JPS60261944A - Air-fuel ratio controller for internal-combustion engine - Google Patents

Air-fuel ratio controller for internal-combustion engine

Info

Publication number
JPS60261944A
JPS60261944A JP11816084A JP11816084A JPS60261944A JP S60261944 A JPS60261944 A JP S60261944A JP 11816084 A JP11816084 A JP 11816084A JP 11816084 A JP11816084 A JP 11816084A JP S60261944 A JPS60261944 A JP S60261944A
Authority
JP
Japan
Prior art keywords
engine
air
fuel
intake air
fuel ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11816084A
Other languages
Japanese (ja)
Other versions
JPH0684733B2 (en
Inventor
Hatsuo Nagaishi
初雄 永石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP59118160A priority Critical patent/JPH0684733B2/en
Publication of JPS60261944A publication Critical patent/JPS60261944A/en
Publication of JPH0684733B2 publication Critical patent/JPH0684733B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1486Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor with correction for particular operating conditions
    • F02D41/1487Correcting the instantaneous control value

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To improve the acceleration response by correcting the fuel supply with correspondence to the variation of the intake air-flow condition during rotation of engine by predetermined angle. CONSTITUTION:Intake air conditions such as the intake air pressure or intake air flow in an intake air path are detected. The variation of intake air condition during rotation of engine by predetermined angle is detected to correct fuel supply accordingly. Since the variation of intake air can be detected with timing synchronous with the engine rotation, it is never influenced by the variation within cycle resulting in accurate air-fuel ratio control.

Description

【発明の詳細な説明】 (産業上の利用分野〉 本発明壁機関運転状態に基づき機関に供給される燃料量
を決定し、所定空燃比の混合、気が得られるようにする
制御装置の改良に関し、特に加減速等の過渡運転時にお
ける空燃比制御の改良に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention improves a control device that determines the amount of fuel to be supplied to an engine based on the operating state of the engine and achieves a predetermined air-fuel mixture and air flow. In particular, the present invention relates to improvements in air-fuel ratio control during transient operations such as acceleration and deceleration.

〈従来の技術) 内燃機関に所定空燃比の混合気を供給するための装置と
しては、たとえば特開昭58−144632号公報に示
されるようなものがある。これは機関に燃料を供給する
ための燃料噴射弁を吸気通路に設け、該燃料噴射弁を機
関運転状態に応じて定められた時間開弁作動させて所定
空燃比の混合気を機関に供給しようとするものである。
(Prior Art) An example of a device for supplying an air-fuel mixture of a predetermined air-fuel ratio to an internal combustion engine is the one disclosed in Japanese Patent Application Laid-open No. 144632/1983. This is done by installing a fuel injection valve in the intake passage to supply fuel to the engine, and opening the fuel injection valve for a predetermined time depending on the engine operating condition to supply a mixture with a predetermined air-fuel ratio to the engine. That is.

ここにおいて、燃料噴射弁の開弁時間つまり機関に供給
される燃料量は、機関回転速度と吸入空気流量に対応す
る吸気絞り弁下流の吸気通路内の吸入空気圧力とから決
定される。そして、このようにして決定された基本開弁
時間に排気中の酸素濃度に基づく空燃比フィードバック
補正、機関冷却水温に基づ(水温補正、加速時の加速補
正、バッテリ電圧補正等が加えられ最終的な開弁時間が
決定される。
Here, the opening time of the fuel injection valve, that is, the amount of fuel supplied to the engine, is determined from the engine rotational speed and the intake air pressure in the intake passage downstream of the intake throttle valve, which corresponds to the intake air flow rate. Then, to the basic valve opening time determined in this way, air-fuel ratio feedback correction based on the oxygen concentration in the exhaust gas, engine cooling water temperature (water temperature correction, acceleration correction during acceleration, battery voltage correction, etc.) are added to the final valve opening time. The typical valve opening time is determined.

加速補正は前記吸入空気圧力の所定時間内の変化量を検
出し、その変化量に応じて予め定められている補正値増
分を積分した値に基づく補正およびこの補正による応答
性不足を補うための加速直後の補正、すなわち吸気絞り
弁全閉状態解除と対応するアイドルスイッチのオフ検出
時の増量補正、吸気絞り弁開度の変化速度に応じた増量
補正などを行う。
The acceleration correction is performed by detecting the amount of change in the intake air pressure within a predetermined period of time, making correction based on a value obtained by integrating a predetermined correction value increment according to the amount of change, and compensating for the lack of responsiveness due to this correction. Correction immediately after acceleration, that is, increase correction when the idle switch is detected to be off corresponding to cancellation of the intake throttle valve fully closed state, increase correction according to the rate of change of the intake throttle valve opening, etc.

〈発明が解決しようとする問題点) ところが、このような空燃比制御では上述の応答性向上
のための増量補正による燃料は吸気通路内周壁に付着す
ることによりそのすべてが混合気の生成に寄与するもの
ではなく、また、付着状況・も機関運転状態に依存して
一定でない。このためこのような補正は迅速ではあるが
精度はあまり良いものではなく、たとえば第7図(A)
に示すように加速直後の空燃比は加速条件により斜線で
示した領域のなかをバラツクこととなり、空燃比の誤差
を生じ、Co、No、HC等のエミッションの瞬間的な
排出増加および発生トルクの変動によ智 る運転性不良
等の問題が生じる。
(Problems to be Solved by the Invention) However, in this type of air-fuel ratio control, the fuel due to the above-mentioned increase correction for improving responsiveness adheres to the inner circumferential wall of the intake passage, and all of it contributes to the generation of air-fuel mixture. Moreover, the adhesion condition is not constant depending on the engine operating condition. Therefore, although this kind of correction is quick, the accuracy is not very good. For example, as shown in Fig. 7 (A).
As shown in the figure, the air-fuel ratio immediately after acceleration varies within the shaded area depending on the acceleration conditions, causing errors in the air-fuel ratio, resulting in an instantaneous increase in emissions such as Co, No, and HC, and a decrease in the generated torque. Problems such as poor drivability arise due to fluctuations.

なおこれらの加速直後の補正を行わない場合の空燃比は
同じ第7図(A)の実線に示すように希薄側に大きく偏
り、上記不都合とともに気筒の失火による加速応答性の
悪化という不都合が顕著になる。
Note that if these corrections are not made immediately after acceleration, the air-fuel ratio will be largely biased toward the lean side, as shown by the solid line in Figure 7 (A), and in addition to the above-mentioned disadvantages, there will also be a noticeable disadvantage of deterioration of acceleration response due to cylinder misfires. become.

特に空燃比が薄い側に設定されたいわゆるり一ンセット
の内燃機関においては、空燃比の希薄側への許容幅が小
さく、機関に供給される混合気の空燃比が希薄側にずれ
た場合には失火し易く、逆に過濃側にずれた場合は急に
大きなトルクが発生してしまい空燃比誤差の影響を受け
易く安定な空燃比制御が望まれるものであった。
In particular, in so-called lean-set internal combustion engines where the air-fuel ratio is set to the lean side, the tolerance range for the air-fuel ratio to the lean side is small, and if the air-fuel ratio of the air-fuel mixture supplied to the engine deviates to the lean side. It is easy to misfire, and on the other hand, if the engine deviates to the rich side, a large torque is suddenly generated and is easily affected by air-fuel ratio errors, so stable air-fuel ratio control is desired.

このような不都合は吸入空気流量と機関回転速度に基づ
き機関に供給する燃料量を決定する空燃比制御装置にお
いても生じ、時間当たりの吸入空気状態の変化率による
加速補正は一般に高精度のものとはいえなかった。
Such inconveniences also occur in air-fuel ratio control devices that determine the amount of fuel supplied to the engine based on the intake air flow rate and engine rotational speed, and acceleration correction based on the rate of change in intake air conditions per hour is generally not highly accurate. I couldn't say yes.

本発明はこのような過渡運転時における空燃比の所定値
からの偏りという問題点を解消すべくなされたもので、
機関の加減速等の過渡運転時においても安定な空燃比制
御を行う制御装置を提供することを目的とする。
The present invention has been made to solve the problem of deviation of the air-fuel ratio from a predetermined value during such transient operation.
It is an object of the present invention to provide a control device that performs stable air-fuel ratio control even during transient operations such as acceleration and deceleration of an engine.

く問題点を解決するための手段〉 このために本発明では、第1図に示すように、機関回転
速度を検出する手段と、吸気通路内の吸入空気圧力また
は吸入空気流量などの吸入空気状態を検出する手段と、
該2つの検出手段の検出結果に基づき機関に供給する燃
料量を決定する手段とを備えた空燃比制御装置において
、機関回転角度を検出する手段と、機関が所定回転角度
回転する間の前記吸入空気状態の変化量を検出する手段
と、該手段の検出結果に基づき機関に供給される前記燃
料量を補正する手段とを設けた構成とする。
Means for Solving the Problems> To this end, the present invention, as shown in FIG. a means for detecting;
An air-fuel ratio control device comprising: means for determining the amount of fuel to be supplied to the engine based on the detection results of the two detecting means; and means for detecting the engine rotation angle; The engine is configured to include means for detecting the amount of change in the air condition, and means for correcting the amount of fuel supplied to the engine based on the detection result of the means.

く作用〉 これによれば、機関回転に同期したタイミングで吸気通
路内における吸入空気状態の変化が検出され、その結果
に基づき空燃比補正が行われるから、サイクル内の変動
を拾うことが防止され、正確な空燃比制御がなされるよ
うになる。
According to this, changes in the intake air condition in the intake passage are detected at a timing synchronized with the engine rotation, and air-fuel ratio correction is performed based on the results, thereby preventing fluctuations within the cycle from being picked up. , accurate air-fuel ratio control becomes possible.

〈実施例) 以下本発明を第2図に示す一実施例に基づき説明する。<Example) The present invention will be explained below based on an embodiment shown in FIG.

すなわち、図において吸気絞り弁1下流の吸気通路2に
燃料噴射弁3が設けられ、該燃料噴射弁3は燃料ポンプ
4から圧送される燃料を機関に噴射供給する。ここで、
燃料は燃料タンク5から汲み上げられ、燃料フィルタ6
でろ過され、プレッシャレギュレータ7で一定圧に調圧
されて燃料噴射弁3に導かれる。
That is, in the figure, a fuel injection valve 3 is provided in an intake passage 2 downstream of an intake throttle valve 1, and the fuel injection valve 3 injects and supplies fuel fed under pressure from a fuel pump 4 to the engine. here,
Fuel is pumped up from the fuel tank 5 and passed through the fuel filter 6.
The fuel is filtered, regulated to a constant pressure by a pressure regulator 7, and guided to the fuel injection valve 3.

燃料噴射弁3は、たとえばマイクロコンピュータにより
構成されたコントロールユニット8から発せられる信号
により制弁作動するようになっており、コントロールユ
ニット8は吸気絞り弁1下流に設けられた吸入空気状態
検出手段としての圧力センサ91機関回転速度検出手段
および機関回転角度検出手段としてのクランク角センサ
10および水温センサ11からの入力信号に基づき後述
する仕方で燃料噴射弁3の開弁作動時間を決定するよう
になっている。
The fuel injection valve 3 is controlled by a signal issued from a control unit 8 configured by a microcomputer, for example, and the control unit 8 acts as an intake air condition detection means provided downstream of the intake throttle valve 1. The valve opening operating time of the fuel injection valve 3 is determined in a manner described later based on input signals from the pressure sensor 91, the crank angle sensor 10, and the water temperature sensor 11, which serve as engine rotation speed detection means and engine rotation angle detection means. ing.

次に作用を第3図に示すラロ□−チャートを参照しなが
ら説明する。
Next, the operation will be explained with reference to the Lalo□-chart shown in FIG.

このルーチンは一定時間間隔毎(たとえば5mS毎)に
発せられる割込み信号により作動する割込みルーチンで
あり、まずSlにおいてこの割込みルーチン開始時点が
燃料噴射タイミングであるか否かを調べる。そして、こ
の時点が燃料噴射タイミングであれば、3.17へ進み
燃料噴射弁3を開弁作動させ、一方燃料噴射タイミング
でない場合はS2以降へ進み開弁作動時間を演算決定す
る。
This routine is an interrupt routine that is activated by an interrupt signal issued at regular time intervals (for example, every 5 mS), and first, it is checked in Sl whether or not the start time of this interrupt routine is the fuel injection timing. If this time is the fuel injection timing, the process proceeds to step 3.17 and the fuel injection valve 3 is opened, whereas if it is not the fuel injection timing, the process proceeds to S2 and subsequent steps to calculate and determine the valve opening operation time.

S2では吸気通路2に設けられた圧力センザ9の出力で
ある吸気通路内圧力MAPをA/D変換し、S3ではこ
の吸気通路圧力MAPを平滑化する。これは吸気通路内
圧力MAPの機関サイクルによる脈動を除去するための
ものであり、たとえば新データと前回のデータとを所定
の重みを付けて加重平均することによりなされる。
In S2, the intake passage pressure MAP, which is the output of the pressure sensor 9 provided in the intake passage 2, is A/D converted, and in S3, this intake passage pressure MAP is smoothed. This is done to eliminate pulsations in the intake passage pressure MAP caused by the engine cycle, and is done, for example, by weighted averaging of new data and previous data with predetermined weights attached.

S4では今回の検出圧力値MAPと前回の検出圧力値M
APOとの差すなわちS m s間の圧力変化をとり、
その値をKDMとして積算する。この−積算は噴射開始
からっぎの噴射開始まで続けられるから、・機関1回転
につき1回の噴射を行う場合には機関が1回転する間の
吸気通路内圧力の変化がKDMとして得られることにな
る。つまりこの過程が第1図に示した吸入空気状態変化
率検出手段に対応し、機関が所定回転角度回転する間の
吸入空気状態の変化量を検出するものである。つぎに3
5で今回の検出圧力値MAPをMAPOに記憶させる。
In S4, the current detected pressure value MAP and the previous detected pressure value M
Take the difference from APO, that is, the pressure change between S m s,
The value is integrated as KDM. This integration continues from the start of injection until the start of injection, so if one injection is performed per engine revolution, the change in intake passage pressure during one revolution of the engine can be obtained as KDM. Become. That is, this process corresponds to the intake air condition change rate detection means shown in FIG. 1, which detects the amount of change in the intake air condition while the engine rotates through a predetermined rotation angle. Next 3
In step 5, the current detected pressure value MAP is stored in MAPO.

S6ではS2で読み込まれた吸気通路内圧力MAPおよ
びクランク角センサ10の出力から決定される機関回転
速度Nに基づき基本噴射量TPが演算される。この過程
が第1図に示した供給燃料量決定手段に対応する。
In S6, the basic injection amount TP is calculated based on the intake passage pressure MAP read in S2 and the engine rotational speed N determined from the output of the crank angle sensor 10. This process corresponds to the supply fuel amount determining means shown in FIG.

S7ではS4でめた圧力変化量の積算値KDMの絶対値
の大きさから機関がKDMによる補正を行うべき過渡運
転状態にあるか否かを判断し、圧力変化量の積算値KD
Mの絶対値が20mmHgより大きいか否かを判定し、
大きい場合は過渡運転状態とみなしS8へ進み回転速度
Nに基づく補正値KNを演算し、ついでS9では水温セ
ンサ11の出力である機関冷却水温TWに基づく補正値
KTWを演算し、S’IOでこれらの補正値をKDMに
乗算したものをTPに加え補正噴射量TPIとする。こ
の補正により、機関が所定回転角度回転する間の吸入通
路内圧力の変化すなわちKDMが大きい程噴射量が大き
くなる。つまり加速や減速の程度に適合した補正が行わ
れる。
In S7, it is determined from the magnitude of the absolute value of the integrated value KDM of pressure changes determined in S4 whether or not the engine is in a transient operating state that requires correction by KDM, and the integrated value KD of pressure changes is determined.
Determine whether the absolute value of M is greater than 20 mmHg,
If it is larger, it is regarded as a transient operating state, and the process proceeds to S8, where a correction value KN is calculated based on the rotational speed N. Next, in S9, a correction value KTW is calculated based on the engine cooling water temperature TW, which is the output of the water temperature sensor 11, and then in S'IO. The product of KDM multiplied by these correction values is added to TP to obtain the corrected injection amount TPI. With this correction, the injection amount increases as the change in the suction passage pressure, that is, KDM, increases while the engine rotates at a predetermined rotation angle. In other words, correction is performed that is appropriate for the degree of acceleration or deceleration.

なお、ここで回転速度Nに基づき補正値KNを演算し、
これをKDMに乗算しているのは、回転速度Nにより吸
気装置が異なりそれによって吸気通路内周壁への燃料の
付着量が異なり実菫射量が変わるのを補正するためで、
KNの具体的な値は機関によって異なるが、たとえば第
4図に示すようなものとすればよい。
Note that the correction value KN is calculated based on the rotational speed N,
The reason why this is multiplied by KDM is to compensate for the fact that the intake system differs depending on the rotational speed N, and the amount of fuel attached to the inner circumferential wall of the intake passage varies accordingly, which changes the actual amount of radiant radiation.
Although the specific value of KN varies depending on the engine, it may be set as shown in FIG. 4, for example.

また、機関冷却水温TWに基づき補正値KTWを演算し
、これをKDMに乗算しているのは水温T、Wによって
も燃料の壁面付着量が異なり実噴射量が変化してしまう
ので、これを補正するためであり、KTWの具体的な値
としては、たとえば第5図に示すようなものとすればよ
い。
In addition, the correction value KTW is calculated based on the engine cooling water temperature TW, and this is multiplied by KDM because the amount of fuel attached to the wall surface varies depending on the water temperature T and W, and the actual injection amount changes. This is for the purpose of correction, and the specific value of KTW may be, for example, as shown in FIG.

一方、KDMの絶対値が2QmmHgより小さい場合は
311に進みS6でめたTPをそのまま補正噴射量TP
Iとする。
On the other hand, if the absolute value of KDM is smaller than 2QmmHg, proceed to 311 and use the TP determined in S6 as the corrected injection amount TP.
Let it be I.

次の312では、後述するS17以降の噴射タイミング
毎のルーチンで計算されたKADMの値をMAP/32
と比較することにより、KADMによる補正を行うべき
過渡運転状態にあるか否かを判断するものでKADMが
MAP/32より大きいと判定された場合はS13へ進
み水温TWから補正係数KTW2を演算し、S14でK
TW2とKADMによるTPIに対する補正がなされT
PFが決定される。このKTW2による補正はS9.S
IOにおけるKTWによる補正と同じ意味のものであり
、KTW2の値は機関によって異なるがKTWと同様の
ものを用いればよい。
In the next step 312, the value of KADM calculated in the routine for each injection timing after S17, which will be described later, is set to MAP/32.
It is determined whether or not there is a transient operating state in which correction by KADM should be performed by comparing with KADM. If it is determined that KADM is larger than MAP/32, the process proceeds to S13 and a correction coefficient KTW2 is calculated from the water temperature TW. , K in S14
TPI is corrected by TW2 and KADM.
PF is determined. This correction by KTW2 is performed in S9. S
This has the same meaning as the correction by KTW in IO, and although the value of KTW2 differs depending on the engine, it is sufficient to use the same value as KTW.

なお、この実施例ではKADMに対しては回転速度Nに
よる補正は行っ□ていないが、KDMと同様に補正をす
るようにしてもよい。
In this embodiment, the KADM is not corrected based on the rotational speed N, but the correction may be made in the same manner as the KDM.

一方、312の判定によりS15に進んだ場合はTPl
をそのままTPFとしてS16に進む。316ではこの
TPFに各種運転条件に基づく補正係数C0EF、空燃
比フィードバック補正係数αおよびバッテリ電圧に基づ
く補正係数TSによる補正をして、最終的な燃料噴射弁
3開弁作動パルス幅TIを決定する。
On the other hand, if the process proceeds to S15 based on the determination of 312, TPL
is used as the TPF and the process proceeds to S16. At step 316, this TPF is corrected by a correction coefficient C0EF based on various operating conditions, an air-fuel ratio feedback correction coefficient α, and a correction coefficient TS based on battery voltage to determine the final fuel injection valve 3 opening operation pulse width TI. .

以上の32から316までの過程は次の燃料噴射タイミ
ングまで繰り返される。そして、燃料噴射タイミングに
なると、Slの判定において317へ進みS16で決定
された時間開弁作動がなされ、燃料が噴射される。31
8ではKADMに前回の噴射時から今回の噴射時までの
間つまり所定のクランク回転角度における吸入空気圧力
の変動量KDMが加算される。
The above steps 32 to 316 are repeated until the next fuel injection timing. Then, when the fuel injection timing is reached, the process proceeds to 317 in the determination of Sl, the valve is opened for the time determined in S16, and fuel is injected. 31
In step 8, the amount of variation KDM in the intake air pressure from the previous injection to the current injection, that is, at a predetermined crank rotation angle, is added to KADM.

319ではKADMが正であるか否かが判断され、KA
DMが正であれば320でIRだけ減算され、負であれ
ば321でILだけ加算され、過渡運転時以外の補正量
をゼロとするようにする。すなわち過渡運転に入ってか
らの時間経過に伴ってこのルーチンを通る毎にKADM
にIRまたはIL減算−または加算されていくので過渡
運転の終了により補正量がゼロとなる。
In 319, it is determined whether KADM is positive or not, and KADM is determined to be positive.
If DM is positive, IR is subtracted in step 320, and if it is negative, IL is added in step 321, so that the correction amount other than during transient operation is set to zero. In other words, each time this routine is passed, the KADM
Since IR or IL is subtracted from or added to, the correction amount becomes zero when the transient operation ends.

次に322でKDMがゼロにリセットされ、以上の過程
が繰り返される。
The KDM is then reset to zero at 322 and the process repeats.

第6図に以上の過程による燃料噴射パルス幅の決定の様
子をタイムチャートとして示す。すなわち、急加速時の
ように吸気通路内圧力MAPの変動が大きいときはKD
Mによる大きな増量補正がなされるとともに、KADM
によっても増量補正がなされ、過渡時の空燃比が所定値
に保たれる。
FIG. 6 shows, as a time chart, how the fuel injection pulse width is determined through the above process. In other words, when the fluctuation in the intake passage pressure MAP is large, such as during sudden acceleration, KD
Along with a large increase in correction due to M, KADM
Also, an increase in the amount is corrected, and the air-fuel ratio during the transient period is maintained at a predetermined value.

一方、吸気通路内圧力MAPの変動が少ない定常状態に
おいてはKDMによる補正は小さく、KADMも次第に
ゼロに近付く。
On the other hand, in a steady state where there is little variation in the intake passage pressure MAP, the correction by KDM is small and KADM gradually approaches zero.

このような過渡運転時の空燃比補正は、従来のものと異
なり、所定機関回転角度における吸入空気圧力の変化量
に基づき行われるから、サイクル内の吸入空気圧力の変
動により補正量が不当に変動することが防止され、正確
な空燃比制御がなされるようになる。すなわち、第7図
(B)に示すようにKDMとKADMによる補正量は補
正をしない場合の空燃比誤差とほぼ等しくなり、実際の
 :l空燃比は第7図(A)の破線に示すように過渡運
転時においても所定空燃比の近傍に保たれ、正確な空燃
比制御がなされる。このため、排気エミ・フシジンが改
善されるとともに、希薄混合気の供給による失火に起因
する加速応答遅れが解消され、加速性能が向上する。ま
元、従来の過渡運転時の空蝉比補正に必要であった絞り
弁開度センサ等がなお上記作用の説明は加速時を例に取
ったが、減速時においても同様に正確な空握比制御がな
されることは勿論である。
Unlike conventional methods, air-fuel ratio correction during transient operation is performed based on the amount of change in intake air pressure at a predetermined engine rotation angle, so the amount of correction may vary unduly due to fluctuations in intake air pressure within the cycle. Therefore, accurate air-fuel ratio control can be performed. In other words, as shown in Fig. 7(B), the correction amount by KDM and KADM is almost equal to the air-fuel ratio error without correction, and the actual :l air-fuel ratio is as shown by the broken line in Fig. 7(A). Even during transient operation, the air-fuel ratio is maintained close to a predetermined value, and accurate air-fuel ratio control is achieved. This improves exhaust emissions and fuel efficiency, eliminates acceleration response delays caused by misfires caused by supplying a lean air-fuel mixture, and improves acceleration performance. Originally, the throttle valve opening sensor, etc., which were necessary to correct the air-to-air ratio during transient operation in the past, were used to correct the air-to-air ratio during transient operation. Of course, it is controlled.

また、本実施例は1回転1噴射の例であり、所定の機関
回転角度を360°としたが、所定回転角度としては、
たとえばす0°つまり2回転であってもかまわない。
In addition, although this embodiment is an example of one injection per rotation, and the predetermined engine rotation angle is 360°, the predetermined rotation angle is as follows:
For example, it may be 0° or 2 rotations.

さらに、本発明は機関回転速度と、吸入空気流量とに基
づき燃料噴射パルス幅する機関に対しても適用され、同
様の効果を奏するものである。
Furthermore, the present invention can also be applied to an engine in which the fuel injection pulse width is determined based on the engine rotational speed and the intake air flow rate, and similar effects can be achieved.

〈発明の効果〉 以上説明したように本発明では、機関が所定回転角度回
転する間の吸気通路内の吸入空気流状態の変化量を検出
し、これに基づき機関への燃料供給量に補正を加えるよ
うにしたから、サイクル内の変動を拾もことのない機関
回転に同期した量に基づ(補正がなされ、過渡運転時に
おいても正確に所定空燃比蕊混合気が機関に供給される
ようになる。このため、過渡運転時における排気エミッ
ションの改善が図られるとともに、特に加速応答性の向
上が図られる。
<Effects of the Invention> As explained above, in the present invention, the amount of change in the intake airflow state in the intake passage while the engine rotates at a predetermined rotation angle is detected, and based on this, the amount of fuel supplied to the engine is corrected. This allows for correction to be made based on the amount synchronized with the engine rotation without any fluctuations in the cycle being detected, so that even during transient operation, the air-fuel mixture is accurately supplied to the engine at the specified air-fuel ratio. Therefore, it is possible to improve exhaust emissions during transient operation, and particularly to improve acceleration response.

第1図は本発明の構成を示すブロック図、第2図は本発
明の一実施例の構成図、第3図は同上の作動過程を示す
フローチャート、第4図、第5図はそれぞれ補正値KN
、KTWの値を示す図、第6図は同上における燃料噴射
弁開弁作動時間の決 、定過程を示すタイムチャート、
第7図は本発明による空燃比補正効果を示す図であり(
A)は空燃比変化の様子を従来例と比較して示す図、(
B)は空燃比補正率の変化を示す図である。
Fig. 1 is a block diagram showing the configuration of the present invention, Fig. 2 is a block diagram of an embodiment of the present invention, Fig. 3 is a flowchart showing the operation process of the same, and Figs. 4 and 5 respectively show correction values. KN
, a diagram showing the value of KTW, and Figure 6 is a time chart showing the determination process of the fuel injection valve opening operation time in the same as above.
FIG. 7 is a diagram showing the air-fuel ratio correction effect according to the present invention (
A) is a diagram showing how the air-fuel ratio changes in comparison with the conventional example;
B) is a diagram showing changes in the air-fuel ratio correction factor.

2・・・吸気RR8・・・コントロールユニット9・・
・圧力センサ 10・・・クランク角センザ特許出願人
 日産自動車株式会社 代理人 弁理士 笹 島 富二雄 区 マー− 法
2...Intake RR8...Control unit 9...
・Pressure sensor 10... Crank angle sensor Patent applicant Nissan Motor Co., Ltd. Representative Patent attorney Sasashima Fujio-ku MA Law

Claims (1)

【特許請求の範囲】[Claims] 機関回転速度を検出する手段と、吸気通路内の吸入空気
圧力または吸入空気流量などの吸入空気状態を検出する
手段と、該2つの検出手段の検出結果に基づき機関に供
給する燃料量を決定する手段とを備え、機関に供給され
る混合気の空燃比が所定値となるよう制御する空燃比制
御装置において、機関回転角度を検出する手段と、機関
が所定回転角度回転する間の前記吸入空気状態の変化量
を検出する手段と、該手段の検出結果に基づき機関に供
給される前記燃料量を補正する手段とを設けたことを特
徴とする内燃機関の空燃比制御装置。
A means for detecting an engine rotation speed, a means for detecting an intake air condition such as an intake air pressure or an intake air flow rate in an intake passage, and an amount of fuel to be supplied to the engine is determined based on the detection results of the two detection means. means for detecting an engine rotation angle; An air-fuel ratio control device for an internal combustion engine, comprising means for detecting an amount of change in state, and means for correcting the amount of fuel supplied to the engine based on the detection result of the means.
JP59118160A 1984-06-11 1984-06-11 Air-fuel ratio controller for internal combustion engine Expired - Lifetime JPH0684733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59118160A JPH0684733B2 (en) 1984-06-11 1984-06-11 Air-fuel ratio controller for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59118160A JPH0684733B2 (en) 1984-06-11 1984-06-11 Air-fuel ratio controller for internal combustion engine

Publications (2)

Publication Number Publication Date
JPS60261944A true JPS60261944A (en) 1985-12-25
JPH0684733B2 JPH0684733B2 (en) 1994-10-26

Family

ID=14729584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59118160A Expired - Lifetime JPH0684733B2 (en) 1984-06-11 1984-06-11 Air-fuel ratio controller for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0684733B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5915656A (en) * 1983-06-22 1984-01-26 Honda Motor Co Ltd Operation state control device of internal-combustion engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5915656A (en) * 1983-06-22 1984-01-26 Honda Motor Co Ltd Operation state control device of internal-combustion engine

Also Published As

Publication number Publication date
JPH0684733B2 (en) 1994-10-26

Similar Documents

Publication Publication Date Title
JPH0363654B2 (en)
JPH05306643A (en) Fuel injection amount calculation device of internal combustion engine
JPH01237333A (en) Control device for internal combustion engine
EP0296464A2 (en) Air/fuel ratio control system for internal combustion engine with correction coefficient learning feature
JPS6278449A (en) Fuel injection controller of internal combustion engine
US4951635A (en) Fuel injection control system for internal combustion engine with compensation of overshooting in monitoring of engine load
JPS60261944A (en) Air-fuel ratio controller for internal-combustion engine
JP2677426B2 (en) Fuel injection amount control method for internal combustion engine
JP2543762B2 (en) Fuel supply control device for internal combustion engine
JP2677425B2 (en) Fuel injection amount control method for internal combustion engine
JPH0357861A (en) Intake air temperature detecting device for internal combustion engine
JP2677421B2 (en) Fuel injection amount control method for internal combustion engine
JPH0523815Y2 (en)
JP3478713B2 (en) Air-fuel ratio control device for internal combustion engine
JPS63268951A (en) Fuel supply control device for internal combustion engine
JP2512726Y2 (en) Electronically controlled fuel injection device for internal combustion engine
JPS62139943A (en) Air-fuel ratio control method for internal combustion engine
JPH02264135A (en) Fuel feed control device for internal combustion engine
JP2796132B2 (en) Ignition timing control method for internal combustion engine
JP2592327B2 (en) Fuel supply control device for internal combustion engine
JPH1030479A (en) Air-fuel ratio controller of internal combustion engine
JPH0658081B2 (en) Air-fuel ratio learning controller for internal combustion engine
JPH0686831B2 (en) Air-fuel ratio learning controller for internal combustion engine
JPH0281937A (en) Air-fuel ratio control device
JPH04228855A (en) Output sensitivity correcting method for combustion pressure sensor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term