JP3502206B2 - Indicated mean effective pressure detection device for internal combustion engine - Google Patents

Indicated mean effective pressure detection device for internal combustion engine

Info

Publication number
JP3502206B2
JP3502206B2 JP28880495A JP28880495A JP3502206B2 JP 3502206 B2 JP3502206 B2 JP 3502206B2 JP 28880495 A JP28880495 A JP 28880495A JP 28880495 A JP28880495 A JP 28880495A JP 3502206 B2 JP3502206 B2 JP 3502206B2
Authority
JP
Japan
Prior art keywords
cylinder
effective pressure
value
mean effective
indicated mean
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28880495A
Other languages
Japanese (ja)
Other versions
JPH09126041A (en
Inventor
憲一 町田
博和 清水
Original Assignee
株式会社日立ユニシアオートモティブ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ユニシアオートモティブ filed Critical 株式会社日立ユニシアオートモティブ
Priority to JP28880495A priority Critical patent/JP3502206B2/en
Publication of JPH09126041A publication Critical patent/JPH09126041A/en
Application granted granted Critical
Publication of JP3502206B2 publication Critical patent/JP3502206B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Of Engines (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は内燃機関の図示平均
有効圧検出装置に関し、詳しくは、各気筒別に設けられ
る筒内圧検出手段の検出ばらつきによる図示平均有効圧
の検出ばらつきを補正する技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an indicated mean effective pressure detecting device for an internal combustion engine, and more particularly to a technique for correcting the indicated mean effective pressure detection variation due to the detection variation of in-cylinder pressure detection means provided for each cylinder.

【0002】[0002]

【従来の技術】従来から、機関の各気筒に設けた筒内圧
センサ(筒内圧検出手段)の検出結果に基づいて各気筒
別に図示平均有効圧(又は図示平均有効圧相当値)Pi
を算出し、該図示平均有効圧Piに基づいて失火診断を
行ったり、前記図示平均有効圧Piの変動に基づいてサ
ージトルクを検出して、空燃比や点火時期を制御するこ
とが行われていた。
2. Description of the Related Art Conventionally, indicated average effective pressure (or indicated average effective pressure equivalent value) Pi for each cylinder based on the detection result of an in-cylinder pressure sensor (in-cylinder pressure detection means) provided in each cylinder of an engine.
Is calculated and the misfire diagnosis is performed based on the indicated mean effective pressure Pi, or the surge torque is detected based on the fluctuation of the indicated mean effective pressure Pi to control the air-fuel ratio and the ignition timing. It was

【0003】[0003]

【発明が解決しようとする課題】ところで、前記筒内圧
センサには、センサ自体に出力ばらつきがあると共に、
特にリング状の圧電素子を点火栓の座金として装着し、
点火栓の締付け荷重に対する相対圧として筒内圧を検出
する構成のセンサを用いる場合には、センサ自体のばら
つきに加えて、前記締付け荷重のばらつきによって、セ
ンサ出力にばらつきを生じる。
By the way, in the in-cylinder pressure sensor, there is an output variation in the sensor itself, and
Especially, a ring-shaped piezoelectric element is attached as a washer for the spark plug,
When a sensor configured to detect the in-cylinder pressure as a relative pressure to the tightening load of the spark plug is used, the sensor output varies due to the variation of the tightening load in addition to the variation of the sensor itself.

【0004】このため、例えば実際には気筒間で図示平
均有効圧の差がない状態であっても、前記センサ出力の
ばらつきによって、見掛け上は気筒間の図示平均有効圧
に偏差が生じ、サージトルクが誤検出される惧れがあっ
た。また、失火診断などにおいては、筒内圧センサの出
力ばらつきによって、図示平均有効圧の絶対値にばらつ
きを生じると、特に失火の有無による図示平均有効圧の
差が小さい運転条件では、診断精度が悪化してしまうと
いう問題もある。
Therefore, for example, even if there is actually no difference in the indicated mean effective pressure between the cylinders, a deviation in the indicated mean effective pressure between the cylinders is apparently caused by the variation in the sensor output, and a surge occurs. There was a fear that the torque was erroneously detected. Further, in misfire diagnosis and the like, when the absolute value of the indicated mean effective pressure varies due to variations in the output of the in-cylinder pressure sensor, the diagnostic accuracy deteriorates especially under operating conditions where the difference in the indicated mean effective pressure due to the presence or absence of misfire is small. There is also the problem of doing it.

【0005】本発明は上記問題点に鑑みなされたもので
あり、筒内圧センサの出力ばらつきがあっても、各気筒
の図示平均有効圧を精度良く検出できるようにすること
を目的とする。
The present invention has been made in view of the above problems, and it is an object of the present invention to accurately detect the indicated mean effective pressure of each cylinder even if there is a variation in the output of the in-cylinder pressure sensor.

【0006】[0006]

【課題を解決するための手段】そのため請求項1記載の
発明は、以下に示すように構成される。筒内圧検出手段
は、機関の各気筒それぞれに設けられ、各気筒の筒内圧
を個別に検出する。図示平均有効圧算出手段は、前記筒
内圧検出手段で検出される各気筒別の筒内圧に基づいて
各気筒別に図示平均有効圧に相当する値を算出する。
Therefore, the invention according to claim 1 is configured as follows . Cylinder pressure detection means
Is provided in each cylinder of the engine and detects the cylinder pressure of each cylinder individually. The indicated mean effective pressure calculating means calculates a value corresponding to the indicated mean effective pressure for each cylinder based on the in-cylinder pressure for each cylinder detected by the in-cylinder pressure detecting means.

【0007】ここで、補正値学習手段は、前記図示平均
有効圧算出手段で算出された各気筒別の値と、機関運転
条件に対応して予め記憶された各気筒共通の基準値とを
比較して、各気筒別の補正値を学習する。また、基準値
補正手段は、前記補正値学習手段における基準値を、機
関の排気還流率に応じて補正する。そして、補正手段
は、前記補正値学習手段で学習された各気筒別の補正値
に基づいて、前記図示平均有効圧算出手段で算出された
各気筒別の値を補正し、該補正された値を最終的な各気
筒別の図示平均有効圧相当値として出力する。
Here, the correction value learning means compares the value for each cylinder calculated by the indicated mean effective pressure calculation means with a reference value common to each cylinder stored in advance corresponding to the engine operating condition. Then, the correction value for each cylinder is learned. Also, the standard value
The correction means uses the reference value in the correction value learning means as a function.
Correct according to the exhaust gas recirculation rate of Seki. Then, the correction means corrects the value for each cylinder calculated by the indicated mean effective pressure calculation means based on the correction value for each cylinder learned by the correction value learning means, and the corrected value Is output as the final indicated equivalent effective pressure value for each cylinder.

【0008】かかる構成によると、機関運転条件から推
定される図示平均有効圧と、実際に筒内圧の検出結果に
基づいて算出した図示平均有効圧とが一致しない場合に
は、筒内圧検出手段の出力ばらつきによるものであると
見做し、図示平均有効圧相当値を補正するための補正値
を学習する。従って、気筒間において実際にはない図示
平均有効圧の偏差が見掛け上生じることを回避でき、ま
た、図示平均有効圧の絶対値のずれも補正できる。
た、前記補正値学習手段における基準値を、機関の排気
還流率に応じて補正するので、図示平均有効圧は、充填
効率によって変化し、充填効率は排気還流率に応じて変
化するので、排気還流率の違いによる図示平均有効圧の
変化を、筒内圧検出手段における検出ばらつきとして誤
学習してしまうことを回避できる。
According to this structure, when the indicated mean effective pressure estimated from the engine operating condition and the indicated mean effective pressure actually calculated based on the detection result of the in-cylinder pressure do not match, the in-cylinder pressure detecting means operates. It is considered that this is due to output variation, and a correction value for correcting the indicated mean effective pressure equivalent value is learned. Therefore, it is possible to avoid the apparent deviation of the indicated mean effective pressure between cylinders from occurring, and it is also possible to correct the deviation of the absolute value of the indicated mean effective pressure. Well
Further, the reference value in the correction value learning means is set to the exhaust gas of the engine.
Since the correction is made according to the reflux rate, the indicated average effective pressure is
The charging efficiency changes depending on the exhaust gas recirculation rate.
Of the indicated average effective pressure due to the difference in exhaust gas recirculation rate.
The change is mistaken as a detection variation in the cylinder pressure detection means.
You can avoid learning.

【0009】請求項2記載の発明では、前記筒内圧検出
手段で検出される各気筒別の筒内圧と前記図示平均有効
圧算出手段で算出される各気筒別の図示平均有効圧相当
値との少なくとも一方に基づいて、失火の有無を各気筒
別に判別する失火判別手段と、この失火判別手段によっ
て失火発生が判別されたときに、前記補正値学習手段に
よる補正値の学習を少なくとも失火発生気筒について禁
止する学習禁止手段と、を設ける構成とした。
According to the second aspect of the present invention, the in-cylinder pressure for each cylinder detected by the in-cylinder pressure detecting means and the indicated mean effective pressure equivalent value for each cylinder calculated by the indicated mean effective pressure calculating means are set. Based on at least one, misfire discrimination means for discriminating the presence or absence of misfire for each cylinder, and when the misfire discrimination means discriminates the occurrence of misfire, the correction value learning means learns the correction value for at least the misfiring cylinder. The learning prohibition means for prohibiting is provided.

【0010】かかる構成によると、失火による図示平均
有効圧の低下を、筒内圧検出手段の検出ばらつきによる
ものとして補正値を誤学習することを防止でき、学習精
度を向上させることができる。請求項3記載の発明で
は、前記補正値学習手段が、予め設定された機関運転条
件に限って補正値を学習する構成とした。
With this configuration, it is possible to prevent the correction value from being erroneously learned as the decrease in the indicated mean effective pressure due to misfire due to the variation in the detection by the in-cylinder pressure detection means, and it is possible to improve the learning accuracy. In the invention according to claim 3, the correction value learning means is configured to learn the correction value only under preset engine operating conditions.

【0011】かかる構成によると、筒内圧,図示平均有
効圧相当値が安定する運転条件で補正値を学習させるこ
とができる一方、例えば前記失火判別において失火の有
無による筒内圧変化が大きく失火を精度良く判別できる
運転条件で補正値を学習させることで、失火による図示
平均有効圧相当値の低下を誤学習してしまうことを確実
に回避できる。
According to this structure, the correction value can be learned under the operating condition in which the in-cylinder pressure and the indicated mean effective pressure equivalent value are stable. By learning the correction value under the operating condition that can be discriminated well, it is possible to surely avoid erroneously learning the decrease in the indicated mean effective pressure equivalent value due to misfire.

【0012】請求項4記載の発明では、前記所定の機関
運転条件が、機関負荷と機関回転速度とに基づいて特定
されると共に、前記基準値が機関負荷と機関回転速度と
に応じて設定される構成とした。かかる構成によると、
機関負荷と機関回転速度との組み合わせから図示平均有
効圧を特定できるので、機関負荷と機関回転速度とを特
定することで、正規に得られる図示平均有効圧を精度良
く設定できる。
According to another aspect of the invention, the predetermined engine operating condition is specified based on the engine load and the engine speed, and the reference value is set according to the engine load and the engine speed. It has a configuration. According to this configuration,
Since the indicated mean effective pressure can be specified from the combination of the engine load and the engine rotation speed, by specifying the engine load and the engine speed, it is possible to accurately set the indicated mean effective pressure.

【0013】[0013]

【0014】請求項記載の発明では、前記補正値学習
手段が、基準値と各気筒別の値との比を補正値として学
習する構成とした。かかる構成によると、補正値を図示
平均有効圧相当値の乗算補正項とすることで、各気筒で
算出される図示平均有効圧相当値を基準値に揃えるよう
な補正値が学習されることになる。
According to a fifth aspect of the invention, the correction value learning means learns the ratio between the reference value and the value for each cylinder as the correction value. According to this configuration, the correction value is learned by setting the correction value as the multiplication correction term of the indicated average effective pressure equivalent value so that the indicated average effective pressure equivalent value calculated for each cylinder is aligned with the reference value. Become.

【0015】[0015]

【発明の実施の形態】以下に本発明の実施の形態を説明
する。システム構成を示す図1において、内燃機関1に
は、エアクリーナ2,吸気ダクト3,吸気マニホールド
4を介して空気が吸入される。前記吸気ダクト3には、
図示しないアクセルペダルと連動するバタフライ式のス
ロットル弁5が介装されており、該スロットル弁5によ
って機関の吸入空気量が調整されるようになっている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. In FIG. 1 showing the system configuration, air is taken into the internal combustion engine 1 through an air cleaner 2, an intake duct 3, and an intake manifold 4. In the intake duct 3,
A butterfly-type throttle valve 5 that interlocks with an accelerator pedal (not shown) is interposed, and the throttle valve 5 adjusts the intake air amount of the engine.

【0016】また、前記吸気マニホールド4の各ブラン
チ部には、各気筒別に電磁式の燃料噴射弁6が設けられ
ており、該燃料噴射弁6から噴射供給される燃料量の電
子制御によって目標空燃比の混合気が形成される。シリ
ンダ内に吸気弁7を介して吸引された混合気は、各気筒
毎に設けられる点火栓8による火花点火によって着火燃
焼し、燃焼排気は排気弁9を介して排出され、排気マニ
ホールド10によって図示しない触媒,マフラーに導かれ
る。
Further, an electromagnetic fuel injection valve 6 is provided for each cylinder in each branch portion of the intake manifold 4, and a target space is controlled by electronically controlling the amount of fuel injected and supplied from the fuel injection valve 6. A fuel-air mixture is formed. The air-fuel mixture sucked into the cylinder through the intake valve 7 is ignited and burned by spark ignition by the spark plug 8 provided for each cylinder, and the combustion exhaust is discharged through the exhaust valve 9 and illustrated by the exhaust manifold 10. Not guided by the catalyst and muffler.

【0017】前記燃料噴射弁6による燃料噴射量,点火
栓8の点火時期を制御するコントロールユニット11は、
マイクロコンピュータを含んで構成され、熱線式エアフ
ローメータ12からの吸入空気量信号Q,スロットルセン
サ13からのスロットル弁開度信号TVO,クランク角セ
ンサ14からのクランク角信号,水温センサ15からの冷却
水温度信号Tw,筒内圧センサ16からの筒内圧信号P等
が入力される。
The control unit 11 for controlling the fuel injection amount by the fuel injection valve 6 and the ignition timing of the spark plug 8 is
A microcomputer is included, and the intake air amount signal Q from the heat ray type air flow meter 12, the throttle valve opening signal TVO from the throttle sensor 13, the crank angle signal from the crank angle sensor 14, the cooling water from the water temperature sensor 15 The temperature signal Tw, the in-cylinder pressure signal P from the in-cylinder pressure sensor 16 and the like are input.

【0018】前記熱線式エアフローメータ12は、感温抵
抗の吸入空気量による抵抗変化に基づいて機関1の吸入
空気量を質量流量として直接的に検出するものである。
前記スロットルセンサ13は、スロットル弁5の開度TV
Oをポテンショメータによって検出するものである。前
記クランク角センサ14は、単位クランク角毎の単位角度
信号と、所定ピストン位置毎の基準角度信号とをそれぞ
れ出力する。ここで、前記単位角度信号の所定時間内に
おける発生数、又は、前記基準角度信号の発生周期を計
測することで機関回転速度Neを算出可能である。
The hot-wire air flow meter 12 directly detects the intake air amount of the engine 1 as a mass flow rate based on the resistance change of the temperature-sensitive resistance due to the intake air amount.
The throttle sensor 13 is an opening TV of the throttle valve 5.
O is detected by a potentiometer. The crank angle sensor 14 outputs a unit angle signal for each unit crank angle and a reference angle signal for each predetermined piston position. Here, the engine rotation speed Ne can be calculated by measuring the number of generations of the unit angle signal within a predetermined time or the generation cycle of the reference angle signal.

【0019】前記水温センサ15は、機関1のウォーター
ジャケット内の冷却水温度Twを、機関温度を代表する
温度として検出するものである。前記筒内圧センサ16
(筒内圧検出手段)は、実開昭63−17432号公報
に開示されるような点火栓8の座金として装着されるリ
ング状の圧電素子からなるものであって、点火栓の締付
け荷重に対する相対圧として筒内圧を検出するセンサで
あり、各気筒の点火栓8毎に装着することで各気筒別に
筒内圧P(燃焼圧)が検出できるようになっている。
尚、前記筒内圧センサ16は、上記のように点火栓8の座
金として装着されるタイプの他、センサ部を直接燃焼室
内に臨ませて筒内圧を絶対圧として検出するタイプのも
のであっても良い。
The water temperature sensor 15 detects the cooling water temperature Tw in the water jacket of the engine 1 as a temperature representing the engine temperature. In-cylinder pressure sensor 16
The (in-cylinder pressure detecting means) is composed of a ring-shaped piezoelectric element mounted as a washer of the spark plug 8 as disclosed in Japanese Utility Model Laid-Open No. 63-17432, and is relative to the tightening load of the spark plug. This is a sensor for detecting the in-cylinder pressure as a pressure, and the in-cylinder pressure P (combustion pressure) can be detected for each cylinder by mounting it on each spark plug 8 of each cylinder.
The in-cylinder pressure sensor 16 is of a type that is mounted as a washer of the spark plug 8 as described above, and is of a type that directly detects the in-cylinder pressure in the combustion chamber and detects the in-cylinder pressure as an absolute pressure. Is also good.

【0020】前記コントロールユニット11は、機関負荷
や機関回転速度等の機関運転条件に基づいて基本点火時
期(基本点火進角値)を決定し、点火栓8による点火時
期を制御する。また、コントロールユニット11による前
記燃料噴射弁6の噴射量の制御は以下のようにして行な
われる。
The control unit 11 determines the basic ignition timing (basic ignition advance value) based on engine operating conditions such as engine load and engine speed, and controls the ignition timing by the spark plug 8. The control of the injection amount of the fuel injection valve 6 by the control unit 11 is performed as follows.

【0021】前記熱線式エアフローメータ12で検出され
た吸入空気量Qと、クランク角センサ14からの検出信号
から算出した機関回転速度Neとに基づいて目標空燃比
に対応する基本燃料噴射量Tp(=K×Q/Ne:Kは
定数)を算出し、該基本燃料噴射量Tpに冷却水温度T
wなどの運転条件に応じた補正を施して最終的な燃料噴
射量Tiを求める。そして、前記燃料噴射量Tiに相当
するパルス幅の駆動パルス信号を前記燃料噴射弁6に所
定タイミングで出力する。燃料噴射弁6には、図示しな
いプレッシャレギュレータで所定圧力に調整された燃料
が供給されるようになっており、前記駆動パルス信号の
パルス幅に比例する量の燃料を噴射供給して、目標空燃
比の混合気を形成させる。
The basic fuel injection amount Tp (corresponding to the target air-fuel ratio based on the intake air amount Q detected by the hot wire air flow meter 12 and the engine speed Ne calculated from the detection signal from the crank angle sensor 14 = K × Q / Ne: K is a constant), and the cooling water temperature T is added to the basic fuel injection amount Tp.
A final fuel injection amount Ti is obtained by performing a correction according to an operating condition such as w. Then, a drive pulse signal having a pulse width corresponding to the fuel injection amount Ti is output to the fuel injection valve 6 at a predetermined timing. The fuel, which is adjusted to a predetermined pressure by a pressure regulator (not shown), is supplied to the fuel injection valve 6, and an amount of fuel proportional to the pulse width of the drive pulse signal is injected and supplied to the target space. A fuel-air mixture is formed.

【0022】更に、前記コントロールユニット11は、前
記筒内圧センサ16からの検出信号に基づいて各気筒別に
図示平均有効圧相当値Piを算出し、該図示平均有効圧
相当値Piに基づいて燃焼状態(失火,サージトルク
等)の検出を行って、点火時期や燃料噴射制御に補正を
加える。具体的には、各気筒毎に筒内圧Pを所定の積分
区間で積分して該積分値を図示平均有効圧相当値Piと
する。そして、前記図示平均有効圧相当値Piと機関負
荷と機関回転速度とに基づいて設定される失火判定レベ
ルとを比較して失火の有無を判別し、失火発生率が所定
値以上である気筒に対しては燃料噴射を停止させたり、
失火発生を運転者に警告したりする。また、前記図示平
均有効圧相当値Piの変動に基づいてサージトルクを検
出し、サージトルクが許容レベルを越えない範囲で、空
燃比をリーン化したり、点火時期をリタードしたりす
る。尚、図示平均有効圧相当値Piに基づく制御を上記
に限定するものではない。
Further, the control unit 11 calculates the indicated mean effective pressure equivalent value Pi for each cylinder based on the detection signal from the in-cylinder pressure sensor 16, and the combustion state based on the indicated mean effective pressure equivalent value Pi. Detects (misfire, surge torque, etc.) and corrects ignition timing and fuel injection control. Specifically, the in-cylinder pressure P is integrated for each cylinder in a predetermined integration interval, and the integrated value is set as the indicated mean effective pressure equivalent value Pi. Then, the indicated average effective pressure equivalent value Pi is compared with the misfire determination level set on the basis of the engine load and the engine rotation speed to determine the presence or absence of misfire. On the other hand, stop fuel injection,
It warns the driver of a misfire. Further, the surge torque is detected based on the fluctuation of the indicated mean effective pressure equivalent value Pi, and the air-fuel ratio is made lean or the ignition timing is retarded within a range in which the surge torque does not exceed the allowable level. The control based on the indicated mean effective pressure equivalent value Pi is not limited to the above.

【0023】ところで、前記筒内圧センサ16には、セン
サ自体のばらつき及び締付け荷重のばらつきによる出力
ばらつきがある。このため、各気筒の図示平均有効圧相
当値Piの精度が悪化し、例えば実際には各気筒が同等
の図示平均有効圧であるのに、前記ばらつきによって気
筒間に見掛け上の図示平均有効圧の段差が生じ、サージ
トルクが誤検出されてしまう惧れ等がある。
By the way, the in-cylinder pressure sensor 16 has variations in output due to variations in the sensor itself and variations in tightening load. For this reason, the accuracy of the indicated mean effective pressure equivalent value Pi of each cylinder deteriorates. For example, although the indicated mean effective pressure of each cylinder is actually the same, the apparent indicated mean effective pressure between the cylinders is caused by the variation. There is a risk that the surge torque may be erroneously detected due to the step difference.

【0024】そこで、コントロールユニット11は、図2
及び図3のフローチャートに示すようにして、気筒毎に
図示平均有効圧相当値Piを補正するための補正値を学
習し、該学習された補正値に従って気筒別に前記Piを
補正設定するようになっている。尚、本実施形態におい
て、図示平均有効圧算出手段,補正値学習手段,補正手
段,失火判別手段,学習禁止手段,基準値補正手段とし
ての機能は、前記図2及び図3のフローチャートに示す
ように、コントロールユニット11がソフトウェア的に備
えている。
Therefore, the control unit 11 is shown in FIG.
As shown in the flowchart of FIG. 3 , a correction value for correcting the indicated mean effective pressure equivalent value Pi is learned for each cylinder, and the Pi is corrected and set for each cylinder according to the learned correction value. ing. In the present embodiment, the functions of the indicated mean effective pressure calculation means, the correction value learning means, the correction means, the misfire determination means, the learning prohibition means, and the reference value correction means are as shown in the flow charts of FIGS. In addition, the control unit 11 is equipped with software.

【0025】図2のフローチャートにおいて、まず、ス
テップ1(図中ではS1としてある。以下同様)では、
筒内圧センサ16の出力に基づいて各気筒別に図示平均有
効圧相当値Piを演算する。ステップ2では、前記Pi
の補正値KBL#1〜KBL#4を学習させる領域とし
て予め設定された学習領域内であるか否かを判別する。
In the flowchart of FIG . 2 , first, in step 1 (denoted as S1 in the figure, the same applies hereinafter),
Based on the output of the in-cylinder pressure sensor 16, the indicated mean effective pressure equivalent value Pi is calculated for each cylinder. In step 2, the Pi
It is determined whether or not the correction values KBL # 1 to KBL # 4 are within a learning area set in advance as an area to be learned.

【0026】前記学習領域としては、失火の有無による
筒内圧(図示平均有効圧)の変化が大きく、筒内圧セン
サ16にある程度の出力ばらつきがあっても、失火の有無
を確実に判定できる領域とすることが好ましく、ここで
は、機関負荷を代表する基本燃料噴射量Tpと機関回転
速度Neとに基づいて前記学習領域を特定するものと
し、かつ、学習領域を比較的高負荷低回転側に設定して
ある。
The learning region is a region where the presence or absence of a misfire can be reliably determined even if there is a large change in the in-cylinder pressure (indicated average effective pressure) due to the presence or absence of a misfire, and the in-cylinder pressure sensor 16 has some output variation. It is preferable that the learning region is specified based on the basic fuel injection amount Tp representing the engine load and the engine rotation speed Ne, and the learning region is set to a relatively high load and low rotation side. I am doing it.

【0027】ステップ2で学習領域内であると判別され
ると、ステップ3へ進んで、各気筒における失火の有無
を、前記Piに基づいて判定する。前記Piに基づく失
火の判定は、予め機関負荷と回転速度とに応じて設定さ
れる基準値と各気筒のPiとを比較して行える。また、
筒内圧センサ16によって所定のクランク角タイミングで
検出される筒内圧や最大筒内圧等で失火を判定させる構
成としても良い。
If it is determined in step 2 that the position is within the learning region, the process proceeds to step 3 to determine whether or not there is a misfire in each cylinder based on Pi. The misfire determination based on the Pi can be performed by comparing the reference value preset according to the engine load and the rotation speed with the Pi of each cylinder. Also,
The in-cylinder pressure sensor 16 may detect misfire based on the in-cylinder pressure detected at a predetermined crank angle timing, the maximum in-cylinder pressure, or the like.

【0028】ステップ3で失火の発生が判定された場合
には、前記Piに失火影響が含まれ、前記Piの値から
筒内圧センサ16の出力ばらつきを抽出することができな
いので、学習を行うことなく本ルーチンを終了させる。
一方、ステップ3でいずれの気筒においても失火発生が
なかったと判別された場合には、ステップ4へ進み、予
め基本燃料噴射量Tpと機関回転速度Neとによって複
数に区分される運転領域毎に前記Piの基準値Pisを
記憶してあるマップを参照し、現在の基本燃料噴射量T
pと機関回転速度Neとに対応する各気筒共通の基準値
Pisを求める。
If it is determined in step 3 that a misfire has occurred, the effect of misfire is included in Pi and the output variation of the in-cylinder pressure sensor 16 cannot be extracted from the value of Pi. Therefore, learning is performed. End this routine.
On the other hand, if it is determined in step 3 that no misfire has occurred in any of the cylinders, the process proceeds to step 4, and the operation is divided into a plurality of operating regions in advance based on the basic fuel injection amount Tp and the engine rotation speed Ne. Referring to a map that stores the reference value Pis of Pi, the current basic fuel injection amount T
A reference value Pis common to each cylinder corresponding to p and the engine rotation speed Ne is obtained.

【0029】前記基準値Pisは、筒内圧センサ16に出
力ばらつきがないとした場合に、当該運転条件で得られ
るPiを求めてマップに記憶させたものである。次のス
テップ5では、機関が排気還流装置を備える場合に、そ
のときの排気還流率(EGR率)に応じて前記基準値P
isを補正するための補正値KEGR を設定する。
The reference value Pis is a value obtained when the cylinder pressure sensor 16 has no output variation and Pi obtained under the operating condition is stored in a map. In the next step 5, when the engine is equipped with an exhaust gas recirculation device, the reference value P is set according to the exhaust gas recirculation ratio (EGR ratio) at that time.
A correction value K EGR for correcting is is set.

【0030】これは、排気還流による充填効率の変化に
よって図示平均有効圧が変動するためであり、排気還流
率が高いときほど、前記基準値Pisをより小さく補正
するようにしてある。尚、排気還流率は、機関負荷と機
関回転速度とから推定することができる。ステップ6で
は、下式に従って前記Piの各気筒別の補正値KBL#
1〜KBL#4(4気筒の場合)を学習する。
This is because the indicated mean effective pressure fluctuates due to the change in the charging efficiency due to the exhaust gas recirculation, and the reference value Pis is corrected to be smaller as the exhaust gas recirculation rate is higher. The exhaust gas recirculation rate can be estimated from the engine load and the engine rotation speed. In step 6, the correction value KBL # for each cylinder of Pi is calculated according to the following equation.
1 to KBL # 4 (in case of 4 cylinders) is learned.

【0031】KBL#1=Pis/Pi#1 KBL#2=Pis/Pi#2 KBL#3=Pis/Pi#3 KBL#4=Pis/Pi#4 即ち、前記補正値KBL#1〜KBL#4は、各筒内圧
センサ16の出力に基づいて算出された前記Piを、前記
基準値Pisに一致させるような乗算補正項として機能
することになる。
KBL # 1 = Pis / Pi # 1 KBL # 2 = Pis / Pi # 2 KBL # 3 = Pis / Pi # 3 KBL # 4 = Pis / Pi # 4 That is, the correction values KBL # 1 to KBL # 4 functions as a multiplication correction term that matches the Pi calculated based on the output of each in-cylinder pressure sensor 16 with the reference value Pis.

【0032】前記補正値KBL#1〜KBL#4による
補正は、図3のフローチャートに従って行われる。図3
のフローチャートにおいて、まず、ステップ11では、各
筒内圧センサ16の出力に基づいて各気筒毎の図示平均有
効圧相当値Pi#1〜Pi#4を演算する。
The correction by the correction value KBL # 1~KBL # 4 is performed in accordance with the flowchart of FIG. Figure 3
In the flowchart, first, in step 11, the indicated mean effective pressure equivalent values Pi # 1 to Pi # 4 for each cylinder are calculated based on the output of each in-cylinder pressure sensor 16.

【0033】そして、次のステップ12では、前記補正値
KBL#1〜KBL#4を、図示平均有効圧相当値Pi
#1〜Pi#4それぞれに乗算して、その結果を最終的
な各気筒の図示平均有効圧相当値Pi#1〜Pi#4と
して出力する。前記補正後のPiは、サージトルクの検
出や失火の検出などに用いられ、以て、サージトルクの
検出を高精度に行え、また、失火の有無による燃焼圧の
偏差が小さい運転条件であっても、前記Piに基づいて
精度良く失火の有無を判定できることになる。
Then, in the next step 12, the correction values KBL # 1 to KBL # 4 are set to the indicated average effective pressure equivalent value Pi.
Each of # 1 to Pi # 4 is multiplied, and the result is output as final indicated equivalent effective pressure values Pi # 1 to Pi # 4 of each cylinder. The corrected Pi is used for detection of surge torque, detection of misfire, etc., so that the surge torque can be detected with high accuracy, and the operating pressure has a small deviation in combustion pressure due to the presence or absence of misfire. Also, the presence or absence of misfire can be accurately determined based on the Pi.

【0034】尚、上記では、いずれかの気筒で失火発生
が判定されたときには、全気筒についての学習を禁止す
る構成としたが、失火気筒についてのみ学習を禁止する
構成としても良い。
In the above description, when it is determined that misfire has occurred in any of the cylinders, learning is prohibited for all cylinders, but learning may be prohibited only for misfiring cylinders.

【0035】[0035]

【発明の効果】以上説明したように、請求項1記載の発
明によると、筒内圧検出手段の出力ばらつきによる図示
平均有効圧相当の誤差を、機関運転条件から推定される
図示平均有効圧に基づいて検出して補正値を学習するの
で、気筒間において実際にはない図示平均有効圧の偏差
が見掛け上生じることを回避でき、また、図示平均有効
圧の絶対値のずれも補正できると共に、排気還流率の違
いによる図示平均有効圧の変化を、筒内圧検出手段の出
力ばらつきとして誤学習してしまうことを回避できる
いう効果がある。
As described above, according to the first aspect of the invention, the error corresponding to the indicated mean effective pressure due to the output variation of the in-cylinder pressure detection means is based on the indicated mean effective pressure estimated from the engine operating conditions. since detects and learns the correction value each, can be avoided in practice can result apparent deviation indicated mean effective pressure is not among the cylinders, also, it is possible to correct also the deviation of the absolute value of the indicated mean effective pressure, exhaust Difference in reflux rate
The change in the indicated mean effective pressure due to
There is an effect that erroneous learning as force variation can be avoided .

【0036】請求項2記載の発明によると、失火による
図示平均有効圧の低下が、筒内圧検出手段の検出ばらつ
きとして誤学習されることを防止でき、以て、補正値の
学習精度を向上させることができるという効果がある。
請求項3記載の発明によると、運転条件を限定して学習
させることで、図示平均有効圧の誤差を精度良く検出で
き、また、失火の影響を確実に排除でき、以て、補正値
を高精度に学習させることができるという効果がある。
According to the second aspect of the present invention, it is possible to prevent a decrease in the indicated mean effective pressure due to a misfire from being erroneously learned as a detection variation of the in-cylinder pressure detection means, thereby improving the learning accuracy of the correction value. The effect is that you can.
According to the invention as set forth in claim 3, by limiting the operating conditions to learn, the error of the indicated mean effective pressure can be detected accurately, and the influence of misfire can be reliably eliminated, so that the correction value can be increased. There is an effect that it can be learned accurately.

【0037】請求項4記載の発明によると、筒内圧検出
手段に出力ばらつきがない場合の図示平均有効圧を精度
良く設定でき、以て、補正値の学習精度を向上させるこ
とができるという効果がある。
[0037] According to a fourth aspect of the present invention, cylinder pressure detection means can accurately set the indicated mean effective pressure in the absence of the output variation, than Te, the effect that it is possible to improve the learning accuracy of the correction value is there.

【0038】請求項記載の発明によると、補正値を図
示平均有効圧相当値の乗算補正項とすることで、各気筒
で算出される図示平均有効圧相当値が基準値に一致する
ように補正され、筒内圧検出手段の出力ばらつきによる
誤差が排除されるという効果がある。
According to the fifth aspect of the present invention, the correction value is a multiplication correction term of the indicated mean effective pressure equivalent value so that the indicated mean effective pressure equivalent value calculated for each cylinder matches the reference value. There is an effect that it is corrected and an error due to an output variation of the in-cylinder pressure detecting means is eliminated.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施の形態における機関のシステム構成図。FIG. 1 is a system configuration diagram of an engine according to an embodiment.

【図2】実施の形態における補正値学習の様子を示すフ
ローチャート。
FIG. 2 is a flowchart showing how correction value learning is performed in the embodiment.

【図3】実施の形態における図示平均有効圧の補正の様
子を示すフローチャート。
FIG. 3 is a flowchart showing how the indicated mean effective pressure is corrected in the embodiment.

【符号の説明】[Explanation of symbols]

1 内燃機関 4 吸気マニホールド 5 スロットル弁 6 燃料噴射弁 8 点火栓 10 排気マニホールド 11 コントロールユニット 12 熱線式エアフローメータ 13 スロットルセンサ 14 クランク角センサ 15 水温センサ 16 筒内圧センサ 1 Internal combustion engine 4 intake manifold 5 Throttle valve 6 Fuel injection valve 8 spark plug 10 Exhaust manifold 11 Control unit 12 Hot wire air flow meter 13 Throttle sensor 14 Crank angle sensor 15 Water temperature sensor 16 In-cylinder pressure sensor

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) F02D 45/00 368 G01M 15/00 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) F02D 45/00 368 G01M 15/00

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】機関の各気筒それぞれに設けられ、各気筒
の筒内圧を個別に検出する筒内圧検出手段と、 前記筒内圧検出手段で検出される各気筒別の筒内圧に基
づいて各気筒別に図示平均有効圧に相当する値を算出す
る図示平均有効圧算出手段と、 前記図示平均有効圧算出手段で算出された各気筒別の値
と、機関運転条件に対応して予め記憶された各気筒共通
の基準値とを比較して、各気筒別の補正値を学習する補
正値学習手段と、前記補正値学習手段における基準値を、機関の排気還流
率に応じて補正する基準値補正手段と、 前記 補正値学習手段で学習された各気筒別の補正値に基
づいて、前記図示平均有効圧算出手段で算出された各気
筒別の値を補正し、該補正された値を最終的な各気筒別
の図示平均有効圧相当値として出力する補正手段と、 を含んで構成されたことを特徴とする内燃機関の図示平
均有効圧検出装置。
1. An in-cylinder pressure detecting means provided in each of the cylinders of the engine for individually detecting the in-cylinder pressure of each cylinder, and each cylinder based on the in-cylinder pressure of each cylinder detected by the in-cylinder pressure detecting means. Separately, the indicated mean effective pressure calculating means for calculating a value corresponding to the indicated mean effective pressure, the value for each cylinder calculated by the indicated mean effective pressure calculating means, and each prestored corresponding to the engine operating condition A reference value common to each cylinder is compared to learn a correction value for each cylinder, and a reference value in the correction value learning means is used as an exhaust gas recirculation engine.
A reference value correcting means for correcting in accordance with the rate, based on the correction value for each respective cylinders learned by the correction value learning means corrects the indicated mean effective pressure calculating each cylinder of the value calculated by means An indicated average effective pressure detecting device for an internal combustion engine, comprising: a correction unit that outputs the corrected value as a final indicated average effective pressure equivalent value for each cylinder.
【請求項2】前記筒内圧検出手段で検出される各気筒別
の筒内圧と前記図示平均有効圧算出手段で算出される各
気筒別の図示平均有効圧相当値との少なくとも一方に基
づいて、失火の有無を各気筒別に判別する失火判別手段
と、 該失火判別手段によって失火発生が判別されたときに、
前記補正値学習手段による補正値の学習を少なくとも失
火発生気筒について禁止する学習禁止手段と、 を設けたことを特徴とする請求項1記載の内燃機関の図
示平均有効圧検出装置。
2. Based on at least one of an in-cylinder pressure for each cylinder detected by the in-cylinder pressure detecting means and an indicated average effective pressure equivalent value for each cylinder calculated by the indicated average effective pressure calculating means, A misfire discrimination means for discriminating the presence or absence of misfire for each cylinder; and when the misfire discrimination means discriminates the occurrence of misfire,
2. The indicated mean effective pressure detecting device for an internal combustion engine according to claim 1, further comprising: learning prohibiting means for prohibiting learning of the correction value by the correction value learning means for at least the misfiring cylinder.
【請求項3】前記補正値学習手段が、予め設定された機
関運転条件に限って補正値を学習することを特徴とする
請求項1又は2記載の内燃機関の図示平均有効圧検出装
置。
3. The indicated mean effective pressure detecting device for an internal combustion engine according to claim 1, wherein the correction value learning means learns the correction value only under preset engine operating conditions.
【請求項4】前記所定の機関運転条件が、機関負荷と機
関回転速度とに基づいて特定されると共に、前記基準値
が機関負荷と機関回転速度とに応じて設定されることを
特徴とする請求項3記載の内燃機関の図示平均有効圧検
出装置。
4. The predetermined engine operating condition is specified based on the engine load and the engine speed, and the reference value is set according to the engine load and the engine speed. The indicated mean effective pressure detecting device for an internal combustion engine according to claim 3.
【請求項5】前記補正値学習手段が、基準値と各気筒別
の値との比を補正値として学習することを特徴とする請
求項1〜のいずれか1つに記載の内燃機関の図示平均
有効圧検出装置。
Wherein said correction value learning means, the reference value and the internal combustion engine according to any one of claims 1-4, characterized in that to learn the ratio of each cylinder value as a correction value Mean effective pressure detection device shown.
JP28880495A 1995-11-07 1995-11-07 Indicated mean effective pressure detection device for internal combustion engine Expired - Fee Related JP3502206B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28880495A JP3502206B2 (en) 1995-11-07 1995-11-07 Indicated mean effective pressure detection device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28880495A JP3502206B2 (en) 1995-11-07 1995-11-07 Indicated mean effective pressure detection device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH09126041A JPH09126041A (en) 1997-05-13
JP3502206B2 true JP3502206B2 (en) 2004-03-02

Family

ID=17734954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28880495A Expired - Fee Related JP3502206B2 (en) 1995-11-07 1995-11-07 Indicated mean effective pressure detection device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3502206B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6415656B1 (en) * 2000-05-02 2002-07-09 Ford Global Technologies, Inc. Onboard diagnostic misfire detection monitor for internal combustion engines
JP2006152857A (en) * 2004-11-26 2006-06-15 Honda Motor Co Ltd Ignition timing controller of internal combustion engine
JP4747977B2 (en) * 2006-07-19 2011-08-17 トヨタ自動車株式会社 In-cylinder pressure sensor calibration device
US10731582B2 (en) * 2016-11-16 2020-08-04 GM Global Technology Operations LLC Determination of engine parameter based on determining a metric over three or more cylinder combustion cycles
JP7193098B2 (en) * 2019-02-25 2022-12-20 株式会社トランストロン Engine torque estimation device, engine torque estimation method, and engine control device
JP7369532B2 (en) * 2019-03-11 2023-10-26 株式会社三井E&S Du engine

Also Published As

Publication number Publication date
JPH09126041A (en) 1997-05-13

Similar Documents

Publication Publication Date Title
US7040307B2 (en) System for diagnosing degradation of air-fuel sensor
JP3150429B2 (en) Lean limit detection method using ion current
US20070084442A1 (en) Engine combustion state determining apparatus and method
JPH0949452A (en) Control device for internal combustion engine
JPH0737789B2 (en) Electronic control unit for multi-cylinder engine
US5554801A (en) Diagnosis apparatus and method for a cylinder pressure sensor
JPH09209814A (en) Control device for internal combustion engine
US5664544A (en) Apparatus and method for control of an internal combustion engine
EP0400529B1 (en) Air-fuel ratio control device for internal combustion engine
JP3975512B2 (en) Engine abnormality diagnosis device
JP3502206B2 (en) Indicated mean effective pressure detection device for internal combustion engine
JPH07119530A (en) Combusting condition detection device for internal combustion engine
US5571958A (en) Apparatus and method for detecting misfire in an internal combustion engine
JP3461627B2 (en) Device for detecting combustion state of internal combustion engine
JP3189001B2 (en) Diagnosis device for exhaust gas recirculation system of internal combustion engine
JP3639882B2 (en) Control device for internal combustion engine
JPH09133042A (en) Cylinder pressure detector device for internal combustion engine
JP3154304B2 (en) Lean limit control method using ion current
JPH09195844A (en) Apparatus for detecting inner pressure of cylinder of internal combustion engine
JPH0972809A (en) Combustion pressure detector for internal combustion engine
JPH1162674A (en) Air-fuel ratio control device for internal combustion engine
JP2750797B2 (en) Engine surge detector and air-fuel ratio controller
JP2855381B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0810672Y2 (en) Electronically controlled fuel injection device for internal combustion engine
JP3089390B2 (en) Diagnostic device for exhaust gas recirculation system of internal combustion engine

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031204

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081212

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081212

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091212

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees