JPH0972809A - Combustion pressure detector for internal combustion engine - Google Patents

Combustion pressure detector for internal combustion engine

Info

Publication number
JPH0972809A
JPH0972809A JP23050195A JP23050195A JPH0972809A JP H0972809 A JPH0972809 A JP H0972809A JP 23050195 A JP23050195 A JP 23050195A JP 23050195 A JP23050195 A JP 23050195A JP H0972809 A JPH0972809 A JP H0972809A
Authority
JP
Japan
Prior art keywords
cylinder
combustion pressure
combustion
correction value
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23050195A
Other languages
Japanese (ja)
Inventor
Naomi Tomizawa
尚己 冨澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Unisia Jecs Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unisia Jecs Corp filed Critical Unisia Jecs Corp
Priority to JP23050195A priority Critical patent/JPH0972809A/en
Publication of JPH0972809A publication Critical patent/JPH0972809A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To detect the combustion pressure accurately by setting a correction value for each cylinder based on the combustion pressure detected for each cylinder in order to substantially equalize the detection values combustion pressure, setting the combustion pressures correctively based on the correction values and outputting final detection results thereby correcting the fluctuation of combustion pressure detection means provided for each cylinder. SOLUTION: A control unit 11 determines a fuel injection based on an intake air detected through a hot-wire air flow meter 12 and a detection signal from a crank angle sensor 14 and then then delivers a signal to a fuel injection valve 6. Specified operational conditions, where the ignition timing and air-fuel ratio are identical among the cylinders, are then determined during a specified operation. Subsequently, the combustion pressure detected through an inner pressure sensor 16 for each cylinder is integrated over a specified section thus obtaining an integrated value. The integrated values are averaged for each cylinder and then the mean integrated values are averaged for all cylinders. A correction value is set for each cylinder based on the difference between the averaged value for each cylinder and the means value for all cylinders before correcting the integrated value for each cylinder.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は内燃機関の燃焼圧検
出装置に関し、詳しくは、各気筒毎に設けられる燃焼圧
検出手段の検出ばらつきを補正する技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combustion pressure detecting device for an internal combustion engine, and more particularly to a technique for correcting detection variations of a combustion pressure detecting means provided for each cylinder.

【0002】[0002]

【従来の技術】従来から、機関の出力変動を検出し、か
かる検出結果に基づいて空燃比や点火時期を燃焼安定限
界にまで調整することが行われていた。具体的には、各
気筒別に設けた燃焼圧センサ(燃焼圧検出手段)に基づ
いて機関出力変動(全気筒トータルでの燃焼圧の変動
率)を演算し、該変動率が所定値(燃焼安定限界)より
も大きくならない範囲で、空燃比をリーン化し、また、
点火時期を遅角(リタード)させる構成となっていた。
2. Description of the Related Art Conventionally, engine output fluctuations have been detected, and the air-fuel ratio and ignition timing have been adjusted to combustion stability limits based on the detection results. Specifically, an engine output fluctuation (combustion pressure fluctuation rate in all cylinders) is calculated based on a combustion pressure sensor (combustion pressure detection means) provided for each cylinder, and the fluctuation rate is a predetermined value (combustion stability). The air-fuel ratio is made lean within a range that does not exceed the limit), and
It was configured to retard the ignition timing.

【0003】[0003]

【発明が解決しようとする課題】ところで、前記燃焼圧
センサの出力特性にばらつきがあると、各気筒別に検出
される燃焼圧にばらつきが生じるために、たとえ気筒毎
には燃焼が安定していても、気筒間における燃焼圧検出
値のばらつきを、燃焼安定性の悪化として誤検出し、実
際には燃焼安定限界に達していないのに、空燃比のリー
ン化,点火時期の遅角が進められなくなってしまう場合
があった(図4参照)。
However, if the output characteristics of the combustion pressure sensor vary, the combustion pressure detected for each cylinder also varies, so that combustion is stable in each cylinder. Also, the variation in the detected combustion pressure between cylinders was erroneously detected as the deterioration of combustion stability, and although the combustion stability limit was not actually reached, the lean air-fuel ratio and the ignition timing retardation were advanced. In some cases, it disappeared (see Fig. 4).

【0004】特に、リング状の圧電素子を点火栓の座金
として装着し、点火栓の締付け荷重に対する相対圧とし
て燃焼圧を検出するセンサを用いる場合には、センサ自
体のばらつきに加えて、前記締付け荷重のばらつきによ
って、センサ間で出力特性に大きなばらつきが生じる惧
れがあり、空燃比や点火時期を燃焼安定限界にまで精度
良く制御することができなくなる可能性があった。
In particular, when a ring-shaped piezoelectric element is mounted as a washer for a spark plug and a sensor for detecting combustion pressure as a relative pressure with respect to the tightening load of the spark plug is used, in addition to variations in the sensor itself, Due to the variation in load, there is a possibility that the output characteristics may vary greatly among the sensors, and it may not be possible to accurately control the air-fuel ratio and the ignition timing to the combustion stability limit.

【0005】本発明は上記問題点に鑑みなされたもので
あり、各気筒毎に設けられる燃焼圧検出手段の検出ばら
つきを補正し得る燃焼圧検出装置を提供することを目的
とする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a combustion pressure detecting device capable of correcting the detection variation of the combustion pressure detecting means provided for each cylinder.

【0006】[0006]

【課題を解決するための手段】そのため請求項1記載の
発明は、図1に示すように構成される。図1において、
燃焼圧検出手段は、機関の各気筒別に燃焼圧を検出す
る。また、補正値設定手段は、所定の運転条件において
前記燃焼圧検出手段で検出された各気筒別の燃焼圧に基
づいて、各気筒での燃焼圧検出値を略同一とすべく各気
筒別に燃焼圧検出値の補正値を設定する。
Therefore, the invention according to claim 1 is constructed as shown in FIG. In FIG.
The combustion pressure detecting means detects the combustion pressure for each cylinder of the engine. Further, the correction value setting means burns each cylinder based on the combustion pressure of each cylinder detected by the combustion pressure detecting means under a predetermined operating condition so that the combustion pressure detection value of each cylinder becomes substantially the same. Set the correction value for the pressure detection value.

【0007】そして、燃焼圧補正手段は、前記燃焼圧検
出手段で検出された各気筒別の燃焼圧を前記補正値設定
手段で設定された対応する補正値に基づいてそれぞれ補
正設定して最終的な検出結果として出力する。かかる構
成によると、所定の運転条件において検出される各気筒
別の燃焼圧のばらつきを、燃焼圧検出手段の検出ばらつ
きであると見做し、最終的な検出結果として各気筒同一
の燃焼圧が出力されるように、各気筒別に補正値を設定
する。
The combustion pressure correcting means corrects and sets the combustion pressure of each cylinder detected by the combustion pressure detecting means based on the corresponding correction value set by the correction value setting means, and finally. It outputs as a detection result. According to such a configuration, the variation in the combustion pressure of each cylinder detected under the predetermined operating condition is regarded as the variation in the detection of the combustion pressure detecting means, and the combustion pressure of each cylinder is the same as the final detection result. A correction value is set for each cylinder so that it is output.

【0008】請求項2記載の発明では、前記補正値設定
手段における前記所定の運転条件が、機関のアイドル運
転時と走行抵抗が一定である運転時とのいずれか一方で
ある構成とした。かかる構成によると、機関のアイドル
運転時や走行抵抗が一定である運転時には燃焼圧が安定
するので、燃焼圧検出手段の検出ばらつきを精度良く特
定でき、以て、補正値を精度良く設定することが可能と
なる。
According to a second aspect of the present invention, the predetermined operating condition in the correction value setting means is either one of an idle operation of the engine and an operating operation with a constant running resistance. With such a configuration, the combustion pressure is stable during idle operation of the engine or during operation where running resistance is constant, so that the detection variation of the combustion pressure detection means can be specified with high accuracy, and thus the correction value can be set with high accuracy. Is possible.

【0009】請求項3記載の発明では、前記補正値設定
手段における前記所定の運転条件が、各気筒における点
火時期及び空燃比が同一である運転条件である構成とし
た。かかる構成によると、各気筒間における点火時期又
は/及び空燃比の違いによる燃焼圧のばらつきが、燃焼
圧検出手段の検出ばらつきとして検出されてしまうこと
を回避できる。
According to the third aspect of the present invention, the predetermined operating condition in the correction value setting means is an operating condition in which the ignition timing and the air-fuel ratio in each cylinder are the same. With such a configuration, it is possible to prevent the combustion pressure variation due to the difference in the ignition timing or / and the air-fuel ratio between the cylinders from being detected as the detection variation of the combustion pressure detecting means.

【0010】請求項4記載の発明では、前記補正値設定
手段が、前記燃焼圧検出手段により検出される各気筒別
の燃焼圧を、所定の積分区間においてそれぞれに積分
し、この各気筒別の燃焼圧積分値に基づき各気筒別の補
正値を設定する構成とした。かかる構成によると、燃焼
圧を所定の積分区間で積分することで、燃焼圧検出手段
の検出信号にノイズが重畳しても、かかるノイズによっ
て補正値が誤設定されてしまうことを抑止できる。
According to a fourth aspect of the present invention, the correction value setting means integrates the combustion pressure of each cylinder detected by the combustion pressure detecting means into a predetermined integration interval, and the correction value setting means of each cylinder The configuration is such that the correction value for each cylinder is set based on the combustion pressure integrated value. According to such a configuration, by integrating the combustion pressure in a predetermined integration section, even if noise is superimposed on the detection signal of the combustion pressure detection means, it is possible to prevent the correction value from being erroneously set due to the noise.

【0011】請求項5記載の発明では、前記補正値設定
手段が、各気筒別に前記燃焼圧積分値の平均値を求める
と共に、該各気筒別の平均値に基づいて全気筒における
燃焼圧積分値の平均値を求め、各気筒別の平均値と全気
筒における平均値との偏差に基づいて各気筒別の補正値
を設定する構成とした。かかる構成によると、各気筒別
の燃焼圧積分値を平均化することで、各気筒における燃
焼サイクル毎の燃焼圧ばらつきの影響を抑止でき、ま
た、かかる気筒毎に求めた平均値に基づいて全気筒の積
分値平均値を求めることで、目標とする燃焼圧積分値を
精度良く設定でき、前記気筒別の平均値と全気筒におけ
る平均値との偏差に基づいて補正値を設定することで、
各気筒別の補正値を精度良く設定できる。
According to a fifth aspect of the present invention, the correction value setting means obtains an average value of the combustion pressure integrated value for each cylinder, and based on the average value of each cylinder, the combustion pressure integrated value in all cylinders. Is calculated, and the correction value for each cylinder is set based on the deviation between the average value for each cylinder and the average value for all cylinders. With such a configuration, by averaging the combustion pressure integrated values for each cylinder, it is possible to suppress the influence of variations in combustion pressure for each combustion cycle in each cylinder, and based on the average value obtained for each cylinder. By obtaining the integrated value average value of the cylinders, it is possible to accurately set the target combustion pressure integrated value, by setting a correction value based on the deviation between the average value for each cylinder and the average value in all cylinders,
The correction value for each cylinder can be set accurately.

【0012】[0012]

【発明の実施の形態】以下に本発明の実施の形態を説明
する。システム構成を示す図2において、内燃機関1に
は、エアクリーナ2,吸気ダクト3,吸気マニホールド
4を介して空気が吸入される。前記吸気ダクト3には、
図示しないアクセルペダルと連動するバタフライ式のス
ロットル弁5が介装されており、該スロットル弁5によ
って機関の吸入空気量が調整されるようになっている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. In FIG. 2 showing the system configuration, air is taken into the internal combustion engine 1 through an air cleaner 2, an intake duct 3, and an intake manifold 4. In the intake duct 3,
A butterfly-type throttle valve 5 that interlocks with an accelerator pedal (not shown) is interposed, and the throttle valve 5 adjusts the intake air amount of the engine.

【0013】また、前記吸気マニホールド4の各ブラン
チ部には、各気筒別に電磁式の燃料噴射弁6が設けられ
ており、該燃料噴射弁6から噴射供給される燃料量の電
子制御によって所定空燃比の混合気が形成される。ここ
で、前記各気筒別に設けられる燃料噴射弁6を個別に制
御することで、各気筒別に異なる空燃比の混合気を形成
させることが可能となっている。
An electromagnetic fuel injection valve 6 is provided for each cylinder in each branch portion of the intake manifold 4, and a predetermined amount is controlled by electronically controlling the amount of fuel injected and supplied from the fuel injection valve 6. A fuel-air mixture is formed. Here, by individually controlling the fuel injection valve 6 provided for each cylinder, it is possible to form an air-fuel mixture having a different air-fuel ratio for each cylinder.

【0014】シリンダ内に吸気弁7を介して吸引された
混合気は、各気筒毎に設けられる点火栓8による火花点
火によって着火燃焼し、燃焼排気は排気弁9を介して排
出され、排気マニホールド10によって図示しない触媒,
マフラーに導かれる。前記燃料噴射弁6による燃料噴射
量,点火栓8の点火時期を制御するコントロールユニッ
ト11は、マイクロコンピュータを含んで構成され、熱線
式エアフローメータ12からの吸入空気量信号Q,スロッ
トルセンサ13からのスロットル弁開度信号TVO,クラ
ンク角センサ14からのクランク角信号,水温センサ15か
らの冷却水温度信号Tw,筒内圧センサ16からの筒内圧
信号P等が入力される。
The air-fuel mixture sucked into the cylinder through the intake valve 7 is ignited and burned by spark ignition by the spark plug 8 provided for each cylinder, and the combustion exhaust gas is discharged through the exhaust valve 9 and the exhaust manifold. Catalyst not shown by 10,
Guided by the muffler. The control unit 11 for controlling the fuel injection amount by the fuel injection valve 6 and the ignition timing of the spark plug 8 is constituted by including a microcomputer, and the intake air amount signal Q from the hot wire type air flow meter 12 and the throttle sensor 13 The throttle valve opening signal TVO, the crank angle signal from the crank angle sensor 14, the cooling water temperature signal Tw from the water temperature sensor 15, the cylinder pressure signal P from the cylinder pressure sensor 16, and the like are input.

【0015】前記熱線式エアフローメータ12は、感温抵
抗の吸入空気量による抵抗変化に基づいて機関1の吸入
空気量を質量流量として直接的に検出するものである。
前記スロットルセンサ13は、スロットル弁5の開度TV
Oをポテンショメータによって検出するものである。前
記クランク角センサ14は、単位クランク角毎の単位角度
信号と、所定ピストン位置毎の基準角度信号とをそれぞ
れ出力する。ここで、前記単位角度信号の所定時間内に
おける発生数、又は、前記基準角度信号の発生周期を計
測することで機関回転速度Neを算出可能である。
The hot-wire air flow meter 12 directly detects the intake air amount of the engine 1 as a mass flow rate based on the resistance change of the temperature-sensitive resistance due to the intake air amount.
The throttle sensor 13 is an opening TV of the throttle valve 5.
O is detected by a potentiometer. The crank angle sensor 14 outputs a unit angle signal for each unit crank angle and a reference angle signal for each predetermined piston position. Here, the engine rotation speed Ne can be calculated by measuring the number of generations of the unit angle signal within a predetermined time or the generation cycle of the reference angle signal.

【0016】前記水温センサ15は、機関1のウォーター
ジャケット内の冷却水温度Twを、機関温度を代表する
温度として検出するものである。前記筒内圧センサ16
(燃焼圧検出手段)は、実開昭63−17432号公報
に開示されるような点火栓8の座金として装着されるリ
ング状の圧電素子からなるものであって、点火栓の締付
け荷重に対する相対圧として燃焼圧を検出するセンサで
あり、各気筒の点火栓8毎に装着することで各気筒別に
筒内圧P(燃焼圧)が検出できるようになっている。
尚、前記筒内圧センサ16は、上記のように点火栓8の座
金として装着されるタイプの他、センサ部を直接燃焼室
内に臨ませて筒内圧を絶対圧として検出するタイプのも
のであっても良い。
The water temperature sensor 15 detects the cooling water temperature Tw in the water jacket of the engine 1 as a temperature representing the engine temperature. In-cylinder pressure sensor 16
The (combustion pressure detecting means) is composed of a ring-shaped piezoelectric element mounted as a washer of the spark plug 8 as disclosed in Japanese Utility Model Laid-Open No. Sho 63-17432, and is relative to the tightening load of the spark plug. This is a sensor that detects combustion pressure as pressure, and by mounting it on each spark plug 8 of each cylinder, the in-cylinder pressure P (combustion pressure) can be detected for each cylinder.
The in-cylinder pressure sensor 16 is of a type that is mounted as a washer of the spark plug 8 as described above, and is of a type that directly detects the in-cylinder pressure in the combustion chamber and detects the in-cylinder pressure as an absolute pressure. Is also good.

【0017】前記コントロールユニット11は、機関負荷
や機関回転速度等の機関運転条件に基づいて基本点火時
期(基本点火進角値)を決定し、点火栓8による点火時
期を制御する。また、コントロールユニット11による前
記燃料噴射弁6の噴射量の制御は以下のようにして行な
われる。
The control unit 11 determines the basic ignition timing (basic ignition advance value) based on engine operating conditions such as engine load and engine speed, and controls the ignition timing by the spark plug 8. The control of the injection amount of the fuel injection valve 6 by the control unit 11 is performed as follows.

【0018】前記熱線式エアフローメータ12で検出され
た吸入空気量Qと、クランク角センサ14からの検出信号
から算出した機関回転速度Neとに基づいて目標空燃比
に対応する基本燃料噴射量Tp(=K×Q/Ne:Kは
定数)を算出し、該基本燃料噴射量Tpに冷却水温度T
wなどの運転条件に応じた補正を施して最終的な燃料噴
射量Tiを求める。そして、前記燃料噴射量Tiに相当
するパルス幅の駆動パルス信号を前記燃料噴射弁6に所
定タイミングで出力する。燃料噴射弁6には、図示しな
いプレッシャレギュレータで所定圧力に調整された燃料
が供給されるようになっており、前記駆動パルス信号の
パルス幅に比例する量の燃料を噴射供給して、所定空燃
比の混合気を形成させる。
Based on the intake air amount Q detected by the hot wire air flow meter 12 and the engine speed Ne calculated from the detection signal from the crank angle sensor 14, the basic fuel injection amount Tp (corresponding to the target air-fuel ratio is calculated. = K × Q / Ne: K is a constant), and the cooling water temperature T is added to the basic fuel injection amount Tp.
A final fuel injection amount Ti is obtained by performing a correction according to an operating condition such as w. Then, a drive pulse signal having a pulse width corresponding to the fuel injection amount Ti is output to the fuel injection valve 6 at a predetermined timing. The fuel, which is adjusted to a predetermined pressure by a pressure regulator (not shown), is supplied to the fuel injection valve 6, and an amount of fuel proportional to the pulse width of the drive pulse signal is injected and supplied to a predetermined space. A fuel-air mixture is formed.

【0019】更に、前記コントロールユニット11は、前
記筒内圧センサ16からの検出信号に基づいて燃焼状態の
検出を行うが、前記筒内圧センサ16のばらつき(センサ
自体のばらつき及び締付け荷重のばらつきによる出力ば
らつきを含む)を、図3のフローチャートに示すように
して補正する構成としてある。尚、前記コントロールユ
ニット11は、前記図3のフローチャートに示すように、
補正値設定手段及び燃焼圧補正手段としての機能を有す
る。
Further, the control unit 11 detects the combustion state based on the detection signal from the in-cylinder pressure sensor 16. However, the variation in the in-cylinder pressure sensor 16 (the output due to the variation of the sensor itself and the variation of the tightening load). (Including variations) is corrected as shown in the flowchart of FIG. The control unit 11 is, as shown in the flow chart of FIG.
It has a function as a correction value setting means and a combustion pressure correction means.

【0020】図3のフローチャートにおいて、ステップ
1(図中ではS1としてある。以下同様)では、センサ
ばらつきの学習を行う所定の運転条件であるか否かを判
別する。前記所定の運転条件としては、燃焼圧が安定す
るアイドル運転時又は走行抵抗が一定の運転時であっ
て、かつ、各気筒の点火時期及び空燃比(燃料噴射量)
が同一である運転時とすることが好ましい。尚、気筒別
の燃焼圧検出に基づいて気筒別に点火時期及び燃料噴射
量を個別に制御する構成の場合には、ばらつき学習のた
めに強制的に点火時期及び空燃比(燃料噴射量)を、各
気筒同一とすれば良い。
In the flow chart of FIG. 3, in step 1 (denoted as S1 in the figure; the same applies hereinafter), it is determined whether or not a predetermined operating condition for learning the sensor variation is satisfied. The predetermined operating conditions include an idle operation in which combustion pressure is stable or an operation in which running resistance is constant, and the ignition timing and air-fuel ratio (fuel injection amount) of each cylinder.
Are preferably the same during operation. When the ignition timing and the fuel injection amount are individually controlled for each cylinder based on the combustion pressure detection for each cylinder, the ignition timing and the air-fuel ratio (fuel injection amount) are compulsorily set for learning the variation. All cylinders should be the same.

【0021】前記所定の運転条件である場合には、ステ
ップ2へ進み、各気筒に設けられた筒内圧センサ16の検
出信号をそれぞれA/D変換して読み込み、該読み込ん
だ筒内圧を各気筒別に所定の積分区間(例えば圧縮TD
C〜ATDC100 °)で積分して、各気筒別に積分値P
i(#1)〜Pi(#n)を得る。ステップ3では、各
気筒別の積分値Pi(#1)〜Pi(#n)それぞれに
ついて平均値Piav(#1)〜Piav(#n)を求め
る。
If the predetermined operating conditions are met, the routine proceeds to step 2, where the detection signals of the cylinder pressure sensor 16 provided in each cylinder are A / D converted and read, and the read cylinder pressure is read in each cylinder. In addition, a predetermined integration interval (for example, compression TD
C to ATDC 100 °) and integrate value P for each cylinder
i (# 1) to Pi (#n) are obtained. In step 3, average values Piav (# 1) to Piav (#n) are obtained for the respective integrated values Pi (# 1) to Pi (#n) for each cylinder.

【0022】[0022]

【数1】 [Equation 1]

【0023】ステップ4では、前記各気筒別の平均値P
iav(#1)〜Piav(#n)の平均値Piavを、全気
筒における平均値として求める。 Piav={Piav(#1)+Piav(#2)・・・+Piav(#n)}/n ステップ5では、前記各気筒別の平均値Piav(#1)
〜Piav(#n)と、全気筒における平均値Piavとの
偏差をそれぞれに算出し、各気筒別の補正値L(#1)
〜L(#n)を設定する。
In step 4, the average value P for each cylinder is
An average value Piav of iav (# 1) to Piav (#n) is obtained as an average value in all cylinders. Piav = {Piav (# 1) + Piav (# 2) ... + Piav (#n)} / n In step 5, the average value Piav (# 1) for each cylinder.
.About.Piav (#n) and the average value Piav of all cylinders are calculated respectively, and a correction value L (# 1) for each cylinder
~ L (#n) is set.

【0024】 L(#1)=−{Piav(#1)−Piav} L(#2)=−{Piav(#2)−Piav} : : L(#n)=−{Piav(#n)−Piav} 前記補正値L(#1)〜L(#n)は、上式によって、
各気筒別の積分値Pi(#1)〜Pi(#n)を、全気
筒における平均値Piavに一致させるように設定される
ことになる。
L (# 1) =-{Piav (# 1) -Piav} L (# 2) =-{Piav (# 2) -Piav} :: L (#n) =-{Piav (#n) -Piav} The correction values L (# 1) to L (#n) are given by
The integrated values Pi (# 1) to Pi (#n) for each cylinder are set to match the average value Piav for all cylinders.

【0025】ステップ6では、前記設定された各気筒別
の補正値L(#1)〜L(#n)に基づいて、前記各気
筒別の積分値Pi(#1)〜Pi(#n)を補正設定
し、該補正結果を最終的な検出結果として出力する。 Pi(#1)=Pi(#1)+L(#1) Pi(#2)=Pi(#2)+L(#2) : : Pi(#n)=Pi(#n)+L(#n) 前記補正値L(#1)〜L(#n)で補正設定された各
気筒別の積分値Pi(#1)〜Pi(#n)に基づい
て、全気筒トータルでの燃焼圧変動(機関出力変動)を
算出する構成とすれば、気筒間における筒内圧センサ16
のばらつきによって燃焼圧変動を誤判定してしまうこと
を回避できる。
In step 6, based on the set correction values L (# 1) to L (#n) for each cylinder, the integrated values Pi (# 1) to Pi (#n) for each cylinder are set. Is corrected and set, and the correction result is output as a final detection result. Pi (# 1) = Pi (# 1) + L (# 1) Pi (# 2) = Pi (# 2) + L (# 2) :: Pi (#n) = Pi (#n) + L (#n) Based on the integrated values Pi (# 1) to Pi (#n) for each cylinder corrected and set by the correction values L (# 1) to L (#n), the combustion pressure fluctuations (engine Output fluctuation), the in-cylinder pressure sensor 16
It is possible to prevent the combustion pressure fluctuation from being erroneously determined due to the variation of.

【0026】ステップ7では、前記全気筒トータルでの
燃焼圧変動ΔΣPiを、例えば以下のようにして算出す
る。 ΣPi={Pi(#1)+Pi(#2)+・・・+Pi(#n)}/n ΔΣPi=ΣPi/ΣPi-1 尚、前記ΣPi-1は、積分値平均値ΣPiの前回値を示
す。
In step 7, the combustion pressure fluctuation ΔΣPi in all the cylinders is calculated as follows, for example. ΣPi = {Pi (# 1) + Pi (# 2) + ... + Pi (#n)} / n ΔΣPi = ΣPi / ΣPi −1 Note that ΣPi −1 represents the previous value of the average integrated value ΣPi. .

【0027】ここで、前記燃焼圧変動ΔΣPiが許容レ
ベルを越えない範囲で、点火時期をリタードし、また、
空燃比をリーン化することで、機関安定性を損なうこと
なく排気性状,燃費の向上を図ることができる。そし
て、前記ΣPiの演算に用いる各気筒毎の積分値Pi
(#n)は検出ばらつきを補正された値であるから、検
出ばらつきを燃焼圧変動と誤判断してリタード,リーン
化が進められなくなることがなく、最大限のリタード代
及びリーン化代が得られる。
Here, the ignition timing is retarded within a range in which the combustion pressure fluctuation ΔΣPi does not exceed an allowable level, and
By making the air-fuel ratio lean, it is possible to improve exhaust properties and fuel efficiency without impairing engine stability. Then, the integrated value Pi for each cylinder used for the calculation of ΣPi
Since (#n) is a value in which the detection variation is corrected, the detection variation is not misjudged as the combustion pressure variation and the retardation and the leaning cannot be advanced, and the maximum retardation and the leaning are obtained. To be

【0028】[0028]

【発明の効果】以上説明したように、請求項1記載の発
明によると、所定の運転条件において検出された各気筒
別の燃焼圧のばらつきに基づいて、燃焼圧検出値を各気
筒で揃えるように各気筒別に燃焼圧補正値を設定するの
で、燃焼圧検出手段の検出ばらつきによる検出値のばら
つきが補正され、以て、全気筒トータルでの燃焼圧変動
を高精度に検出できるようになるという効果がある。
As described above, according to the first aspect of the present invention, the combustion pressure detection values are made uniform for each cylinder based on the variation in the combustion pressure of each cylinder detected under a predetermined operating condition. Since the combustion pressure correction value is set for each cylinder, the variation of the detection value due to the detection variation of the combustion pressure detection means is corrected, and thus the combustion pressure fluctuation in all the cylinders can be detected with high accuracy. effective.

【0029】請求項2記載の発明によると、燃焼圧が安
定する運転条件において、燃焼圧検出手段の検出ばらつ
きを精度良く特定でき、以て、補正値を精度良く設定す
ることができるという効果がある。請求項3記載の発明
によると、各気筒間における点火時期又は/及び空燃比
の違いによる燃焼圧のばらつきが、燃焼圧検出手段の検
出ばらつきとして検出されることがなく、各気筒別の補
正値を高精度に設定できるという効果がある。
According to the second aspect of the present invention, the detection variation of the combustion pressure detecting means can be specified with high accuracy under the operating condition where the combustion pressure is stable, so that the correction value can be set with high accuracy. is there. According to the invention described in claim 3, the variation in the combustion pressure due to the difference in the ignition timing or / and the air-fuel ratio between the cylinders is not detected as the variation in the detection by the combustion pressure detecting means, and the correction value for each cylinder is obtained. Has an effect that can be set with high accuracy.

【0030】請求項4記載の発明によると、燃焼圧を所
定の積分区間で積分することで、燃焼圧検出手段の検出
信号にノイズが重畳しても、かかるノイズが大きく影響
して補正値が誤設定されてしまうことを回避できるとい
う効果がある。請求項5記載の発明によると、各気筒に
おける燃焼サイクル毎の燃焼圧ばらつきの影響を抑止で
きると共に、目標とする燃焼圧積分値を精度良く設定で
き、以て、各気筒別の補正値を精度良く設定できるとい
う効果がある。
According to the invention described in claim 4, by integrating the combustion pressure in a predetermined integration section, even if noise is superposed on the detection signal of the combustion pressure detecting means, the noise greatly influences the correction value. This has the effect of avoiding erroneous settings. According to the invention of claim 5, it is possible to suppress the influence of variations in the combustion pressure in each combustion cycle in each cylinder, and to set the target combustion pressure integrated value with high accuracy, so that the correction value for each cylinder is accurate. The effect is that it can be set well.

【図面の簡単な説明】[Brief description of drawings]

【図1】請求項1の発明にかかる装置の構成ブロック
図。
FIG. 1 is a configuration block diagram of an apparatus according to the invention of claim 1.

【図2】実施の形態における機関のシステム構成図。FIG. 2 is a system configuration diagram of the engine in the embodiment.

【図3】実施の形態における燃焼圧検出の様子を示すフ
ローチャート。
FIG. 3 is a flowchart showing how combustion pressure is detected in the embodiment.

【図4】燃焼圧検出のばらつきの様子を示す図。FIG. 4 is a diagram showing how combustion pressure detection varies.

【符号の説明】[Explanation of symbols]

1 内燃機関 4 吸気マニホールド 5 スロットル弁 6 燃料噴射弁 8 点火栓 10 排気マニホールド 11 コントロールユニット 12 熱線式エアフローメータ 13 スロットルセンサ 14 クランク角センサ 15 水温センサ 16 筒内圧センサ 1 Internal Combustion Engine 4 Intake Manifold 5 Throttle Valve 6 Fuel Injection Valve 8 Spark Plug 10 Exhaust Manifold 11 Control Unit 12 Hot Wire Air Flow Meter 13 Throttle Sensor 14 Crank Angle Sensor 15 Water Temperature Sensor 16 Cylinder Pressure Sensor

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G01M 15/00 G01M 15/00 Z ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location G01M 15/00 G01M 15/00 Z

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】機関の各気筒別に燃焼圧を検出する燃焼圧
検出手段と、 所定の運転条件において前記燃焼圧検出手段で検出され
た各気筒別の燃焼圧に基づいて、各気筒での燃焼圧検出
値を略同一とすべく各気筒別に燃焼圧検出値の補正値を
設定する補正値設定手段と、 前記燃焼圧検出手段で検出された各気筒別の燃焼圧を前
記補正値設定手段で設定された対応する補正値に基づい
てそれぞれ補正設定して最終的な検出結果として出力す
る燃焼圧補正手段と、 を含んで構成されたことを特徴とする内燃機関の燃焼圧
検出装置。
1. Combustion pressure detection means for detecting combustion pressure for each cylinder of the engine, and combustion in each cylinder based on combustion pressure for each cylinder detected by the combustion pressure detection means under predetermined operating conditions. A correction value setting means for setting a correction value for the combustion pressure detection value for each cylinder so that the pressure detection values are substantially the same, and the combustion pressure for each cylinder detected by the combustion pressure detection means by the correction value setting means. A combustion pressure detection device for an internal combustion engine, comprising: a combustion pressure correction unit that performs correction settings based on corresponding set correction values and outputs the final detection results.
【請求項2】前記補正値設定手段における前記所定の運
転条件が、機関のアイドル運転時と走行抵抗が一定であ
る運転時とのいずれか一方であることを特徴とする請求
項1記載の内燃機関の燃焼圧検出装置。
2. The internal combustion engine according to claim 1, wherein the predetermined operating condition in the correction value setting means is either one of an idle operation of the engine and an operation with a constant running resistance. Engine combustion pressure detector.
【請求項3】前記補正値設定手段における前記所定の運
転条件が、各気筒における点火時期及び空燃比が同一で
ある運転条件であることを特徴とする請求項1又は2に
記載の内燃機関の燃焼圧検出装置。
3. The internal combustion engine according to claim 1, wherein the predetermined operating condition in the correction value setting means is an operating condition in which the ignition timing and the air-fuel ratio in each cylinder are the same. Combustion pressure detector.
【請求項4】前記補正値設定手段が、前記燃焼圧検出手
段により検出される各気筒別の燃焼圧を、所定の積分区
間においてそれぞれに積分し、この各気筒別の燃焼圧積
分値に基づき各気筒別の補正値を設定することを特徴と
する請求項1〜3のいずれか1つに記載の内燃機関の燃
焼圧検出装置。
4. The correction value setting means integrates the combustion pressure of each cylinder detected by the combustion pressure detecting means in a predetermined integration section, and based on the combustion pressure integration value of each cylinder. The combustion pressure detecting device for an internal combustion engine according to claim 1, wherein a correction value is set for each cylinder.
【請求項5】前記補正値設定手段が、各気筒別に前記燃
焼圧積分値の平均値を求めると共に、該各気筒別の平均
値に基づいて全気筒における燃焼圧積分値の平均値を求
め、各気筒別の平均値と全気筒における平均値との偏差
に基づいて各気筒別の補正値を設定することを特徴とす
る請求項4記載の内燃機関の燃焼圧検出装置。
5. The correction value setting means obtains an average value of the combustion pressure integral values for each cylinder, and obtains an average value of the combustion pressure integral values for all cylinders based on the average value for each cylinder. The combustion pressure detecting device for an internal combustion engine according to claim 4, wherein a correction value for each cylinder is set based on a deviation between the average value for each cylinder and the average value for all cylinders.
JP23050195A 1995-09-07 1995-09-07 Combustion pressure detector for internal combustion engine Pending JPH0972809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23050195A JPH0972809A (en) 1995-09-07 1995-09-07 Combustion pressure detector for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23050195A JPH0972809A (en) 1995-09-07 1995-09-07 Combustion pressure detector for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH0972809A true JPH0972809A (en) 1997-03-18

Family

ID=16908762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23050195A Pending JPH0972809A (en) 1995-09-07 1995-09-07 Combustion pressure detector for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0972809A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9505028B2 (en) * 2012-03-30 2016-11-29 3M Innovative Properties Company Protective coating for low index material
JP2022146518A (en) * 2021-03-22 2022-10-05 本田技研工業株式会社 estimation device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9505028B2 (en) * 2012-03-30 2016-11-29 3M Innovative Properties Company Protective coating for low index material
JP2022146518A (en) * 2021-03-22 2022-10-05 本田技研工業株式会社 estimation device

Similar Documents

Publication Publication Date Title
US5682856A (en) Apparatus for controlling an internal combustion engine and method thereof
JP2884472B2 (en) Fuel property detection device for internal combustion engine
JPH0364653A (en) Pressure in cylinder detection device of internal combustion engine
JPH09209814A (en) Control device for internal combustion engine
US5765530A (en) Method of controlling ignition timing of internal combustion engine and apparatus therefore
JPH09195826A (en) Air-fuel ratio control method of multicylinder engine
US5016595A (en) Air-fuel ratio control device for internal combustion engine
JP2829698B2 (en) Device for detecting combustion state of internal combustion engine
US5571958A (en) Apparatus and method for detecting misfire in an internal combustion engine
JP3502206B2 (en) Indicated mean effective pressure detection device for internal combustion engine
JPH0972809A (en) Combustion pressure detector for internal combustion engine
JP3639882B2 (en) Control device for internal combustion engine
US6901920B2 (en) Engine control apparatus having cylinder-by-cylinder feedback control
JPH09195844A (en) Apparatus for detecting inner pressure of cylinder of internal combustion engine
JPH09133042A (en) Cylinder pressure detector device for internal combustion engine
JPH04101044A (en) Fuel feeding controller for multicylinder internal combustion engine
JP2750797B2 (en) Engine surge detector and air-fuel ratio controller
JPS63268951A (en) Fuel supply control device for internal combustion engine
JPH0495838A (en) Detecting apparatus for internal pressure of cylinder of internal combustion engine
JP2855381B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0493633A (en) Cylinder internal pressure detection device for internal combustion engine
JP2855383B2 (en) Interrupt injection control device for electronically controlled fuel injection type internal combustion engine
JPH07229442A (en) Intake air flow detecting device for engine
JP2005201163A (en) Control device for internal combustion engine
JP3376201B2 (en) Air-fuel ratio control device for internal combustion engine