JPS6159750A - Semiconductor device and manufacture of the same - Google Patents

Semiconductor device and manufacture of the same

Info

Publication number
JPS6159750A
JPS6159750A JP18100484A JP18100484A JPS6159750A JP S6159750 A JPS6159750 A JP S6159750A JP 18100484 A JP18100484 A JP 18100484A JP 18100484 A JP18100484 A JP 18100484A JP S6159750 A JPS6159750 A JP S6159750A
Authority
JP
Japan
Prior art keywords
gate electrode
oxide film
insulating layer
region
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18100484A
Other languages
Japanese (ja)
Inventor
Masaaki Kinugawa
衣川 正明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP18100484A priority Critical patent/JPS6159750A/en
Publication of JPS6159750A publication Critical patent/JPS6159750A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To eliminate alignment margin and improve high packing density by depositing an insulation layer on a substrate after forming a MOS transistor on the self-alignment basis and boring a contact hole for source, drain and wiring while an insulation layer is left at the surface in the side of gate electrode by reactive ion etching. CONSTITUTION:After forming a field oxide film 2, a gate oxide film 3, a gate electrode 5a and an oxide film 6 on a semiconductor substrate 1, the source and drain region 8 (11) are formed on the self-alignment basis. An oxide film 9 is then deposited and reactive ion etching is carried out to it. Thereby, while the oxide film 9a is left at the side surface of the gate electrode 5a, a contact hole of source, drain and wiring 12 can be bored on the self-alignment basis. As a result, the alignment margin for forming the contact hole is no longer necessary and high packing density can be realized.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、素子の高密度化を図ることを可能にした半導
体装置およびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a semiconductor device and a method for manufacturing the same, which make it possible to increase the density of elements.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、素子領域と配線とのコンタクトを得るには、ゲー
ト電極を形成した侵、素子領域および素予分離領域の全
体に絶縁層を形成し、その上から既に形成されている素
子領域に対するマスク合わせを行い、リソグラフィによ
りマスクを形成した後、絶縁層をエツチングによって、
素子領域にコンタクト孔を聞け、その後に配線材料を堆
積するのが一般的であった。
Conventionally, in order to make contact between the device region and wiring, a gate electrode is formed, an insulating layer is formed over the entire device region and the preliminary isolation region, and a mask is aligned over the already formed device region. After forming a mask using lithography, the insulating layer is etched.
It was common to drill contact holes in the device area and then deposit wiring material.

しかしながら、上記半導体vt回においては、第4図に
示すように素子領域13のパターンにコンタクト孔14
のパターンを合わせてリソグラフィを行った後、コンタ
クト孔14をエツチングによって開孔するために、素子
領域13とコンタクト孔14との位置合わせのズレを見
込んだ合わせ余裕15が必要となり、この合わせ余裕1
5の存在が素子の高密度化の障害となっている。
However, in the semiconductor Vt circuit, as shown in FIG.
In order to open the contact hole 14 by etching after performing lithography with the patterns of
The presence of 5 is an obstacle to increasing the density of devices.

通常、合わせ余裕15は約0.5μm幅でとっているが
、その幅はりソグラフイにおける露光装置の精度に依存
し、しかもその精度の改善のスピードは素子の微細化の
スピードに比べるときわめて遅いため、素子が2μmル
ールから1μmルールに微細化されても、合わせ余裕1
5は依然として0.5μm程度の幅を必要とする。その
ために、素子の高密度化のF5害となり、高集積化に伴
って集積回路のチップ・ナイスが大きくなる主な原因の
一つとなっている。そしてチップ・サイズはパッケージ
の標準サイズJ:り大ぎくできないという制限があるた
め、この問題は今後ま1゛ます重要なものとなる。
Normally, the alignment margin 15 is set to a width of about 0.5 μm, but this width depends on the precision of the exposure equipment used in beam lithography, and the speed of improvement in precision is extremely slow compared to the speed of miniaturization of elements. , even if the device is miniaturized from the 2 μm rule to the 1 μm rule, the alignment margin is 1
5 still requires a width on the order of 0.5 μm. For this reason, it becomes an F5 impediment to the increase in the density of elements, and is one of the main reasons why the chip size of integrated circuits increases as the density increases. This problem will become even more important in the future because the chip size cannot be made larger than the standard package size J:.

〔発明の目的〕[Purpose of the invention]

本発明は、上記事情を考慮してなされたもので、素子の
高密度化の障害となっている、素子領域とコンタクト孔
との合わせ余裕をなくし集積回路の高集積化を実現する
ことができる半導体装置およびその製造方法を提供する
ことを目的とする。
The present invention has been made in consideration of the above-mentioned circumstances, and can realize high integration of integrated circuits by eliminating the alignment margin between the element area and the contact hole, which is an obstacle to increasing the density of devices. The purpose of the present invention is to provide a semiconductor device and a method for manufacturing the same.

〔発明の概要〕[Summary of the invention]

上記目的を達成するため本発明による半導体装置は、半
導体基板に相対して形成されたソース領域およびドレイ
ン領域間の半導体基板表面に形成されたゲート酸化膜と
、このゲート酸化膜上に形成されたゲート電極と、この
ゲート電極の上面および側面に形成された絶縁層と、こ
の絶縁層により前記ゲート電極と絶縁され前記ソース領
域およびドレイン領域をそれぞれコンタクトする配線層
とを備えたことを特徴とする。
In order to achieve the above object, a semiconductor device according to the present invention includes a gate oxide film formed on the surface of the semiconductor substrate between a source region and a drain region formed facing the semiconductor substrate, and a gate oxide film formed on the gate oxide film. It is characterized by comprising a gate electrode, an insulating layer formed on the upper surface and side surfaces of the gate electrode, and a wiring layer insulated from the gate electrode by the insulating layer and contacting the source region and the drain region, respectively. .

また、本発明による半導体装置の製造方法は、半導体基
板表面にゲート酸化膜を形成するvRlの工程と、この
ゲート酸化股上にゲート電極となる)Qffi体層を形
成する第2の工程と、このゲート電極となる導電体口上
に絶縁層を形成する第3の工程と、この絶縁層を上部に
のせたままゲート電極をパターニングする第4の工程と
、前記半導体基板に不純物を添加してソース領域および
ドレイン領域を形成する第5の工程と、前記半導体基板
に絶縁層を堆積し、この絶縁層を反応性イオンエツチン
グ法によりエツチングして、前記ゲート電極の側面に絶
縁層を形成する第6の工程と、前記ソース領域およびド
レイン領域をそれぞれコンタクトする配線層を形成する
第7の工程とを有することを特徴とする。
Further, the method for manufacturing a semiconductor device according to the present invention includes a vRl step of forming a gate oxide film on the surface of a semiconductor substrate, a second step of forming a Qffi body layer (which will become a gate electrode) on this gate oxide layer, and a third step of forming an insulating layer on the conductor opening that will become the gate electrode; a fourth step of patterning the gate electrode with this insulating layer placed on top; and a step of adding impurities to the semiconductor substrate to form the source region. and a fifth step of forming a drain region, and a sixth step of depositing an insulating layer on the semiconductor substrate and etching this insulating layer by a reactive ion etching method to form an insulating layer on the side surface of the gate electrode. and a seventh step of forming a wiring layer that contacts the source region and the drain region, respectively.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例による半導体装置の断面を第1図に示
す。半導体基板1上のフィールド酸化膜2により素子領
域が分離されている。この素子領域の半導体基板1表面
にはソース領域、ドレイン領域としてのn+不純物領域
11が形成されている。これらソース領域およびドレイ
ン領域間の半導体基板1上にはゲート酸化膜3が形成さ
れている。なおn+不純物領域11に隣接するチャネル
領域に接する部分にはより低濃度のn−不純物領域8が
形成され、いわゆるL D D (L 1ohtlyD
 ooed  D rain)構造となっている。これ
により素子の劣化を防止している。ゲート酸化1a3上
にはゲート電極5aが形成されているが、このゲート電
極5aは上面および側面が酸化膜6および9aにより覆
われている点に特徴がある。これによりn+不耗物領域
11とコンタクトする配線層12をセルファラインで形
成することができる。
FIG. 1 shows a cross section of a semiconductor device according to an embodiment of the present invention. Element regions are separated by a field oxide film 2 on a semiconductor substrate 1. On the surface of the semiconductor substrate 1 in this element region, an n+ impurity region 11 is formed as a source region and a drain region. A gate oxide film 3 is formed on the semiconductor substrate 1 between these source and drain regions. Note that an n- impurity region 8 with a lower concentration is formed in a portion in contact with the channel region adjacent to the n+ impurity region 11, and the so-called LDD (L1ohtlyD
It has an oed drain) structure. This prevents deterioration of the element. A gate electrode 5a is formed on the gate oxide 1a3, and the gate electrode 5a is characterized in that its upper surface and side surfaces are covered with oxide films 6 and 9a. Thereby, the wiring layer 12 in contact with the n+ consumable region 11 can be formed as a self-line.

このように本実施例によれば、ゲート電極5aの上部と
側部とに酸化膜6,9aとを形成し、ゲート電極5aと
配線12との絶縁を確保することにより、第2図に示す
ように、自己整合的に素子領域13にコンタクト孔14
を開孔することが可能となり、従来の合わせ余裕15を
必要ないものとした。このことにより、1つのトランジ
スタを形成するに必要なfJ域は、従来のものより小さ
なものとなり、高集積化が可能となる。
According to this embodiment, the oxide films 6 and 9a are formed on the upper and side parts of the gate electrode 5a to ensure insulation between the gate electrode 5a and the wiring 12, as shown in FIG. The contact hole 14 is formed in the element region 13 in a self-aligned manner as shown in FIG.
This makes it possible to drill holes, making the conventional alignment allowance 15 unnecessary. As a result, the fJ region required to form one transistor becomes smaller than that of the conventional transistor, and high integration becomes possible.

次にこの半導体装置の製造方法を第3図を用いて説明す
る。まず第3図(a)に示すように、比抵抗5Ω−υの
P型シリコンの半導体基板1の表面にフィールド酸化膜
2を形成した後、リソグラフィ工程によって、島状の素
子領域を形成する。
Next, a method for manufacturing this semiconductor device will be explained with reference to FIG. First, as shown in FIG. 3(a), a field oxide film 2 is formed on the surface of a P-type silicon semiconductor substrate 1 having a specific resistance of 5 Ω-υ, and then an island-shaped element region is formed by a lithography process.

次に第3図(b)に示すように、熱酸化処理を施し、半
導体基板1の素子領域の表面に膜厚150人のゲート酸
化膜3を形成した後、所定のしきい値電圧を得るためボ
ロン(8+)イオン4を打ち込む。次に第3図(C)に
示すように、厚さ約2000人のポリシリコン5を堆積
した後、リン拡散を温度900℃で30分間行って、ポ
リシリコン5を抵抗の低い導電体とし、その上にCVD
(Chemical Bapor  Depositi
on )法によってIII厚約3000A+7)第1(
F)CVDM化Il!6ヲ堆積する。
Next, as shown in FIG. 3(b), a thermal oxidation treatment is performed to form a gate oxide film 3 with a thickness of 150 nm on the surface of the element region of the semiconductor substrate 1, and then a predetermined threshold voltage is obtained. Boron (8+) ions 4 are implanted for this purpose. Next, as shown in FIG. 3(C), after depositing polysilicon 5 to a thickness of about 2000, phosphorus diffusion is performed at a temperature of 900° C. for 30 minutes to make polysilicon 5 a low-resistance conductor. CVD on top of that
(Chemical Bapor Deposit
on ) method III thickness approx. 3000A+7) 1st (
F) CVDM conversion Il! Deposit 6.

その後、第3図(d)に示すように、リソグラフィ工程
により、第1のCVDfi化11J化合1J6のせてい
るゲート電極5aのパターニングを行い、次に加速電圧
50keV、ドーズffi2X1013cm’のリン(
P+)イオン7の打込みを行って、表面の不純物濃度1
×10181:1I−3の薄いn型領域、即ちn−不純
物領域8を形成する。次に第3図(e)に示すように、
膜厚的5000への第2のCVD酸化膜9を堆積した後
、反応性イオンエツチングによりこの第2のCVDI化
膜9を約5000Aエツチングすると、第3図(f)に
示すようにゲート電Fi5aの(1部に側壁となる形状
で第2のCvD酸化膜9aが残留する。その後、加速電
圧70keV、ドーズw3x 1015am−2の砒素
(As+)イオン10打込みによって、ソース・ドレイ
ン領域となるn 不純物領域11を形成し、不純物イオ
ンを活性化するために、温度900℃、30分間のアニ
ールを行う。次に配線材料であるアルミニウム(A1)
を堆積し、リソグラフィ工程によって配線v312のパ
ターニングを行うと、素子領域のコンタクト孔のりソゲ
ラフイエ程を必要とすることなく、第1図(9)に示す
ように自己整合的にソース領域およびドレイン領域11
との電気的導通が得られ、かつゲート電極5aとの絶縁
が確保されている配a層12が形成される。
Thereafter, as shown in FIG. 3(d), the gate electrode 5a on which the first CVD fi 11J compound 1J6 is placed is patterned by a lithography process, and then the phosphorus (phosphorus
P+) ions 7 are implanted to reduce the surface impurity concentration to 1.
A thin n-type region of x10181:1I-3, that is, n- impurity region 8 is formed. Next, as shown in Figure 3(e),
After depositing the second CVD oxide film 9 to a thickness of 5,000 mm, this second CVDI film 9 is etched by about 5,000 A by reactive ion etching, resulting in a gate voltage Fi5a as shown in FIG. 3(f). A second CvD oxide film 9a remains in a shape that will become a side wall in a part of (a part). Then, by implanting 10 arsenic (As+) ions at an acceleration voltage of 70 keV and a dose of w3x 1015 am-2, an n impurity film that will become a source/drain region is formed. In order to form region 11 and activate impurity ions, annealing is performed at a temperature of 900° C. for 30 minutes. Next, aluminum (A1), which is a wiring material, is
When the wiring v312 is patterned using a lithography process, the source and drain regions 11 are formed in a self-aligned manner as shown in FIG.
A wiring layer 12 is formed which provides electrical continuity with the gate electrode 5a and ensures insulation from the gate electrode 5a.

なお上記実施例においては、いわゆるLDD構造の半導
体BEが形成されるが第3図(d>の段階でイオン打込
み釘を増せば、LDD構造でない通常の14造の半導体
装置を形成することができる。
In the above embodiment, a semiconductor BE having a so-called LDD structure is formed, but if the number of ion implantation nails is increased at the stage shown in FIG. .

、また、上記の実施例において、第3図(f)の砒素(
As+)イオン10打込みは、まずリン(P+)イオン
の打込みを行い、しかる後に砒素(AS+)イオンある
いはアンチモン(Sb+)イオンを打込んでもよい。こ
れによって、いわゆるQ[)[) (Graded [
)oped  [)rain)構造が形成される。
, In addition, in the above example, arsenic (
As+) ion 10 implantation may be performed by first implanting phosphorus (P+) ions, and then implanting arsenic (AS+) ions or antimony (Sb+) ions. This results in the so-called Q[)[) (Graded [
)oped [)rain) structure is formed.

〔発明の効果〕〔Effect of the invention〕

以上の通り、本発明によれば、素子領域にコンタクト孔
を開孔するためのリングラフィ工程を必要とすることな
(、また素子領域とコンタクト孔とのマスク合わせズレ
を見込んだ合わせ余裕をもたせたパターン設計をするこ
となく、自己整合的に素子領域にコンタクト孔を形成す
ることができる。このことによって、例えばメモリーの
セルサイズを小さくすることができ、従って集積回路の
チップサイズの縮小化あるいは高集積化が達成される。
As described above, according to the present invention, there is no need for a phosphorography process for forming contact holes in the element region (and there is no need for a phosphorography process to form contact holes in the element region). It is possible to form contact holes in the element region in a self-aligned manner without having to design a pattern.This allows, for example, to reduce the memory cell size, and therefore to reduce the chip size of integrated circuits or High integration is achieved.

とりわけ、100万個を越えるトランジスタを集積する
超LSI′においては、本発明による素子の高密度化が
有効である。
In particular, the present invention is effective in increasing the density of elements in ultra-LSI's that integrate more than one million transistors.

さらに、本発明による半導体装置の製造方法は、素子の
偏傾性を高める上で必須とされているL D D (L
 1ohtly  D oped  D rain)構
造を作製するプロセスと適合性が良い。
Furthermore, the method for manufacturing a semiconductor device according to the present invention has the advantage that L D D (L
It is well compatible with the process of fabricating a 100% open drain structure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はそれぞれ本発明の一実施例による
半導体装置の断面図および平面図、第3図は本発明の一
実施例による半導体装置の製造方法を示す工程図、第4
図は従来の半導体装置を示す平面図である。 1・・・半導体基板、2・・・フィールド酸化膜、3・
・・ゲート酸化膜、5・・・ポリシリコン、5a・・・
ゲートffi極、6.9.9a・・・酸化膜、8・・・
n−不純物領域、11・・・n十不純物領域、12・・
・配線層、13・・・素子領域、14・・・コンタクト
孔、15・・・合わせ余裕。 出願人代理人  猪  股    清 61図 a も 2 困
1 and 2 are a cross-sectional view and a plan view, respectively, of a semiconductor device according to an embodiment of the present invention, FIG. 3 is a process diagram showing a method of manufacturing a semiconductor device according to an embodiment of the present invention, and FIG.
The figure is a plan view showing a conventional semiconductor device. 1... Semiconductor substrate, 2... Field oxide film, 3...
...Gate oxide film, 5...Polysilicon, 5a...
Gate ffi pole, 6.9.9a...Oxide film, 8...
n- impurity region, 11...n10 impurity region, 12...
- Wiring layer, 13... Element area, 14... Contact hole, 15... Alignment margin. Applicant's agent Kiyoshi Inomata Figure 61a also 2 problems

Claims (2)

【特許請求の範囲】[Claims] 1.半導体基板に相対して形成されたソース領域および
ドレイン領域と、これらソース領域およびドレイン領域
間の半導体基板表面に形成されたゲート酸化膜と、この
ゲート酸化膜上に形成されたゲート電極と、このゲート
電極の上面および側面に形成された絶縁層と、この絶縁
層により前記ゲート電極と絶縁され前記ソース領域およ
びドレイン領域をそれぞれコンタクトする配線層とをそ
なえた半導体装置。
1. A source region and a drain region formed opposite to a semiconductor substrate, a gate oxide film formed on the surface of the semiconductor substrate between these source and drain regions, a gate electrode formed on this gate oxide film, and a gate electrode formed on this gate oxide film. A semiconductor device comprising: an insulating layer formed on an upper surface and side surfaces of a gate electrode; and a wiring layer insulated from the gate electrode by the insulating layer and contacting the source region and the drain region, respectively.
2.半導体基板表面にゲート酸化膜を形成する第1の工
程と、 このゲート酸化膜上にゲート電極となる導電体層を堆積
する第2の工程と、 このゲート電極となる導電体層の上に絶縁層を形成する
第3の工程と、 前記絶縁層を上部にのせたままゲート電極をパターニン
グする第4の工程と、 前記半導体基板に不純物を添加してソース領域およびド
レイン領域を形成する第5の工程と、前記半導体基板に
絶縁層を堆積し、この絶縁層を反応性イオンエッチング
法によりエッチングして、前記ゲート電極の側面に絶縁
層を形成する第6の工程と、 前記ソース領域およびドレイン領域とそれぞれコンタク
トする配線層を形成する第7の工程と、を有する半導体
装置の製造方法。
2. A first step of forming a gate oxide film on the surface of the semiconductor substrate, a second step of depositing a conductive layer that will become the gate electrode on this gate oxide film, and an insulating layer formed on the conductive layer that will become the gate electrode. a third step of forming a layer, a fourth step of patterning a gate electrode with the insulating layer placed on top, and a fifth step of adding impurities to the semiconductor substrate to form a source region and a drain region. a sixth step of depositing an insulating layer on the semiconductor substrate and etching the insulating layer using a reactive ion etching method to form an insulating layer on the side surface of the gate electrode; and the source region and the drain region. and a seventh step of forming wiring layers in contact with each other.
JP18100484A 1984-08-30 1984-08-30 Semiconductor device and manufacture of the same Pending JPS6159750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18100484A JPS6159750A (en) 1984-08-30 1984-08-30 Semiconductor device and manufacture of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18100484A JPS6159750A (en) 1984-08-30 1984-08-30 Semiconductor device and manufacture of the same

Publications (1)

Publication Number Publication Date
JPS6159750A true JPS6159750A (en) 1986-03-27

Family

ID=16093050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18100484A Pending JPS6159750A (en) 1984-08-30 1984-08-30 Semiconductor device and manufacture of the same

Country Status (1)

Country Link
JP (1) JPS6159750A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6267873A (en) * 1985-09-20 1987-03-27 Sony Corp Manufacture of semiconductor device
JPS63133574A (en) * 1986-11-25 1988-06-06 Seiko Epson Corp Manufacture of mos-type semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56147482A (en) * 1980-04-17 1981-11-16 Nec Corp Insulating gate type field effect transistor
JPS58115859A (en) * 1981-12-28 1983-07-09 Fujitsu Ltd Manufacture of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56147482A (en) * 1980-04-17 1981-11-16 Nec Corp Insulating gate type field effect transistor
JPS58115859A (en) * 1981-12-28 1983-07-09 Fujitsu Ltd Manufacture of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6267873A (en) * 1985-09-20 1987-03-27 Sony Corp Manufacture of semiconductor device
JPS63133574A (en) * 1986-11-25 1988-06-06 Seiko Epson Corp Manufacture of mos-type semiconductor device

Similar Documents

Publication Publication Date Title
US5093273A (en) Method of manufacturing a semiconductor device
KR890004962B1 (en) Semiconductor device manufacturing method
US4149307A (en) Process for fabricating insulated-gate field-effect transistors with self-aligned contacts
US4663825A (en) Method of manufacturing semiconductor device
JPS5940297B2 (en) Method of manufacturing large-scale integrated circuits
US6391750B1 (en) Method of selectively controlling contact resistance by controlling impurity concentration and silicide thickness
KR970011054B1 (en) Semiconductor memory device and fabrication method
US4939154A (en) Method of fabricating an insulated gate semiconductor device having a self-aligned gate
US6274914B1 (en) CMOS integrated circuits including source/drain plug
US4488348A (en) Method for making a self-aligned vertically stacked gate MOS device
JPH0669229A (en) Manufacture of semiconductor element provided with gold structure
US6261882B1 (en) Method for fabricating a semiconductor device
CA1191973A (en) Process for making complementary transistors
US20060194393A1 (en) Method of manufacturing semiconductor device
KR920005511B1 (en) Semiconductor device and its manufacturing method
JPS6159750A (en) Semiconductor device and manufacture of the same
JP2635831B2 (en) Semiconductor device
KR20010071624A (en) Method of manufacturing a semiconductor device comprising a field effect transistor
JPS6251216A (en) Manufacture of semiconductor device
JPH03169022A (en) Semiconductor integrated circuit device
JPS61183967A (en) Manufacture of semiconductor device
JPS59231864A (en) Semiconductor device
US5290713A (en) Process of manufacturing a semiconductor device by using a photoresist mask which does not encircle an area of implanted ions
JP2596341B2 (en) Semiconductor integrated circuit device and method of manufacturing the same
JPS6251248A (en) Manufacture of semiconductor device