JPS60261027A - Vertical magnetic recording medium - Google Patents

Vertical magnetic recording medium

Info

Publication number
JPS60261027A
JPS60261027A JP11700984A JP11700984A JPS60261027A JP S60261027 A JPS60261027 A JP S60261027A JP 11700984 A JP11700984 A JP 11700984A JP 11700984 A JP11700984 A JP 11700984A JP S60261027 A JPS60261027 A JP S60261027A
Authority
JP
Japan
Prior art keywords
layer
polymer film
film
linear expansion
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11700984A
Other languages
Japanese (ja)
Inventor
Shoichi Matsui
祥一 松井
Masao Hasegawa
長谷川 正生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11700984A priority Critical patent/JPS60261027A/en
Publication of JPS60261027A publication Critical patent/JPS60261027A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To eliminate curling and to decrease the range of output fluctuation by providing two layers consisting of a ''Permalloy(R)'' layer and CoCr layer on a high-polymer film and maintaining the coefft. of linear expansion of the high- polymer film provided with such magnetic layer at a prescribed value or below. CONSTITUTION:A vertical magnetic recording medium is formed by providing the two layers consisting of the ''Permalloy(R)'' layer and CoCr layer on the high- polymer film. Said medium is so constituted that the coefft. of linear expansion of the high-polymer film provided with the magnetic layer is made >=6X10<-6>/ deg.C and <=10X10<-6>/ deg.C. The expansion and shrinkage of the high-polymer film and the metal are made coincident with each other by such constitution. Curling is eliminated and the range of the output fluctuation is decreased with the one-side medium. The generation of a crack during traveling of a driver or under thermal impact is obviated with the double-side medium.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は磁気記憶メディアとしての磁気テープ、フレキ
シブル磁気ディスクなどに用いることができる垂直磁気
記録媒体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a perpendicular magnetic recording medium that can be used as a magnetic storage medium such as a magnetic tape or a flexible magnetic disk.

従来例の構成とその問題点 近年、高密度磁気記憶素子として垂直磁気記録媒体が注
目され、盛んに研究開発が行われている。
Conventional Structures and Their Problems In recent years, perpendicular magnetic recording media have attracted attention as high-density magnetic storage elements, and research and development have been actively conducted.

これは水平磁気記録では高密度になるに従って減。In horizontal magnetic recording, this decreases as the density increases.

磁界が大きくなり、上限は30〜60KBPIであるの
に対して垂直磁気記録・では原理的に高密度になるに従
って減磁界が小さくなることから、200KBPI以上
の記録密度を得ることができることによっている。また
、垂直磁気記録媒体としてはGo Orのスパッタある
いハ蒸着、C0−0の蒸着、Baフェライトのスパッタ
あるいは塗布などがあるが、特性的にはGo Orスパ
ッタ膜が最も優れている。特に、高透磁率層としてのパ
ーマロイとの2層構成のものが最も良い。
This is because the magnetic field increases and the upper limit is 30 to 60 KBPI, whereas in perpendicular magnetic recording, the demagnetizing field decreases in principle as the density increases, so it is possible to obtain a recording density of 200 KBPI or more. Further, as a perpendicular magnetic recording medium, there are sputtering or vapor deposition of Go Or, vapor deposition of C0-0, sputtering or coating of Ba ferrite, and the Go Or sputtered film is the most excellent in terms of characteristics. In particular, a two-layer structure with permalloy as a high magnetic permeability layer is best.

ソシて、高分子フィルムとしてポリエチレンテレフタレ
ート(以下PETという)、ポリイミドあるいはポリア
ミドなどの上にスパッタするのであるが、磁気特性とし
て良好にするために加熱状態で行う。
Then, the polymer film is sputtered onto polyethylene terephthalate (hereinafter referred to as PET), polyimide, polyamide, or the like, but this is done under heating in order to obtain good magnetic properties.

まだ、スパッタ時には2次電子がフィルムに入射するこ
とによりフィルムの温度上昇が起こる。このようにスパ
ッタを行う過程でフィルムがかなシ温度上昇を起こすた
めに、元のフィルムからは線膨張係数、収縮率が異なっ
てくるっその時の値が金属と異なっている時には、片面
にスパッタした時にカールを起してしまう。この状態で
電磁変換特性を見るだめドライバーにかけると、カール
していることによシヘッドが媒体よシはね上げられると
ころが出てくる。従って、場所によって出力の大きさが
大きく異なり、いわゆる出力変動幅が大きくなるという
ことになる。これを改善する手段として従来は、高分子
フィルムのもう片面にも同じものをスパッタすることに
よシ、両側の金属面でバランスをとシカールを直してき
た3しかしながら、この手段では常にフィルムと金属面
との間で応力がかかっていることになシ、ドライバー走
行時にクシツクが生じやすくなる。また、熱衝撃に対し
ても金属と高分子フィルムとの線膨張係数が異なるため
にそれぞれ膨張あるいは収縮の大きさが異なり、内部応
力が大きく変化するためにクラックが生じやすいという
問題点を有していた。
However, during sputtering, the temperature of the film increases due to the incidence of secondary electrons on the film. As the film undergoes a slight temperature rise during the sputtering process, the coefficient of linear expansion and shrinkage are different from the original film. It causes curls. If you apply a screwdriver to check the electromagnetic conversion characteristics in this state, you will find that the head is lifted off the medium due to the curl. Therefore, the magnitude of the output varies greatly depending on the location, and the so-called output fluctuation range becomes large. Conventionally, as a means to improve this, the same material was sputtered on the other side of the polymer film to balance the metal surfaces on both sides and correct the shikaru3.However, with this method, the film and metal were always Due to the stress being applied between the wheels and the surface, clunks are more likely to occur when the driver is driving. Additionally, due to the different linear expansion coefficients of metal and polymer film, the degree of expansion or contraction is different in response to thermal shock, which causes a large change in internal stress, which causes cracks to easily occur. was.

発明の目的 本発明の目的は磁性層を設けた高分子フィルムの線膨張
係数を上記範囲内とすることにより、金属との膨張、収
縮を一致させ、片面ではカールがなくて出力変動幅が小
さくなシ、両面では内部応力が小さくドライバー走行時
、熱衝撃時にクランクの生じない垂直磁気記録媒体を提
供するものである。
Purpose of the Invention The purpose of the present invention is to make the linear expansion coefficient of the polymer film provided with the magnetic layer within the above range, so that the expansion and contraction match that of the metal, and there is no curling on one side, resulting in a small output fluctuation range. Moreover, the present invention provides a perpendicular magnetic recording medium that has small internal stress on both sides and does not produce cranking when running with a driver or during thermal shock.

発明の構成 本発明の垂直磁気記録媒体は、高分子フィルム上にパー
マロイ層及びCo Cr層の2層が設けられ、かつ上記
磁性層を設けた高分子フィルムの線膨張係数を6 X 
10 ’/’(2以上10×1O−67c以下にするよ
うに構成されている。
Structure of the Invention The perpendicular magnetic recording medium of the present invention has two layers, a permalloy layer and a CoCr layer, provided on a polymer film, and the linear expansion coefficient of the polymer film provided with the magnetic layer is 6X.
10'/' (2 or more and 10x1O-67c or less).

この構成によって高分子フィルムと金属との膨張、収縮
が一致し、片面媒体ではカールがなくて出力変動幅が小
さくなり、両面媒体ではドライバー走行時、熱衝撃時に
クラックが生じないことになる。
With this configuration, the expansion and contraction of the polymer film and the metal match, and with single-sided media, there is no curling and output fluctuation range is small, and with double-sided media, no cracks occur when running with a driver or during thermal shock.

実施例の説明 以下、本発明を実施例を基に比較例を参照しながら説明
する。
DESCRIPTION OF EXAMPLES Hereinafter, the present invention will be explained based on Examples and with reference to Comparative Examples.

〈実施例1〉 PICTフィルムにスパッタ膜を形成する前にP K 
T 7 イルムを150°Cの熱ローラに30CIn7
゜の速度で通して熱処理し、連続直流マグネトロンスパ
ッタでパーマロイを100’c、Arガス8×10−’
 Torr 、電力3KW1 フィルム送シ速度10c
In/分で0.6μm厚、Co Orを145°C,A
rガス8 X 10−5 T:orr 、電力2.5K
W、フィルム送り速度12cIrL/分で0.2μm厚
に形成することによシ、2層構成後のPETフィルムの
熱膨張係数が6×10−6/cとなるように片面媒体を
作製した。ここで、COO線膨張係数はデータブックで
は12.5 X 10 ’/CSCrは6.5 X 1
0 ’/C。
<Example 1> PK before forming a sputtered film on the PICT film
T 7 ilm to 150°C heat roller 30CIn7
The permalloy was heat-treated at a speed of 100°C and Ar gas 8×10-' by continuous DC magnetron sputtering.
Torr, power 3KW1, film feed speed 10c
In/min, 0.6 μm thick, Co Or at 145°C, A
r gas 8 x 10-5 T:orr, power 2.5K
A single-sided medium was prepared by forming the film to a thickness of 0.2 μm at a film feed rate of 12 cIrL/min so that the coefficient of thermal expansion of the PET film after the two-layer structure was 6×10 −6 /c. Here, the COO linear expansion coefficient is 12.5 x 10'/CSCr is 6.5 x 1 in the data book.
0'/C.

Feは12.I X 10−6/c、 Niは13.3
 X 10 ’、I’(であり、かなシ大きな値である
が、スパッタ膜は多結晶であることと、GoOr 、 
FeNiの合金状態であること、及びCoCr0.2μ
m膜とパーマロイ0.6μm膜との相互作用により、2
層膜として線膨張係数は上記値に近くなっていると考え
られる。
Fe is 12. IX 10-6/c, Ni is 13.3
X10', I'(, which is a large value, but since the sputtered film is polycrystalline, GoOr,
Be in an alloy state of FeNi, and CoCr0.2μ
Due to the interaction between the m film and the permalloy 0.6 μm film, 2
It is thought that the linear expansion coefficient of the layered film is close to the above value.

このようにして作製した媒体は、10°Cから50°C
の間でカールがなかった。−!た、電磁変換特性は5イ
ンチのフロッピーディスクの形でヘッドは主磁極励磁型
ヘッドを用いて測定した。その結果、ドライバー走行時
の電圧変動幅も10%以下のものが得られた。
The media prepared in this way can be heated at temperatures between 10°C and 50°C.
There was no curl between. -! The electromagnetic conversion characteristics were measured using a 5-inch floppy disk and a main pole excitation type head. As a result, a voltage fluctuation range of 10% or less was obtained when the driver was driving.

〈実施例2〉 PETフィルムにスパッタ膜を形成する前にPETフィ
ルムを150°Cの熱ローラに4ocrn4で通して熱
処理し、パーマロイ、Co Orをそれぞれ0.6μm
 、 0.2μmの厚さに実施例1と同一条件で形成す
ることにより、2層構成後のPΣTフィルムの線膨張係
数が10×10−6/=c となるように片面媒体を作
製した。この結果、10°Cから50’Cの間でカール
がなく、ドライバー走行時の電圧変動幅も実施例1と同
一条件で10%以下のものが得られた。
<Example 2> Before forming a sputtered film on the PET film, the PET film was heat-treated by passing it through a heated roller at 150°C at 4ocrn4, and permalloy and CoOr were each coated with a thickness of 0.6 μm.
A single-sided medium was prepared by forming the PΣT film to a thickness of 0.2 μm under the same conditions as in Example 1 so that the linear expansion coefficient of the PΣT film after the two-layer structure was 10×10 −6 /=c. As a result, there was no curling between 10° C. and 50° C., and the voltage fluctuation width during driver driving was 10% or less under the same conditions as in Example 1.

〈実施例3〉 PF、Tフィルレムにスパッタ膜を形成する前にPET
フィルムを実施例2と同一の条件でPETフィルムを熱
処理し、パーマロイ、CoCr をそれぞれ実施例1と
同一条件で0.6μm、0.2μmの厚さに形成し、2
層構成後のPETフィルムの線膨張係数が8 X 10
−6/Cとなるように両面の媒体を作製した。そして、
ドライバーで走行させて1千パス、1万パス、10万パ
スで媒体を調べたところ、クラックは生じていなかった
。また、50’CからO’Cへの熱衝撃に対してもクラ
ックを生じず安定であった。
<Example 3> Before forming a sputtered film on PF and T film, PET
The PET film was heat treated under the same conditions as in Example 2, and permalloy and CoCr were formed to a thickness of 0.6 μm and 0.2 μm under the same conditions as in Example 1, respectively.
The linear expansion coefficient of the PET film after layer construction is 8 x 10
A double-sided medium was prepared so that the ratio was -6/C. and,
When the media was examined after running it with a screwdriver for 1,000 passes, 10,000 passes, and 100,000 passes, no cracks were found. Furthermore, it was stable without cracking even when subjected to thermal shock from 50'C to O'C.

〈比較例1〉 PETフィルムを前熱処理なしで実施例1と同一条件で
パーマロイ、Co Crをそれぞれ0.6−10.2μ
mの厚さに形成し、片面媒体を作製したっこの時の線膨
張係数は13×10−6//=c で常温で金属が外側
、PET面が内側のカールとなり、ドライバー走行時の
電圧変動幅は25%となり、1周あたシにそれぞれ2つ
の電圧の大きな部分と小さな部分があった。
<Comparative Example 1> PET film was coated with 0.6-10.2μ of Permalloy and CoCr under the same conditions as Example 1 without pre-heat treatment.
The coefficient of linear expansion is 13 x 10-6//=c when the single-sided medium is formed to a thickness of The width was 25%, and there were two large voltage areas and two small voltage areas per round.

〈比較例2〉 ポリイミドフィルムを前熱処理なしで、パー、マロイを
100°C5Arガス8X103Torr、電力3KW
、フィルム送シ速度10cIrL/分で0.6pm厚、
Go Orを300°C1ArガスI X 10−2T
orr。
<Comparative Example 2> Polyimide film was heated at 100°C, Ar gas 8X103 Torr, and power 3KW without preheating.
, 0.6 pm thickness at a film feeding speed of 10 cIrL/min,
Go Or to 300°C1Ar gas IX 10-2T
orr.

電力3KW、フィにム送り速度12crn/分で0.2
μmの厚さに形成し、片面媒体を作製した。この時の線
膨張係数は6×10−6/°Cで常温で金属が内側、ポ
リイミド面が外側のカールとなシ、ドライバー走行時の
電圧変動幅は30%となシ、1周あたりにそれぞれ2つ
の電圧の大きな部分と小さな部分があった。
Power 3KW, film feed rate 12crn/min 0.2
It was formed to a thickness of μm to produce a single-sided medium. The coefficient of linear expansion at this time is 6 x 10-6/°C, and at room temperature, the metal is on the inside and the polyimide surface is on the outside, and the voltage fluctuation width when the driver is running is 30%. Each had two large and small voltage sections.

〈比較例3〉 比較例1と同一条件で両面媒体を作製した。この時の線
膨張係数は1 ’I X 10−6/ ’cで、10°
Cから50’Cの間で外見上はカールがなかった。そし
て、ドライバーで走行させて1千パス、1万パスで媒体
を調べたところ、1千パス時点ではクラックは生じてい
なかったが、1万パス時点ではクラックを生じていた。
<Comparative Example 3> A double-sided medium was produced under the same conditions as Comparative Example 1. The coefficient of linear expansion at this time is 1'I x 10-6/'c, which is 10°
There was no apparent curl between C and 50'C. When the medium was inspected after 1,000 passes and 10,000 passes with a driver, no cracks had occurred at the 1,000 passes, but cracks had occurred at the 10,000 passes.

また、50°Cから’@ o ’cへの熱衝撃によって
クラックが生じた。
Also, cracks were generated due to thermal shock from 50°C to '@o'c.

発明の効果 以上の説明から明らかなように、本発明は高分子フィル
ム上にパーマロイ層及びCoCr層の2層が設けられ、
かつ上記磁性層を設けた高分子フィルムの線膨張係数を
e x 10−6100以上1o×1σに以下としたこ
とにより、片面媒体ではカールがなくて出力変動幅が小
さくなり、また両面媒体ではドライバー走行時、熱衝撃
時にクラックが生じにぐいという効果が得られる。さら
に、カールガないことからジャケットに入れた時に回転
トルクが小さいことや、高温、低温での耐久性も優れて
いるという効果も得られるものである。
Effects of the Invention As is clear from the above explanation, the present invention has two layers, a permalloy layer and a CoCr layer, on a polymer film.
In addition, by setting the linear expansion coefficient of the polymer film provided with the magnetic layer to e x 10-6100 or more and 10 The effect is that cracks are less likely to occur during running or thermal shock. Furthermore, since there is no curling, the rotational torque is small when placed in a jacket, and the durability at high and low temperatures is also excellent.

Claims (1)

【特許請求の範囲】[Claims] 高分子フィルム上にパーマロイ層及びCjoOr層の2
層が設けられ、かつ上記磁性層を設けた高分子フィルム
の線膨張係数をexl、o−64以上10X10 ’4
以下としたことを特徴とする垂直磁気記録媒体。
Two permalloy layers and a CjoOr layer on the polymer film.
The linear expansion coefficient of the polymer film provided with the magnetic layer is exl, o-64 or more 10X10'4
A perpendicular magnetic recording medium characterized by the following.
JP11700984A 1984-06-07 1984-06-07 Vertical magnetic recording medium Pending JPS60261027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11700984A JPS60261027A (en) 1984-06-07 1984-06-07 Vertical magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11700984A JPS60261027A (en) 1984-06-07 1984-06-07 Vertical magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS60261027A true JPS60261027A (en) 1985-12-24

Family

ID=14701198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11700984A Pending JPS60261027A (en) 1984-06-07 1984-06-07 Vertical magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS60261027A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62202315A (en) * 1986-02-28 1987-09-07 Toshiba Corp Vertical magnetic recording medium
JP2000163730A (en) * 1998-11-24 2000-06-16 Matsushita Electric Ind Co Ltd Magnetic recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62202315A (en) * 1986-02-28 1987-09-07 Toshiba Corp Vertical magnetic recording medium
JP2000163730A (en) * 1998-11-24 2000-06-16 Matsushita Electric Ind Co Ltd Magnetic recording medium

Similar Documents

Publication Publication Date Title
US4477488A (en) Method of manufacturing magnetic recording medium
JPS60261027A (en) Vertical magnetic recording medium
JPH044649B2 (en)
JPS6313256B2 (en)
JP3069135B2 (en) Method for manufacturing magneto-optical recording medium
JPS60205818A (en) Magnetic recording medium
JPH10241143A (en) Metallic thin film type magnetic recording medium and its manufacture
JP2501962B2 (en) Floppy-magnetic disk recording medium
JPS61196430A (en) Production of magnetic recording medium
JPS58169332A (en) Manufacture of magnetic recording medium
JPS61294635A (en) Magnetic recording medium
JPS62271222A (en) Production of magnetic recording medium
JPH01102721A (en) Perpendicular magnetic recording medium
JPH01319119A (en) Magnetic recording medium
JPS60150237A (en) Production of magnetic recording medium
JPS62277621A (en) Magnetic recording medium
JPS62214521A (en) Production of magnetic recording medium
JPS60251509A (en) Magnetic recording medium
JPH07101500B2 (en) Perpendicular magnetic recording medium
JPS6126131B2 (en)
JPH0743822B2 (en) Magnetic recording medium
JPH02227824A (en) Production of magnetic recording medium
JPH05342550A (en) Magnetic recording medium and its production
JPH03208311A (en) Magnetic substance film laminate body and manufacture thereof
JPS6116005A (en) Magnetic head