JPS60261172A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS60261172A
JPS60261172A JP11706384A JP11706384A JPS60261172A JP S60261172 A JPS60261172 A JP S60261172A JP 11706384 A JP11706384 A JP 11706384A JP 11706384 A JP11706384 A JP 11706384A JP S60261172 A JPS60261172 A JP S60261172A
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
film
oxide film
layer
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11706384A
Other languages
Japanese (ja)
Inventor
Masaya Ishida
昌也 石田
Akira Morikuri
森栗 章
Kazuo Sato
和雄 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP11706384A priority Critical patent/JPS60261172A/en
Publication of JPS60261172A publication Critical patent/JPS60261172A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Abstract

PURPOSE:To prevent the expansion of a diffused layer into a channel part and to prevent the deterioration of characteristics of an element, by suppressing the elongation of the diffused layer in a direct contact part. CONSTITUTION:A thin oxide film 23 is formed on a first conducting P type silicon substrate 21. The direct-contact forming region of the oxide film 23 is partially removed. Then a polycrystalline silicon film 24 is deposited on the entire surface of the semiconductor substrate 21 by a CVD method. Thereafter, a control layer for impurities, e.g., a CVD oxide film, is formed at a part corresponding to the direct contact region on the polycrystalline silicon film 24. Then, phosphorus is added as the second conducting type impurities into the polycrystalline silicon film 24. The phosphorus is simultaneously introduced into the semiconductor substrate 21 directly below the polycrystalline silicon film 24, and an N layer 26 is formed. Since the control layer is provided in this way, the amount of impurity introduction into the silicon substrate becomes less.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は半導体装置の製造方法に係り、特にMO8型半
導体装置に於ける半導体基板と電極層どのコンタクトの
形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method of manufacturing a semiconductor device, and particularly to a method of forming a contact between a semiconductor substrate and an electrode layer in an MO8 type semiconductor device.

[発明の技術的背景] 一般に、シリコンゲートMO8型半導体装置に於いては
、シリコン基板内に形成され′た不純物層(ソース、ド
レイン)と、シリコン基板上の多結晶シリコン配線層と
のコンタクトをとる場合、所謂ダイレクトコンタクトが
使用されている。
[Technical Background of the Invention] Generally, in a silicon gate MO8 type semiconductor device, contact is made between an impurity layer (source, drain) formed in a silicon substrate and a polycrystalline silicon wiring layer on the silicon substrate. In this case, so-called direct contact is used.

従来、このダイレクトコンタクトは例えば第1図に示す
ような方法により形成される。すなわち、先ずP型の半
導体基板11の表面に分離領域として厚い(約1μm)
酸化膜12を形成すると同時に、トランジスタや拡散配
線となる領域には薄い(約700人)の酸化膜13を形
成する。その後、トランジスタのチャネルとなる領域に
酸化[113を通してイオン注入を行ない、閾値VTの
制御を行う。次に、エツチングを行ないダイレクトコン
タクトとなる部分の酸化膜13を局部的に除去し、その
後全面に約4000人厚の多結晶シリコン膜14を被着
形成する。そして、この多結晶シリコンM14を配線と
して使用するために、当該半導体基板11を POC+
3雰囲気中に数分間置き、P(リン)を多結晶シリコン
膜14中に添加して所望の抵抗値を得ると共に、さらに
この多結晶シリコン膜14を通してシリコン基板11内
に不純物を導入してN層15を形成する。この後、多結
晶シリコンl1l114をPEP(Photo [ng
raving Process)によりバターニングし
、配線を形成する。なお、16.17はソース、ドレイ
ンとなるN”層、18は多結晶シリコンのゲート電極、
19はAI (アルミニウム)電極取出し端子、20は
絶縁層をそれぞれ示す。
Conventionally, this direct contact is formed, for example, by a method as shown in FIG. That is, first, a thick (approximately 1 μm) separation region is formed on the surface of the P-type semiconductor substrate 11.
At the same time as the oxide film 12 is formed, a thin (approximately 700 wafer) oxide film 13 is formed in regions that will become transistors and diffusion wiring. Thereafter, ion implantation is performed through oxidation [113] into the region that will become the channel of the transistor, and the threshold value VT is controlled. Next, etching is performed to locally remove the oxide film 13 in the portions that will become direct contacts, and then a polycrystalline silicon film 14 with a thickness of about 4,000 wafers is deposited over the entire surface. Then, in order to use this polycrystalline silicon M14 as a wiring, the semiconductor substrate 11 is POC+
3. After leaving in the atmosphere for several minutes, P (phosphorus) is added into the polycrystalline silicon film 14 to obtain a desired resistance value, and impurities are introduced into the silicon substrate 11 through this polycrystalline silicon film 14 to add N. Form layer 15. After this, polycrystalline silicon l1l114 was coated with PEP (Photo [ng
raving process) to form wiring. In addition, 16.17 is the N'' layer which becomes the source and drain, 18 is the gate electrode of polycrystalline silicon,
Reference numeral 19 indicates an AI (aluminum) electrode lead terminal, and 20 indicates an insulating layer.

し背景技術の問題点] しかしながら、上記従来の方法では、多結晶シリコンl
!14を通してその直下のシリコン基板11内に形成し
たN層15は、その後工程で施される高温(〜1000
℃)で長時間(数十分〜面数十分)の熱処理により、シ
リコン基板11中に深く浸透して大きく広がる。深いも
のでは、垂直方向の深さx、Lが2μm以上となり、更
にこれは横方向にも伸び、゛その広がり(ラテラルxj
)は2μm近くなる。
Problems with Background Art] However, in the above conventional method, polycrystalline silicon l
! The N layer 15 formed in the silicon substrate 11 immediately below through the N layer 14 is heated to a high temperature (~1000 nm
C) for a long time (several tens of minutes to several tens of minutes), it penetrates deeply into the silicon substrate 11 and spreads widely. In deep objects, the vertical depth x, L is 2 μm or more, which also extends in the lateral direction, and its spread (lateral
) is close to 2 μm.

このため、ダイレクトコンタクトの廻りでは微細化が困
難となる。さらに、MO8型トランジスタの近くにダイ
レクトコンタクトが形成されている場合、拡散層はその
ゲート下まで伸び、その結果特性が劣化する。
Therefore, it is difficult to miniaturize the area around the direct contact. Furthermore, if a direct contact is formed near the MO8 type transistor, the diffusion layer extends below the gate, resulting in degraded characteristics.

また、ダイレクトコクタクトが隣接しているパターンで
は、このラテラルXjが両波散層から伸びるため、その
影響が大となり、拡散用パターンの距離縮小ができない
という設計上の欠点が生じる。
Furthermore, in a pattern in which direct contacts are adjacent to each other, the lateral Xj extends from both scattering layers, so the influence thereof becomes large, resulting in a design drawback in that the distance of the diffusion pattern cannot be reduced.

[発明の目的コ 本発明は上記実情に鑑みてなされたもので、その目的は
、ダイレクトコンタクト形成による特性の劣化を防止し
、かつ微細化の可能な半導体装置の製造方法を提供する
ことにある。
[Purpose of the Invention] The present invention has been made in view of the above-mentioned circumstances, and its purpose is to provide a method for manufacturing a semiconductor device that prevents deterioration of characteristics due to direct contact formation and allows for miniaturization. .

[発明の概要] 本発明は、第1導電型の半導体基板上に薄い酸化膜を形
成し、この酸化膜のダイレクトコンタクト形成領域を部
分的に除去し、引き続き当該半導体基板の全面に多結晶
シリコン膜を被着形成する。
[Summary of the Invention] The present invention forms a thin oxide film on a semiconductor substrate of a first conductivity type, partially removes a direct contact formation region of this oxide film, and then deposits polycrystalline silicon over the entire surface of the semiconductor substrate. Depositing a film.

その後、この多結晶シリコン膜上のダイレクトコンタク
ト領域に対応する部分に不純物に対する制御層、例えば
cvoiia化膜を形成する。その後、前記多結晶シリ
コン躾に第2導電型の不純物を添加すると同時に、同条
結晶シリコン基板下の半導体基板内に不純物を導入して
、ダイレクトコンタクトを形成するものである。
Thereafter, a control layer for impurities, such as a cvoiia film, is formed on the polycrystalline silicon film at a portion corresponding to the direct contact region. Thereafter, impurities of a second conductivity type are added to the polycrystalline silicon substrate, and at the same time, impurities are introduced into the semiconductor substrate below the same polycrystalline silicon substrate to form a direct contact.

上記方法によれば、制御層があるため、不純物のシリコ
ン基板内への導入量が少なくなる。このため、後工程に
置いて熱処理が施されても、ダイレクトコンタクト部の
拡散層の伸びは小さくなり、従って素子特性の劣化を防
止できると共に、微細化も可能となる。
According to the above method, since there is a control layer, the amount of impurities introduced into the silicon substrate is reduced. For this reason, even if heat treatment is performed in a post-process, the expansion of the diffusion layer in the direct contact portion is reduced, thereby preventing deterioration of device characteristics and also making it possible to miniaturize the device.

[発明の実施例] 以下、図面を参照して本発明の一実施例を、Nチャネル
形MO8型トランジスタの製造工程に適用した例につい
て説明する。先ず、第2図(’a )に示すように、P
型のシリコン基板21の全面を前酸化した後、窒化膜(
Si 3 N41りを素子形成予定領域上のみに堆積さ
せる。引き続き、この窒化膜をマスクにして酸化を行な
い、厚さ約1μmのフィールド酸化膜22を形成する。
[Embodiments of the Invention] Hereinafter, an example in which an embodiment of the present invention is applied to a manufacturing process of an N-channel MO8 type transistor will be described with reference to the drawings. First, as shown in Figure 2 ('a), P
After pre-oxidizing the entire surface of the mold silicon substrate 21, a nitride film (
Si 3 N41 is deposited only on the region where the element is to be formed. Subsequently, oxidation is performed using this nitride film as a mask to form a field oxide film 22 with a thickness of approximately 1 μm.

次に、上記窒化膜を除去した後、熱酸化を行ない約70
0人のゲート酸化[123を形成する。ここで、必要に
応じ、Ejξ−nhancement) 、D (De
pletion)タイプ用のマスクを用いて、チャネル
領域にイオンを注入する。その後、同図(b)に示!よ
うにダイレクトコンタクト形成予定領域のゲート酸化膜
23を局部的に除去する。引き続き、CVD法により全
面に多結晶シリコン膜24を被着形成する。その後、こ
の多結晶シリコン基板21内のダイレクトコンタクト形
成予定領域に対応する部分に制御[1IlIとしてCV
D酸化膜25のパターンを形成する。
Next, after removing the nitride film, thermal oxidation is performed to
0 gate oxidation [123] is formed. Here, Ejξ−nhancement), D (De
Ions are implanted into the channel region using a pletion type mask. After that, shown in the same figure (b)! The gate oxide film 23 in the area where the direct contact is to be formed is locally removed in this manner. Subsequently, a polycrystalline silicon film 24 is deposited over the entire surface by CVD. Thereafter, control is applied to a portion of the polycrystalline silicon substrate 21 corresponding to the region where the direct contact is to be formed.
A pattern of the D oxide film 25 is formed.

その後、このシリコン基板21をPOC+3雰囲気中に
数分間置き、P(リン)を多結晶シリコン膜24中に添
加して所望の抵抗値ρBを得ると同時に、シリコン基板
21内にPを導入してN層26を形成する。すなわち、
この場合、Pは多結晶シリコンllI24中に添加され
、さらにCVDl1f化膜25の周辺からシリコン基板
21内に染み込み拡散される。
Thereafter, this silicon substrate 21 is placed in a POC+3 atmosphere for several minutes, and P (phosphorus) is added into the polycrystalline silicon film 24 to obtain a desired resistance value ρB, and at the same time, P is introduced into the silicon substrate 21. An N layer 26 is formed. That is,
In this case, P is added into the polycrystalline silicon III 24 and further penetrates and diffuses into the silicon substrate 21 from the periphery of the CVD IIF film 25.

次に、同図(c ’)に示すように、CVD酸化膜25
を除去した後、PEPにより多結晶シリコン膜24のバ
ターニングを行ないゲート電極27を形成する。そして
、この多結晶シリコン膜24をマスクにしてソース、ド
レイン形成予定領域のゲート酸化It!23をエツチン
グ除去し、その後全面にA[)S(Arsenic [
)oped 5ilicon)11928を堆積する。
Next, as shown in the same figure (c'), the CVD oxide film 25
After removing the polycrystalline silicon film 24, the polycrystalline silicon film 24 is patterned by PEP to form a gate electrode 27. Then, using this polycrystalline silicon film 24 as a mask, gate oxidation It! of the region where the source and drain are to be formed is performed. 23 was removed by etching, and then the entire surface was coated with A[)S (Arsenic [
)oped 5ilicon)11928 is deposited.

その後、酸化雰囲気中に於いて、As (ヒ素)のドラ
イブイン拡散を行ない、シリコン基板21内にソース、
ドレインとなるN+層29.30を形成する。
Thereafter, drive-in diffusion of As (arsenic) is performed in an oxidizing atmosphere to form a source and a source within the silicon substrate 21.
N+ layers 29 and 30 are formed to serve as drains.

その後、同図(d’ )に示すように、ADS膜28を
除去した後、後酸化を行ない酸化膜31を形成する。
Thereafter, as shown in FIG. 3(d'), after removing the ADS film 28, post-oxidation is performed to form an oxide film 31.

さらに、同図(e’)に示すように酸化膜31上にCV
D酸化膜32を形成する。その後、全面に絶縁膜32を
形成した後、この絶縁膜32及び酸化膜31にコンタク
トホール33を形成してアルミニウム配線層34を形成
する。
Furthermore, as shown in FIG. 3(e'), CV
A D oxide film 32 is formed. After that, an insulating film 32 is formed on the entire surface, and then a contact hole 33 is formed in this insulating film 32 and oxide film 31, and an aluminum wiring layer 34 is formed.

上記工程に於いては、第2図(b)に示したように多結
晶シリコン膜24中にPを導入する際に、制御膜として
CVD酸化1I25が設け9れているので、ダイレフ1
−コンタクト部分の多結晶シリコン配線の抵抗ρSを必
要な値に低くできると共に、ダイレクトコンタクト部の
N層26のラテラルXjを押えることができる。
In the above process, when introducing P into the polycrystalline silicon film 24 as shown in FIG.
- The resistance ρS of the polycrystalline silicon wiring in the contact portion can be lowered to a required value, and the lateral Xj of the N layer 26 in the direct contact portion can be suppressed.

上記実施例に於いては、ソース、ドレインのN”層29
.30を形成する方法として、ADSI!2Bから不純
物を拡散させるようにしたが、その他にAS等をイオン
注入する方法を用いることができる。この場合、ソース
、ドレインの拡散深さくxJ及びラテラルxj)の伸び
が押えられ、このためMOSトランジスタの微細化、L
SIの高密度化が容易となる。
In the above embodiment, the source and drain N'' layers 29
.. As a way to form 30, ADSI! Although the impurity is diffused from 2B, other methods such as ion implantation of AS or the like may be used. In this case, the elongation of the source and drain diffusion depth xJ and lateral
It becomes easy to increase the density of SI.

また、制御層は上記CVD酸化膜25に限らず、多結晶
シリコン膜24のダイレクトコンタクト形成領域に対応
する部分のみを酸化して得られる酸化膜を用いることも
可能である。さらに、制御層は酸化膜のように不純物に
対して完全にストッパとして働くものでなくてもよく、
拡散量を制御できるものであればよい。
Further, the control layer is not limited to the CVD oxide film 25 described above, but it is also possible to use an oxide film obtained by oxidizing only the portion of the polycrystalline silicon film 24 corresponding to the direct contact formation region. Furthermore, the control layer does not have to act as a complete stopper for impurities like an oxide film,
Any material that can control the amount of diffusion may be used.

また、上記実施例に於いてはN層26を形成した後CV
D酸化膜25を除去するようにしたが、工程短縮の為に
この制御層の除去工程を省略して、制御層を残しておい
ても、デバイス特性に大きな影響は無い。
Further, in the above embodiment, after forming the N layer 26, the CV
Although the D oxide film 25 was removed, in order to shorten the manufacturing process, the process of removing this control layer may be omitted and the control layer may be left without any significant effect on the device characteristics.

さらに、上記実施例に於いては、本発明を81ゲートの
NチャネルMO8型トランジスタの製造工程について説
明したが、Pチ1アネルMO8型トランジスタ、あるい
はC(β−omp1ementary) −MoS型ト
ランジスタの製造にも適用できることは勿論である。ま
た、電極材として多結晶シリコン膜24を用いて説明し
たが、その他モリブデンポリサイド等でもよく、要は抵
抗値を下げるために不純物添加を用いるものであればよ
い。
Further, in the above embodiments, the present invention has been described with respect to the manufacturing process of an 81-gate N-channel MO8 type transistor, but the present invention can also be applied to the manufacturing process of a P-channel MO8 type transistor or a C (β-omp1ementary)-MoS type transistor. Of course, it can also be applied to Furthermore, although the polycrystalline silicon film 24 is used as the electrode material in the explanation, other materials such as molybdenum polycide may be used, as long as impurities are added to lower the resistance value.

[発明の効果コ 以上のように本発明によれば、ダイレクトコンタクト部
の拡散層の伸びを押えることができるため、チャネル部
への拡散層の広がりを防止でき、素子特性の劣化を防止
できると共に、高集積化をも実現できる。
[Effects of the Invention] As described above, according to the present invention, it is possible to suppress the elongation of the diffusion layer in the direct contact part, so that it is possible to prevent the spread of the diffusion layer to the channel part, and to prevent deterioration of device characteristics. , high integration can also be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のMO8型半導体装置の製造工程を示す断
面図、第2図は本発明の一実施例に係るMO8型半導体
装置の製造工程を示す断面図である。 21・・・シリコン基板、22・・・フィールド酸化膜
、23・・・ゲート酸化膜、24・・・多結晶シリコン
膜、25・・・CVD酸化膜(制御層)、26・・・N
層、27・・・ゲート電極、29.30・・・N4層。 出願人代理人 弁理士 鈴江武彦
FIG. 1 is a sectional view showing the manufacturing process of a conventional MO8 type semiconductor device, and FIG. 2 is a sectional view showing the manufacturing process of an MO8 type semiconductor device according to an embodiment of the present invention. 21... Silicon substrate, 22... Field oxide film, 23... Gate oxide film, 24... Polycrystalline silicon film, 25... CVD oxide film (control layer), 26... N
Layer, 27... Gate electrode, 29.30... N4 layer. Applicant's agent Patent attorney Takehiko Suzue

Claims (1)

【特許請求の範囲】[Claims] 第1導電型の半導体基板上に薄い酸化膜を形成する工程
と、前記酸化膜を選択的に除去した後、前記半導体基板
上に電極材を被着させ膜を形成する工程と、前記電極材
の膜上の前記酸化膜の除去部に対応する部分に不純物に
対する制御層を形成する工程と、前記電極材の膜へ第2
導電型の不純物を添加すると同時に、同腹に接触した前
記半導体基板内に不純物を導入して第2導電型の不純物
層を形成する工程とを具備したことを特徴とする半導体
装置の製造方法。
a step of forming a thin oxide film on a semiconductor substrate of a first conductivity type; a step of depositing an electrode material on the semiconductor substrate to form a film after selectively removing the oxide film; and a step of forming a film on the semiconductor substrate; forming a control layer for impurities on a portion of the film of the electrode material corresponding to the removed portion of the oxide film, and forming a second control layer on the film of the electrode material.
A method for manufacturing a semiconductor device, comprising the step of adding an impurity of a conductivity type and simultaneously introducing an impurity into the semiconductor substrate in contact with the semiconductor substrate to form an impurity layer of a second conductivity type.
JP11706384A 1984-06-07 1984-06-07 Manufacture of semiconductor device Pending JPS60261172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11706384A JPS60261172A (en) 1984-06-07 1984-06-07 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11706384A JPS60261172A (en) 1984-06-07 1984-06-07 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS60261172A true JPS60261172A (en) 1985-12-24

Family

ID=14702504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11706384A Pending JPS60261172A (en) 1984-06-07 1984-06-07 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS60261172A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0358430A (en) * 1989-07-27 1991-03-13 Toshiba Corp Semiconductor device and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0358430A (en) * 1989-07-27 1991-03-13 Toshiba Corp Semiconductor device and manufacture thereof

Similar Documents

Publication Publication Date Title
US4523213A (en) MOS Semiconductor device and method of manufacturing the same
JP3031855B2 (en) Method for manufacturing semiconductor device
US4488348A (en) Method for making a self-aligned vertically stacked gate MOS device
KR20010071624A (en) Method of manufacturing a semiconductor device comprising a field effect transistor
JPH0831931A (en) Semiconductor device and its manufacture
JPS60261172A (en) Manufacture of semiconductor device
JPS5917865B2 (en) hand tai souchi no seizou houhou
JPH1064898A (en) Manufacturing method of semiconductor device
JPS59224141A (en) Manufacture of semiconductor device
JPH06163576A (en) Manufacture of semiconductor device
JP3147374B2 (en) Semiconductor device
JPH0582734A (en) Manufacture of mos semiconductor device
JPS5975667A (en) Manufacture of semiconductor device
JPH058571B2 (en)
JPH0214788B2 (en)
JPS6281051A (en) Semiconductor device and manufacture thereof
JPS59124767A (en) Manufacture of semiconductor-integrated circuit device
JPH07106443A (en) Nonvolatile semiconductor memory and fabrication thereof
JPS6159750A (en) Semiconductor device and manufacture of the same
JPH03125479A (en) Manufacture of semiconductor integration circuit with non-volatile memory element
JPH0319212A (en) Manufacture of semiconductor device
JPH04283966A (en) Manufacture of mos semiconductor device
JPH0445979B2 (en)
JPH0274042A (en) Manufacture of mis transistor
JPS5886768A (en) Manufacture of semiconductor device