (en
Inventor
伸泰 河合
富春 松下
洋一 高橋
継秋 大木
睦啓 宮川
司 由利
達也 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Kobe Steel Ltd
Original Assignee
Seiko Epson Corp
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Kobe Steel Ltd filed Critical Seiko Epson Corp
Priority to JP63152919A priority Critical patent/JP2561704B2/en
Publication of JPH023903A publication Critical patent/JPH023903A/en
Application granted granted Critical
Publication of JP2561704B2 publication Critical patent/JP2561704B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、希土類−Fe−B系磁石の製造方法に関し、
更に詳しくは、高い磁気的性能を得られる希土類−Fe−
B系磁石の製造方法に関する。
The present invention relates to a method for producing a rare earth-Fe-B magnet,
More specifically, rare earth-Fe- that can obtain high magnetic performance
The present invention relates to a method for manufacturing a B-based magnet.

〔発明の課題〕[Problems of the Invention]

最近の電気製品の小型化、高効率化の要求に伴い、そ
の材料として高い磁気的性能を持つ希土類元素と鉄とボ
ロンとを基本成分とする合金を用いて磁石を作ることが
望まれている。即ち、希土類−Fe−B系磁石である。
With the recent demand for miniaturization and high efficiency of electric products, it is desired to make a magnet using a rare earth element having a high magnetic performance, and an alloy containing iron and boron as basic components as its materials. . That is, it is a rare earth-Fe-B magnet.

希土類−Fe−B系磁石を製造する技術としては、いわ
ゆる焼結法と液体急冷法とが知られているが、これらの
方法よりも生産性に優れた方法として、例えば特開昭62
−203302号公報に開示の如き鋳造法が提案されている。
The so-called sintering method and the liquid quenching method are known as the technology for producing a rare earth-Fe-B magnet, and as a method having higher productivity than these methods, for example, JP-A-62-62
A casting method as disclosed in Japanese Patent Laid-Open No. 203302 has been proposed.

この鋳造法は、いわゆる焼結法や液体急冷法とは異な
り、希土類元素と鉄とボロンとを基本成分とする合金の
溶湯を鋳型に流し込み、一方向に柱状晶を成長させる、
いわゆる一方向凝固法により磁石を鋳造するようにした
ものである。
This casting method is different from the so-called sintering method and liquid quenching method, in which a molten metal of an alloy containing a rare earth element, iron and boron as basic components is poured into a mold to grow columnar crystals in one direction.
The magnet is cast by a so-called unidirectional solidification method.

そして所望の形状に成形すること及び結晶軸の配向性
を向上するために、鋳塊に熱間加工を施すことが提案さ
れている。
It has been proposed to subject the ingot to hot working in order to form it into a desired shape and to improve the orientation of crystal axes.

一般に熱間加工後に高い磁気的性能の鋳造磁石を得る
ためには、鋳造時に柱状晶を一方向に配向させ、且つ結
晶粒を微細化する必要がある。しかし、従来の一方向凝
固法は、一方向に鋳塊を冷却して柱状晶に異方性を持た
せることにより柱状晶の微細化を図っているが、上記冷
却方向に交差する方向の熱移動管理については配慮され
ておらず、柱状晶の異方性が不完全となり、熱間加工後
の磁気的特性についても満足すべきものが得られていな
かった。
Generally, in order to obtain a cast magnet having a high magnetic performance after hot working, it is necessary to orient the columnar crystals in one direction and make the crystal grains fine during casting. However, in the conventional unidirectional solidification method, although the ingot is cooled in one direction to make the columnar crystals anisotropic, the columnar crystals are made finer. No consideration was given to transfer control, the anisotropy of columnar crystals became incomplete, and satisfactory magnetic properties after hot working could not be obtained.

従って、本発明の目的とるすところは、鋳造時に鋳塊
の柱状晶の異方性を向上させ、これにより更に結晶粒を
微細化することによって、熱間加工後に高い磁気的性能
とりわけ高保磁力の鋳造磁石が得られる希土類−Fe−B
系磁石の製造方法を提供することにある。
Therefore, the object of the present invention is to improve the anisotropy of the columnar crystals of the ingot during casting, thereby further refining the crystal grains, so that high magnetic performance after hot working, especially high coercive force Rare earth-Fe-B from which cast magnets can be obtained
It is to provide a method for manufacturing a system magnet.

〔発明の構成〕[Structure of Invention]

本発明の希土類−Fe−B系磁石の製造方法は、希土類
元素と鉄とボロンとを基本成分とする合金を鋳造し熱間
加工する工程を含む希土類−Fe−B系磁石の製造方法に
おいて、上記鋳造時に、鋳型の90゜異なる方向の熱移動
量に差を付けるようにしたことを特徴とするものであ
る。
The method for producing a rare earth-Fe-B magnet according to the present invention is a method for producing a rare earth-Fe-B magnet, which includes a step of casting an alloy containing a rare earth element, iron and boron as basic components and hot working, It is characterized in that the amounts of heat transfer in the molds differ by 90 ° during the casting.

上記構成において、希土類元素としては、Y,La,Ce,P
r,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Luが挙げられ、これ
らのうちの1種あるいは2種以上を組み合わせて用い
る。最も高い磁気的性能はPrで得られるから、実用的に
はPr,PrとNdの組み合わせ、CeとPrとNdの組み合わせ等
を用いるのが好ましい。
In the above configuration, as the rare earth element, Y, La, Ce, P
r, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu are mentioned, and these 1 type, or 2 or more types are used in combination. Since the highest magnetic performance is obtained with Pr, it is preferable to practically use Pr, a combination of Pr and Nd, a combination of Ce, Pr and Nd, or the like.

希土類元素の比率は、8〜25原子%が適当である。希
土類元素と鉄とボロンを基本成分とする永久磁石の主相
はR2Fe14B(Rは希土類元素)であるが、希土類元素が
8原子%未満では上記化合物を形成せずα−鉄と同一構
造の立方晶組織となるため良好な磁気的性能を得るため
には、25原子%以下とすることが適当であるからであ
る。
The ratio of the rare earth element is appropriately 8 to 25 atom%. The main phase of a permanent magnet containing a rare earth element, iron, and boron as its basic components is R 2 Fe 14 B (R is a rare earth element), but if the rare earth element is less than 8 atomic%, the above compound is not formed and α-iron is formed. This is because the cubic crystal structure has the same structure, so that in order to obtain good magnetic performance, it is appropriate that the content be 25 atomic% or less.

ボロンの比率は、2〜8原子%が適当である。2原子
%未満では菱面体のR−Fe系になるため高保磁力を得ら
れず、他方、鋳造法によっても良好な磁気的性能を得る
ためには、8原子%以下とすることが適当であるからで
ある。
A suitable boron content is 2 to 8 atomic%. If it is less than 2 atomic%, a rhombohedral R-Fe system cannot be obtained and a high coercive force cannot be obtained. On the other hand, in order to obtain good magnetic performance even by the casting method, it is suitable to be 8 atomic% or less. Because.

また少量の添加元素、例えば、Co,Al,Mo,Si等や重希
土元素のDy,Tb等は、保磁力の向上に有効である。
Further, a small amount of additional elements, such as Co, Al, Mo, Si, etc., and heavy rare earth elements, such as Dy, Tb, etc., are effective in improving the coercive force.

Coはキュリー点を高めるのに有効である。永久磁石と
して考えられる1KOe以上の保磁力を得るには50原子%以
内がよい。Coは基本的にFeのサイトを置換しR2Co14Bを
形成するのであるが、この化合物は結晶異方性磁界が小
さく、その量が増すにつれて磁石全体としての保磁力が
小さくなってしまうからである。
Co is effective in increasing the Curie point. In order to obtain a coercive force of 1 KOe or more, which is considered as a permanent magnet, it is preferable to use 50 atom% or less. Co basically replaces the Fe site to form R 2 Co 14 B, but this compound has a small crystal anisotropy magnetic field, and as the amount increases, the coercive force of the magnet as a whole decreases. Because.

Alは、保磁力の増大効果を有する。Alの添加量は15原
子%以下が良い。Alは非磁性元素であるため、その添加
量を増すと残留磁束密度が低下し、15原子%を越えると
ハードフェライト以下の残留磁束密度になってしまうか
らである。
Al has an effect of increasing the coercive force. The addition amount of Al is preferably 15 atomic% or less. Since Al is a non-magnetic element, the residual magnetic flux density decreases as the amount of Al added increases, and the residual magnetic flux density becomes less than that of hard ferrite when it exceeds 15 atom%.

そして、鋳造時に鋳型の90゜異なる方向の熱移動量に
差を付けるとは、柱状晶の配向させたい面側の冷却速度
に比して、これに直角の面側の冷却速度を遅くすること
である。例えば上記柱状晶の配向方向に直角方向の片面
側を断熱又は加熱することがその一例として考えられ
る。
And, to make the amount of heat transfer in the mold different by 90 ° during casting means to make the cooling rate on the side perpendicular to this side slower than the cooling rate on the side where the columnar crystals are to be oriented. Is. For example, heat insulation or heating of one side of the columnar crystals at right angles to the alignment direction may be considered as an example.

柱状晶の配向させたい面側の冷却速度は、板幅中央で
1300℃から1000℃において10℃/sec以上にする必要があ
り、結晶粒の微細化のためにはさらに50℃/sec以上とす
るのが望ましい。
The cooling rate on the side of the columnar crystal to be oriented is at the center of the plate width.
It is necessary to set the temperature to 10 ° C / sec or more from 1300 ° C to 1000 ° C, and it is more preferable to set it to 50 ° C / sec or more in order to refine the crystal grains.

次に熱間加工としては、500℃以上,好ましくは650℃
〜1000℃以上、又は一度室温付近まで冷却した後、再加
熱して500℃以上で加工し、柱状晶の発達した方向に対
して垂直に加工することが高い磁気的性能を得る上で重
要である。
Next, as hot working, 500 ℃ or more, preferably 650 ℃
It is important to obtain high magnetic performance by cooling to ~ 1000 ° C or more, or once cooling to around room temperature, then reheating and processing at 500 ° C or more, and processing perpendicular to the direction in which columnar crystals develop. is there.

〔作用〕[Action]

本発明の希土類−Fe−B系磁石の製造方法では、希土
類元素と鉄とボロンとを基本成分とする合金の溶湯を鋳
型に流し込む。この際に、鋳型の90゜異なる方向の熱移
動量に差を付けて鋳塊の柱状晶の配向させたい面側に柱
状晶を発達させ、90゜異なる片面側の柱状晶の発達を抑
制し、もって結晶軸の配向性及び結晶粒の微細化を促進
させ、磁気的性能を向上させるものである。
In the method of manufacturing a rare earth-Fe-B magnet according to the present invention, a molten metal of an alloy containing a rare earth element, iron and boron as basic components is poured into a mold. At this time, by making a difference in the heat transfer amount of the mold in 90 ° different directions, the columnar crystals are developed on the side of the ingot where the columnar crystals are to be oriented, and the growth of columnar crystals on the one side differing by 90 ° is suppressed. Therefore, the orientation of crystal axes and the refinement of crystal grains are promoted to improve the magnetic performance.

〔実施例〕〔Example〕

以下、図面を参照しつつ、本発明の実施例について説
明する。ここに第1図は、本発明の一実施例の工程図,
第2図(a)は同実施例装置の概略断面図,第2図
(b)は第2図(a)におけるE−E矢視断面図であ
る。なお、これにより本発明が限定されるものではな
い。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a process chart of one embodiment of the present invention,
2 (a) is a schematic sectional view of the apparatus of the embodiment, and FIG. 2 (b) is a sectional view taken along the line EE in FIG. 2 (a). The present invention is not limited to this.

第1図におけるS1,S2,…は工程の番号を示す。 S1, S2, ... In FIG. 1 indicate process numbers.

第1表に示すNo.1,No.2の2種類の組成の合金を誘導
炉で溶解し(第1図S1)、第2図に示すように溶湯2を
90゜異なる方向の熱移動量に差を付けるようにした鋳型
10を用いて、連続鋳造する(第1図S2)。そして、950
℃で加工率が50%になるように、第2図(b)に示す柱
状晶発達方向Aと未発達方向Bとで、ロール12により熱
間圧延する(第1図S3,第2図(a))。
Two alloys of No. 1 and No. 2 shown in Table 1 were melted in an induction furnace (S1 in Fig. 1), and melt 2 was melted as shown in Fig. 2.
Mold designed to have different amounts of heat transfer in 90 ° different directions
10 is used for continuous casting (Fig. 1, S2). And 950
Hot rolling is performed by the roll 12 in the columnar crystal developing direction A and the undeveloped direction B shown in FIG. a)).

上記鋳型10は、第2図(b)に示すように、内側が20
mm×40mmで、その外側を冷却水14が循環している銅鋳型
である。その内側に10mm×20mmのアルミナボード11を対
面させて挿入して断熱し、20mm×20mmの連続鋳塊15を得
る。
As shown in FIG. 2 (b), the mold 10 has an inside 20
It is a copper mold having a size of mm × 40 mm, and the cooling water 14 circulates on the outside thereof. An alumina board 11 of 10 mm × 20 mm is faced and inserted into the inside to insulate the heat, and a continuous ingot 15 of 20 mm × 20 mm is obtained.

これをアニーリングし(第1図S4)、さらに切断、研
削(第1図S5)して製品としての磁石を得る。
This is annealed (S4 in FIG. 1) and further cut and ground (S5 in FIG. 1) to obtain a magnet as a product.

このようにして得られた磁石16の磁気的性能を測定し
たところ第2表に示す結果が得られた。
When the magnetic performance of the magnet 16 thus obtained was measured, the results shown in Table 2 were obtained.

上記のように連続鋳造を用いることで、高性能な鋳造
磁石の量産化が可能となる。また本発明は、上記連続鋳
造法はもとより、鋳塊をインゴット状に作成して冷却、
熱間加工するバッチ式製造方法にも当然適用可能であ
る。
By using continuous casting as described above, mass production of high-performance cast magnets becomes possible. Further, the present invention, in addition to the continuous casting method, cooling the ingot by creating an ingot.
It is naturally applicable to a batch-type manufacturing method of hot working.

〔発明の効果〕〔The invention's effect〕

本発明によれば、希土類元素と鉄とボロンとを基本成
分とする合金を鋳造し熱間加工する工程を含む希土類−
Fe−B系磁石の製造方法において、上記鋳造時に、鋳型
の90゜異なる方向の熱移動量に差を付けるようにしたこ
とを特徴とする希土類−Fe−B系磁石の製造方法が提供
され、これにより柱状晶の配向を均一化さすことがで
き、更に結晶粒が微細な塊が得られる。そして、この鋳
塊を熱間加工することにより、高い磁気的性能とりわけ
高保磁力の鋳造磁石を得ることができる。
According to the present invention, a rare earth element including a step of casting and hot working an alloy containing a rare earth element, iron and boron as basic components-
In the method for producing an Fe-B magnet, there is provided a method for producing a rare earth-Fe-B magnet, characterized in that the amount of heat transfer in different directions of 90 ° in the mold is made different during the casting. Thereby, the orientation of the columnar crystals can be made uniform, and a lump with fine crystal grains can be obtained. By hot working this ingot, a cast magnet having high magnetic performance, especially high coercive force, can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の一実施例の工程図、第2図(a)は
同実施例装置の概略断面図、第2図(b)は第2図
(a)におけるE−E矢視断面図である。 〔符号の説明〕 1……希土類−Fe−B系磁石の製造方法 2……溶湯 10……鋳型 11……アルミナボード 12……ロール 14……冷却水。
FIG. 1 is a process drawing of an embodiment of the present invention, FIG. 2 (a) is a schematic sectional view of the apparatus of the same embodiment, and FIG. 2 (b) is a view taken along the line EE in FIG. 2 (a). FIG. [Explanation of reference symbols] 1 ... Manufacturing method of rare earth-Fe-B magnet 2 ... Molten metal 10 ... Mold 11 ... Alumina board 12 ... Roll 14 ... Cooling water.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大木 継秋 兵庫県神戸市西区狩場台1―7―7 (72)発明者 宮川 睦啓 兵庫県加古川市平岡町二俣1010番地 (72)発明者 由利 司 兵庫県神戸市灘区篠原伯母野山町2―31 (72)発明者 下田 達也 長野県諏訪郡富士見町落合10017―16 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tsutsuaki Oki 1-7-7 Karibadai, Nishi-ku, Kobe-shi, Hyogo (72) Inventor Mutsue Miyakawa 1010 Futamata, Hiraoka-cho, Kakogawa-shi, Hyogo (72) Inventor Yuri Tsuji Shimoda 2-31-31 Shinohara, Nada-ku, Kobe-shi, Hyogo (72) Inventor Tatsuya Shimoda 10017-16 Ochiai, Fujimi-cho, Suwa-gun, Nagano Prefecture

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】希土類元素と鉄とボロンとを基本成分とす
る合金を鋳造し熱間加工する工程を含む希土類−Fe−B
系磁石の製造方法において、 上記鋳造時に、鋳型の90゜異なる方向の熱移動量に差を
付けるようにしたことを特徴とする希土類−Fe−B系磁
石の製造方法。
1. A rare earth-Fe-B including a step of casting and hot working an alloy containing a rare earth element, iron and boron as basic components.
A method for manufacturing a rare earth-Fe-B magnet, wherein the amount of heat transfer in the mold in different directions by 90 ° is made different during the casting.
【請求項2】上記鋳型の異なる方向の片面側が、断熱又
は加熱されてなる請求項1記載の希土類−Fe−B系磁石
の製造方法。
2. The method for producing a rare earth-Fe-B magnet according to claim 1, wherein one surface side of the mold in different directions is heat-insulated or heated.
JP63152919A 1988-06-20 1988-06-20 Method for manufacturing rare earth-Fe-B magnet Expired - Lifetime JP2561704B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63152919A JP2561704B2 (en) 1988-06-20 1988-06-20 Method for manufacturing rare earth-Fe-B magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63152919A JP2561704B2 (en) 1988-06-20 1988-06-20 Method for manufacturing rare earth-Fe-B magnet

Publications (2)

Publication Number Publication Date
JPH023903A JPH023903A (en) 1990-01-09
JP2561704B2 true JP2561704B2 (en) 1996-12-11

Family

ID=15551018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63152919A Expired - Lifetime JP2561704B2 (en) 1988-06-20 1988-06-20 Method for manufacturing rare earth-Fe-B magnet

Country Status (1)

Country Link
JP (1) JP2561704B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2597659A2 (en) 2004-07-01 2013-05-29 Intermetallics Co., Ltd. Method and system for manufacturing sintered rare-earth magnet having magnetic anisotropy

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5279872A (en) * 1992-03-23 1994-01-18 Viskase Corporation Multilayer stretch/shrink film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2597659A2 (en) 2004-07-01 2013-05-29 Intermetallics Co., Ltd. Method and system for manufacturing sintered rare-earth magnet having magnetic anisotropy
EP2597660A2 (en) 2004-07-01 2013-05-29 Intermetallics Co., Ltd. Method and system for manufacturing sintered rare-earth magnet having magnetic anisotropy

Also Published As

Publication number Publication date
JPH023903A (en) 1990-01-09

Similar Documents

Publication Publication Date Title
CN105355354B (en) A kind of samarium iron nitrogen base anisotropy rare earth permanent magnet powder and preparation method thereof
US4921551A (en) Permanent magnet manufacture from very low coercivity crystalline rare earth-transition metal-boron alloy
JP4376453B2 (en) Iron-rare earth-boron / refractory metal magnetic composite
JP2561704B2 (en) Method for manufacturing rare earth-Fe-B magnet
JPS56112449A (en) Treatment of amorphous magnetic alloy material
JP2794755B2 (en) Manufacturing method of rare earth element-transition element-B magnet
JP2561706B2 (en) Method for manufacturing rare earth-Fe-B magnet
JPH01261803A (en) Manufacture of rare-earth permanent magnet
JP2794754B2 (en) Manufacturing method of rare earth element-transition element-B magnet
JPH0274010A (en) Permanent magnet magnetic circuit
JP2561705B2 (en) Method for manufacturing rare earth-Fe-B magnet
JPH02101710A (en) Permanent magnet and manufacture thereof
JPH0488603A (en) Method for horizontally casting magnetic alloy
JPS63286511A (en) Manufacture of permanent magnet
JPH0533076A (en) Rare earth permanent magnet alloy and its production
Wecker Method for the Manufacture of an Anisotropic Magnet Material on the Basis of Iron, Boron and a Rare-Earth Metal
JPH08250312A (en) Rare earth-fe permanent magnet and manufacture thereof
JPH027853A (en) Manufacture of rotor for permanent magnet rotary machine
JPH0280538A (en) Permanent magnetic alloy thin band and its manufacture
JPS63287005A (en) Permanent magnet and manufacture thereof
JPH01171206A (en) Manufacture of rare earth-fe-b magnet
JPH0684627A (en) R-b-fe based cast magnet
JPH03287724A (en) Production of rare earth element-iron-boron magnet
JPH05320832A (en) Alloy cast ingot for rare earth metal-iron permanent magnet and its production and permanent magnet
JPH01171205A (en) Manufacture of rare earth-fe-b magnet

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 12