JPS63268951A - Fuel supply control device for internal combustion engine - Google Patents

Fuel supply control device for internal combustion engine

Info

Publication number
JPS63268951A
JPS63268951A JP10203487A JP10203487A JPS63268951A JP S63268951 A JPS63268951 A JP S63268951A JP 10203487 A JP10203487 A JP 10203487A JP 10203487 A JP10203487 A JP 10203487A JP S63268951 A JPS63268951 A JP S63268951A
Authority
JP
Japan
Prior art keywords
cylinder
calorific value
fuel injection
fuel
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10203487A
Other languages
Japanese (ja)
Inventor
Minoru Imashiro
今城 実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP10203487A priority Critical patent/JPS63268951A/en
Publication of JPS63268951A publication Critical patent/JPS63268951A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To enable the unbalance of the output and the air-fuel ratio at every cylinder to be decreased by controlling to correct the fuel supply quantity in such a manner that the calorific values during the combustion stroke, which are calculated according to pressure signals from within-cylinder pressure sensors, are in the same level. CONSTITUTION:A control unit 10 calculates the calorific values during the combustion stroke at every cylinder according to pressure signals from within-cylinder pressure sensors 14 which are placed in every cylinder for an engine 1 respectively. In addition, at every cylinder, it compares the average calorific value at each cylinder with the average calorific value in the whole engine, and then corrects the fuel injection quantity from a fuel injection valve 5 according to the comparison as above. That is, the fuel injection quantity at a cylinder having a large average calorific value is decreased by a prescribed quantity, while, the fuel injection quantity at a cylinder having a small average calorific value is increased by a prescribed quantity. Thereby, the unbalance of the fuel injection quantity at every cylinder is decreased, and the calorific value at every cylinder can be equalized, and consequently, the operability, such as stability in idling, can be improved remarkably.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は機関の各気筒毎に筒内圧力センサを有して各気
筒への燃料供給量を制御する内燃機関の燃料供給制御装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a fuel supply control device for an internal combustion engine that has an in-cylinder pressure sensor for each cylinder of the engine and controls the amount of fuel supplied to each cylinder.

〈従来の技術〉 従来の内燃機関の燃料供給制御装置として、特開昭59
−51135号公報に記載されているように、機関の各
気筒毎に筒内圧力センサを有し、各筒内圧力センサによ
り検出し演算した各気筒の図示平均有効圧を全気筒の図
示平均有効圧の相加平均値に近づけるよう各気筒への燃
料噴射量を制御卸するものが知られている。
<Prior art> As a conventional fuel supply control device for an internal combustion engine,
As described in Publication No. 51135, each cylinder of the engine has an in-cylinder pressure sensor, and the indicated average effective pressure of each cylinder detected and calculated by each in-cylinder pressure sensor is used as the indicated average effective pressure of all cylinders. It is known that the fuel injection amount to each cylinder is controlled so as to approach the arithmetic mean value of the pressure.

これによれば、気筒毎の燃料噴射弁のバラツキ。According to this, there are variations in fuel injection valves for each cylinder.

アイドル運転時などの気筒毎の吸入新気量のバラツキな
どがある場合でも、気筒毎の出力のアンバランスを回避
して、アイドル安定性など機関運転性を向上できる。
Even when there is variation in the intake amount of fresh air between cylinders, such as during idling, it is possible to avoid unbalanced output between cylinders and improve engine drivability such as idling stability.

〈発明が解決しようとする問題点〉 しかしながら、筒内圧力若しくは図示平均有効圧Piは
、新気充填量、空燃比9点火時期、燃焼期間、Pi変動
の状態1点火の良否など各種要素の影響を受けるもので
あり、これら各種要素のズレによりPiが異なるのを燃
料噴射量で補正しようとすると、Piの小さい気筒は無
理矢理濃側に、またPiの大きい気筒は無理矢理希薄側
に燃料噴射量が変化し、全体の空燃比は理論空燃比付近
にすることができるとしても、各気筒の空燃比はアンバ
ランスになり、濃い気筒ではHC,Coの排出量が多く
なり、また薄い気筒ではNOxの排出量が著しく増大し
てしまうという問題点があった。
<Problems to be solved by the invention> However, the in-cylinder pressure or indicated mean effective pressure Pi is influenced by various factors such as fresh air charging amount, air-fuel ratio 9 ignition timing, combustion period, condition of Pi fluctuation 1 ignition quality If we try to correct the difference in Pi due to the deviations of these various elements with the fuel injection amount, the fuel injection amount will be forced to the rich side for cylinders with small Pi, and to the lean side for cylinders with large Pi. Even if the overall air-fuel ratio can be brought close to the stoichiometric air-fuel ratio, the air-fuel ratio of each cylinder will be unbalanced, and rich cylinders will have high HC and Co emissions, while thin cylinders will have low NOx emissions. There was a problem in that the amount of emissions increased significantly.

本発明は、このような従来の問題点に鑑み、各気筒の空
燃比のアンバランスを生じることなく、出力のアンバラ
ンスを回避できるようにすることを目的とする。
SUMMARY OF THE INVENTION In view of these conventional problems, it is an object of the present invention to make it possible to avoid an imbalance in output without causing an imbalance in the air-fuel ratio of each cylinder.

〈問題点を解決するだめの手段〉 このため、本発明は、第1図に示すように、機関の各気
筒毎に設けた筒内圧力センサと、各筒内圧力センサから
の圧力信号に基づき各気筒毎に燃焼行程中の発熱量を演
算する発熱量演算手段と、この発熱量演算手段の演算結
果に基づき各気筒の発熱量が同一レベルになるように燃
料供給装置による各気筒への燃料供給量を補正制御する
燃料供給量補正制御手段とよりなる構成としたものであ
る。
<Means for Solving the Problem> Therefore, as shown in FIG. A calorific value calculation means calculates the calorific value during the combustion stroke for each cylinder, and a fuel supply device supplies fuel to each cylinder so that the calorific value of each cylinder is at the same level based on the calculation result of the calorific value calculation means. This configuration includes fuel supply amount correction control means for correcting and controlling the supply amount.

〈作用〉 このように筒内圧力若しくは図示平均有効圧により直接
制御するのではなく、各気筒の発熱量を演算してそれら
が同一レベルになるように制御することで、気筒毎の出
力のアンバランス及び空燃比のアシバランスを生じるこ
とがなくなり、アイドル安定性など機関運転性を改善で
きると共に、エミッションも良好となる。
<Operation> In this way, instead of controlling directly using cylinder pressure or indicated mean effective pressure, by calculating the calorific value of each cylinder and controlling it so that they are at the same level, the output of each cylinder can be unbalanced. This eliminates the occurrence of balance and air-fuel ratio assist balance, improves engine drivability such as idle stability, and improves emissions.

〈実施例〉 以下に本発明の一実施例を説明する。<Example> An embodiment of the present invention will be described below.

第2図において、機関lは■型多気筒エンジンで、エア
クリーナ2より吸入された空気はスロットル弁3を経た
のち吸気マニホールド4にて分岐し、そのブランチ部に
各気筒毎に設けた燃料噴射弁5から噴射された燃料と共
に各気筒に供給される。機関lの各気筒には点火栓6が
設けられていて、火花点火により混合気が着火燃焼する
。機関1の各気筒からの排気は排気マニホールド7によ
り合流し、触媒8及びマフラー9を経て排出される。
In Fig. 2, the engine 1 is a ■-type multi-cylinder engine, and air taken in from an air cleaner 2 passes through a throttle valve 3 and then branches at an intake manifold 4, and a fuel injection valve is installed for each cylinder in the branch. The fuel is supplied to each cylinder together with the fuel injected from No. 5. An ignition plug 6 is provided in each cylinder of the engine 1, and the air-fuel mixture is ignited and combusted by spark ignition. Exhaust gas from each cylinder of the engine 1 joins together at an exhaust manifold 7, passes through a catalyst 8 and a muffler 9, and is discharged.

燃料噴射弁5はソレノイドに通電されて開弁し通電停止
されて閉弁する電磁式燃料噴射弁であって、後述するコ
ントロールユニット10からの駆動パルス信号により通
電されて開弁じ、図示しない燃料ポンプから圧送されて
プレッシャレギュレータにより所定の圧力に調整された
燃料を噴射供給する。
The fuel injection valve 5 is an electromagnetic fuel injection valve that opens when the solenoid is energized, and closes when the energization is stopped. Fuel is injected and supplied under pressure from the pump and adjusted to a predetermined pressure by a pressure regulator.

コントロールユニット10は、CPU、ROM。The control unit 10 includes a CPU and a ROM.

RAM及び入出力インクフェイスを含んで構成されるマ
イクロコンピュータを備え、各種のセンサからの入力信
号を受け、後述の如く演算処理して、燃料噴射弁5の作
動を制御する。
It is equipped with a microcomputer including a RAM and an input/output ink face, receives input signals from various sensors, performs arithmetic processing as described later, and controls the operation of the fuel injection valve 5.

前記各種のセンサとしては、エアクリーナ2の下流にエ
アフローメータ11が設けられていて、吸入空気流量Q
に応じた信号を出力する。
As the various sensors mentioned above, an air flow meter 11 is provided downstream of the air cleaner 2, and the air flow meter 11 is installed downstream of the air cleaner 2.
Outputs a signal according to the

また、クランク角センサI2が設けられていて、単位ク
ランク角毎のポジション信号と基準クランク角毎のリフ
ァレンス信号とを出力する。ここで、単位時間当りのポ
ジション信号の発生数あるいはリファレンス信号の周期
を計測することにより機関回転数Nを算出可能である。
Further, a crank angle sensor I2 is provided, and outputs a position signal for each unit crank angle and a reference signal for each reference crank angle. Here, the engine rotation speed N can be calculated by measuring the number of position signals generated per unit time or the period of the reference signal.

また、排気マニホールド7の築合部に02センサ13が
設けられている。この02センサ13は混合気を理論空
燃比付近で燃焼させたときを境として起電力が急変する
公知のセンサである。
Further, an 02 sensor 13 is provided at the built-in portion of the exhaust manifold 7. The 02 sensor 13 is a known sensor whose electromotive force suddenly changes when the air-fuel mixture is combusted near the stoichiometric air-fuel ratio.

さらに、各気筒の点火栓6にその取付座金として形成さ
れた圧電素子からなる筒内圧力センサ14が設けられ、
筒内圧力Pに応じた信号をアンプ(図示せず)を介して
出力するようになっている。
Furthermore, an in-cylinder pressure sensor 14 made of a piezoelectric element formed as a mounting washer is provided on the spark plug 6 of each cylinder,
A signal corresponding to the cylinder pressure P is output via an amplifier (not shown).

ここにおいて、コントロールユニット1oに内蔵された
マイクロコンピュータのCPUは、ROM上のプログラ
ムに従って演算処理し、燃料噴射量をft+IJ ?卸
する。
Here, the CPU of the microcomputer built in the control unit 1o performs arithmetic processing according to the program on the ROM, and determines the fuel injection amount as ft+IJ? Wholesale.

すなわち、エアフローメータ11がらの信号に基づいて
検出される吸入空気流ff1Qとクランク角セン1月2
からの信号に基づいて算出される機関回転数Nとから基
本燃料噴射量Tp=に−Q/NCKは定数)を演算し、
これを加速補正係数などを含む各種補正係数C0EF、
02センサ13がらの信号に基づいて検出される実際の
空燃比を理論空燃比と比較して比例・積分制御により設
定される空燃比フィードバック補正係数α、さらにはバ
ッテリ電圧に基づく電圧補正分子sで次式の如く補正し
て、燃料噴射lTiを演算する。
That is, the intake air flow ff1Q detected based on the signal from the air flow meter 11 and the crank angle sensor
Calculate the basic fuel injection amount Tp = -Q/NCK is a constant) from the engine speed N calculated based on the signal from
Various correction coefficients C0EF, including acceleration correction coefficients, etc.
The actual air-fuel ratio detected based on the signal from the 02 sensor 13 is compared with the stoichiometric air-fuel ratio, and the air-fuel ratio feedback correction coefficient α is set by proportional/integral control. Furthermore, the voltage correction numerator s based on the battery voltage is The fuel injection lTi is calculated by correcting as shown in the following equation.

T 1=Tp−COEF・α+Ts そして、このようにして全気筒−律に設定された燃料噴
射l’r’iを第3図にフローチャー1・とじて示す発
熱量演算、気筒別噴射■制御ルーチンによって気筒別に
補正制御し、この補正された燃料噴射(JTiに相応す
るパルスl]の駆動パルス信号を対応する気筒の燃料噴
射弁5に与えて燃料噴射を行わせる。
T 1 = Tp - COEF / α + Ts Then, the fuel injection l'r'i set to all cylinders in this way is shown in Fig. 3 as flowchart 1. Calorific value calculation, cylinder-specific injection ■ control Correction control is performed for each cylinder according to a routine, and the drive pulse signal of the corrected fuel injection (pulse l corresponding to JTi) is applied to the fuel injection valve 5 of the corresponding cylinder to perform fuel injection.

第3図の発熱量演算、気筒別噴射量制御ルーチンは単位
クランク角毎に実行される。
The calorific value calculation and cylinder-specific injection amount control routine shown in FIG. 3 are executed for each unit crank angle.

ステップ11 (図にはSllと記しである。以下同様
)ではクランク角θ=θJ (j=1.・・・)におけ
る筒内圧力P=PJ=P (θj)を読込む。また、ス
テップ12ではそのときの燃焼室容積V=V。
In step 11 (indicated by Sll in the figure; the same applies hereinafter), the cylinder pressure P=PJ=P (θj) at the crank angle θ=θJ (j=1...) is read. Further, in step 12, the combustion chamber volume at that time is V=V.

−V(θJ)を計算する。−V(θJ) is calculated.

次にステップ13ではポリトロープ指数PNを計算する
Next, in step 13, a polytropic index PN is calculated.

VI=VST(ストロークボリューム)次にステップ1
5ではj=720か否かを判定し、j≠720のときに
はこのルーチンを終了する。従って、j =720とな
るまでは、単位クランク角)びにステップ11〜14の
みが繰り返し実行される。
VI = VST (stroke volume) Next step 1
In step 5, it is determined whether j=720 or not, and when j≠720, this routine is ended. Therefore, until j=720, only steps 11 to 14 are repeatedly executed for each unit crank angle.

j=720となると、すなわち1サイクル(機関2回転
)毎に、ステップ16以降に進む。
When j=720, that is, every cycle (two revolutions of the engine), the process proceeds to step 16 and subsequent steps.

ステップ16では各気筒(#i気筒)毎に次式に従って
発熱量Q8を計算する。
In step 16, the calorific value Q8 is calculated for each cylinder (#i cylinder) according to the following equation.

Qr=fQidθ=ΣQ、Δθ 従って、ステップ11〜14及び16の部分が発熱量演
算手段に相当する。
Qr=fQidθ=ΣQ,Δθ Therefore, steps 11 to 14 and 16 correspond to the calorific value calculation means.

次にステップ17では各気筒(#i気筒)毎に最新のn
サイクルにおける平均発熱l夏、を次式に従って演算す
る。
Next, in step 17, the latest n is updated for each cylinder (#i cylinder).
The average heat generation l summer in the cycle is calculated according to the following formula.

次にステップ18ではエンジン全体の平均発熱量−q−
を次式に従って演算す乞(4気筒の場合)。
Next, in step 18, the average calorific value of the entire engine -q-
Calculate according to the following formula (for 4 cylinders).

頁一□ΣQ。Page 1□ΣQ.

次にステップ19では各気筒(#i気筒)毎にその平均
発熱量頁、をエンジン全体の平均発熱量頁と比較し、U
i >−Q−のときはステップ20へ進んで#i気筒の
燃料噴射量TiをΔT減少させ、頁。
Next, in step 19, the average calorific value page for each cylinder (#i cylinder) is compared with the average calorific value page of the entire engine, and the U
When i>-Q-, the process proceeds to step 20, where the fuel injection amount Ti of the #i cylinder is decreased by ΔT, and the process proceeds to step 20.

〈頁のときはステップ21へ進んで#i気筒の燃料噴射
量TiをΔT増大させる。
If it is the page, the process proceeds to step 21 and the fuel injection amount Ti of the #i cylinder is increased by ΔT.

従って、ステップ17〜21の部分が燃料供給量補正制
御手段に相当する。
Therefore, steps 17 to 21 correspond to the fuel supply amount correction control means.

このようにすることにより、気筒毎の燃料供給量のアン
バランスを低減し、各気筒の発熱量を均一にすることが
でき、アイドル安定性など運転性を著しく改善すること
ができるようになる。
By doing so, it is possible to reduce the imbalance in the amount of fuel supplied to each cylinder, to make the amount of heat generated in each cylinder uniform, and to significantly improve drivability such as idling stability.

尚、この実施例では吸気マニホールドノブラン千部又は
吸気ボートに各気筒毎に燃料噴射弁を設けるマルチポイ
ントインジェクションシステムについて示したが、吸気
通路の集合部に全気筒共通に単一の燃料噴射弁を設ける
シングルポイントインジェクシジンシステムの場合は、
機関回転に同期して1サイクル当り気筒数に応じた回数
の噴射を行い、各噴射パルス1】を燃料供給する各気筒
の発熱量に応じて個別に制御すればよい。
In this example, a multi-point injection system is shown in which a fuel injection valve is provided for each cylinder in the intake manifold knob or intake port, but a single fuel injection valve is installed in common for all cylinders in the gathering part of the intake passage. For single point injection systems with
Injection may be performed a number of times in accordance with the number of cylinders per cycle in synchronization with engine rotation, and each injection pulse 1] may be individually controlled in accordance with the calorific value of each cylinder to which fuel is supplied.

〈発明の効果〉 以上説明したように本発明によれば、各気筒毎に設けた
筒内圧力センサからの圧力信号に基づいて各気筒に燃焼
行程中の発熱量を演算し、各気筒の発熱量が同一レベル
になるように各気筒への燃料供給量を補正制御するよう
にしたので、気筒毎の出力のアンバランスや空燃比のア
ンバランスを低減でき、アイドル安定性など機関運転性
を向上できると共にエミッションも向上できるという効
果が得られる。
<Effects of the Invention> As explained above, according to the present invention, the amount of heat generated during the combustion stroke of each cylinder is calculated based on the pressure signal from the in-cylinder pressure sensor provided for each cylinder, and the amount of heat generated in each cylinder is calculated. Since the amount of fuel supplied to each cylinder is corrected and controlled so that the amount is at the same level, it is possible to reduce imbalances in the output of each cylinder and imbalances in the air-fuel ratio, improving engine operability such as idle stability. It is possible to achieve the effect of improving emissions as well as improving emissions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成を示す機能ブロック図、第2図は
本発明の一実施例を示すシステム図、第3図は制御内容
を示すフローチャー1・である。 1・・・機関  5・・・燃料噴射弁  6・・・点火
栓10・・・コントロールユニット  11・・・エア
フロメータ  12・・・クランク角センサ  13・
・・02センサ14・・・筒内圧力センサ
FIG. 1 is a functional block diagram showing the configuration of the present invention, FIG. 2 is a system diagram showing an embodiment of the invention, and FIG. 3 is a flowchart 1 showing control contents. 1... Engine 5... Fuel injection valve 6... Spark plug 10... Control unit 11... Air flow meter 12... Crank angle sensor 13.
...02 sensor 14...Cylinder pressure sensor

Claims (1)

【特許請求の範囲】[Claims]  機関の各気筒毎に設けた筒内圧力センサと、各筒内圧
力センサからの圧力信号に基づき各気筒毎に燃焼行程中
の発熱量を演算する発熱量演算手段と、この発熱量演算
手段の演算結果に基づき各気筒の発熱量が同一レベルに
なるように燃料供給装置による各気筒への燃料供給量を
補正制御する燃料供給量補正制御手段とを備えてなる内
燃機関の燃料供給制御装置。
A cylinder pressure sensor provided for each cylinder of the engine, a calorific value calculating means for calculating the calorific value during the combustion stroke for each cylinder based on the pressure signal from each cylinder pressure sensor, and a calorific value calculating means for calculating the calorific value during the combustion stroke for each cylinder. A fuel supply control device for an internal combustion engine, comprising: fuel supply amount correction control means for correcting and controlling the amount of fuel supplied to each cylinder by a fuel supply device so that the calorific value of each cylinder is at the same level based on a calculation result.
JP10203487A 1987-04-27 1987-04-27 Fuel supply control device for internal combustion engine Pending JPS63268951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10203487A JPS63268951A (en) 1987-04-27 1987-04-27 Fuel supply control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10203487A JPS63268951A (en) 1987-04-27 1987-04-27 Fuel supply control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPS63268951A true JPS63268951A (en) 1988-11-07

Family

ID=14316478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10203487A Pending JPS63268951A (en) 1987-04-27 1987-04-27 Fuel supply control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPS63268951A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7085644B2 (en) * 2002-12-18 2006-08-01 Siemens Aktiengesellschaft Method for monitoring an internal combustion engine
US7207316B2 (en) 2003-07-08 2007-04-24 Toyota Jidosha Kabushiki Kaisha Control apparatus and control method for internal combustion engine
US7210456B2 (en) 2003-08-06 2007-05-01 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine and method for determining misfire in internal combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7085644B2 (en) * 2002-12-18 2006-08-01 Siemens Aktiengesellschaft Method for monitoring an internal combustion engine
US7207316B2 (en) 2003-07-08 2007-04-24 Toyota Jidosha Kabushiki Kaisha Control apparatus and control method for internal combustion engine
CN100408830C (en) * 2003-07-08 2008-08-06 丰田自动车株式会社 Control apparatus and control method for internal combustion engine
US7210456B2 (en) 2003-08-06 2007-05-01 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine and method for determining misfire in internal combustion engine

Similar Documents

Publication Publication Date Title
US4508075A (en) Method and apparatus for controlling internal combustion engines
JPH0949452A (en) Control device for internal combustion engine
JPH09209814A (en) Control device for internal combustion engine
JP3314294B2 (en) Control device for internal combustion engine
JPS63268951A (en) Fuel supply control device for internal combustion engine
US4787358A (en) Fuel supply control system for an engine
JPS6325335A (en) Fuel injection control device for internal combustion engine
US6901920B2 (en) Engine control apparatus having cylinder-by-cylinder feedback control
JPH05248281A (en) Air-fuel ratio control device for internal combustion engine
JP2855854B2 (en) Output sensitivity correction method of combustion pressure sensor
JPH07253042A (en) Controller of multi-cylinder internal combustion engine
JPH04101044A (en) Fuel feeding controller for multicylinder internal combustion engine
JPH1162674A (en) Air-fuel ratio control device for internal combustion engine
JPH04116237A (en) Air-fuel ratio controller of internal combustion engine
JPH0968094A (en) Air-fuel ratio control device of internal combustion engine
JPS63195359A (en) Control device for internal combustion engine
JPH09195844A (en) Apparatus for detecting inner pressure of cylinder of internal combustion engine
JP3621731B2 (en) Engine air-fuel ratio control method
JPH0559994A (en) Control device for engine
JP2855383B2 (en) Interrupt injection control device for electronically controlled fuel injection type internal combustion engine
JP2535895B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0710048Y2 (en) Fuel supply control device for internal combustion engine
JPH0726582B2 (en) Fuel injection timing control device for internal combustion engine
JPH0972809A (en) Combustion pressure detector for internal combustion engine
JP2750777B2 (en) Electronic control fuel supply device for internal combustion engine