JPH10241143A - Metallic thin film type magnetic recording medium and its manufacture - Google Patents

Metallic thin film type magnetic recording medium and its manufacture

Info

Publication number
JPH10241143A
JPH10241143A JP6220397A JP6220397A JPH10241143A JP H10241143 A JPH10241143 A JP H10241143A JP 6220397 A JP6220397 A JP 6220397A JP 6220397 A JP6220397 A JP 6220397A JP H10241143 A JPH10241143 A JP H10241143A
Authority
JP
Japan
Prior art keywords
magnetic recording
recording medium
metal thin
temperature
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6220397A
Other languages
Japanese (ja)
Inventor
Yoshiki Goto
良樹 後藤
Takeshi Morita
武志 森田
Takeshi Murakami
猛 村上
Takashi Fujita
隆志 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6220397A priority Critical patent/JPH10241143A/en
Publication of JPH10241143A publication Critical patent/JPH10241143A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a highly efficient, high-quality metallic thin film magnetic recording medium which shows stable recording reproduction characteristics even in a high temperature range of 20-60 deg.C, small size change and superior running durability. SOLUTION: A non-magnetic substrate 1 is used which features surface characteristics of an average thermal expansion coefficient (β') is a temperature range of 20-60 deg.C of 0.5-2×10<-5> deg<-1> , and an MD/TD ratio of 0.8-1.5, with an average count of rough projections larger than ϕ5μm of 0-1/cm<-2> and an average count of rough projections smaller than ϕ5μm of 5-10/cm<2> . In producing the magnetic recording medium, a unit operation is added to treat the magnetic recording medium with heat, specifically with a total calory inserted to the magnetic recording medium of larger than 20cal/g, a tensile force of smaller than 3g/mm and a heating temperature of 100-130 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、情報産業等に用い
られる金属薄膜型磁気記録媒体及びその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal thin-film magnetic recording medium used in the information industry and the like, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】従来、磁気記録媒体の開発では、バイン
ダーにγ−酸化鉄または、Co被着−酸化鉄粒子を混合
した塗布型磁気記録媒体が行われてきた。
2. Description of the Related Art Conventionally, in the development of magnetic recording media, coating type magnetic recording media in which γ-iron oxide or Co-coated iron oxide particles are mixed with a binder have been used.

【0003】一方、記録密度のより高密度化、映像の高
品質化を目的とした磁気記録媒体として、非磁性基板上
に金属磁気記録層を直接メッキ法、スパッタリング法、
真空蒸着法、イオンプレーティング法等によって形成す
る金属薄膜型磁気記録媒体の開発が行われてきており、
デジタル映像機器への磁気記録媒体として現在すでに市
販されるに至っている。
On the other hand, as a magnetic recording medium aiming at higher recording density and higher image quality, a metal magnetic recording layer is directly plated on a non-magnetic substrate by a plating method, a sputtering method, or the like.
The development of metal thin film type magnetic recording media formed by vacuum deposition, ion plating, etc. has been carried out.
Currently, it is already commercially available as a magnetic recording medium for digital video equipment.

【0004】[0004]

【発明が解決しようとする課題】ところが用途、環境保
存における温度変化に対して、磁気記録媒体は熱変形に
より磁気ヘッドがトラックからずれ信号の低下が発生し
てブロックノイズが生じるという問題点があった。この
ことによって磁気記録媒体は映像の低品質化やあるいは
環境試験等での繰り返し走行中、変形にともなう損傷に
よって走行耐久性が劣化する等の課題が生じることがあ
った。このため従来上記課題を克服するために、特開平
6−196612号公報(幅方向のカール抑制)、特開
平6−200875号公報(記録媒体を加熱する)、特
開平6−190404号公報(基板を改良して形状の熱
制御する)に記載された内容で多くの改良提案がなされ
てきたがいまだ不十分な特性しか実現できていないのが
現状だった。
However, the magnetic recording medium has a problem that the magnetic head is deviated from the track due to thermal deformation, the signal is reduced, and block noise is generated due to the temperature change in the application and environmental preservation. Was. As a result, the magnetic recording medium sometimes suffers from problems such as deterioration of running durability due to damage caused by deformation during repetitive running in an environmental test or the like due to deterioration of the image quality. Therefore, in order to overcome the above-mentioned problems, Japanese Patent Application Laid-Open Nos. 6-196612 (suppressing curl in the width direction), 6-200875 (heating a recording medium), and 6-190404 (substrate) Many improvements have been proposed with the content described in the section entitled "Improvement of thermal control of shape"), but at present, only insufficient characteristics have been realized.

【0005】本発明は上記の課題を解決する金属薄膜型
磁気記録媒体とその製造方法を提供することを目的とす
るものである。
An object of the present invention is to provide a metal thin-film type magnetic recording medium which solves the above-mentioned problems and a method of manufacturing the same.

【0006】[0006]

【課題を解決するための手段】この目的を達成するため
に、本発明は、1)金属薄膜型磁気記録媒体の熱物性
値、2)非磁性基板、3)金属薄膜型磁気記録媒体の製
造方法の3つの観点からの解決手段を提供するものであ
る。
In order to achieve this object, the present invention provides: 1) a thermophysical property value of a metal thin-film magnetic recording medium, 2) a non-magnetic substrate, and 3) production of a metal thin-film magnetic recording medium. It provides a solution from three aspects of the method.

【0007】まず、本発明の対象である金属薄膜型磁気
記録媒体の構成について概略のみ説明すると、非磁性基
板の上に、Fe、Co、Niから選ばれる少なくとも1
種以上を含む強磁性金属、またはこれらとMn、Cr、
Ti、P、Y、Sm、Bi等またはこれらの酸化物を組
み合わせた合金、とりわけCo、Cr、Niから選ばれ
る少なくとも1種以上の元素を含む強磁性金属を真空蒸
着、スパッタ等によって厚み〜0.2μm以下程度の金
属薄膜型磁気記録層を形成し、その金属薄膜型磁気記録
層の上に、揮発性の低級炭化水素化合物をプラズマCV
Dによって厚み100オングストローム程度に形成され
たカーボン薄膜よりなるカーボン保護層を形成し、その
カーボン保護層の上に、カーボン保護層との結合性を考
慮して開発された低分子潤滑剤よりなる潤滑層を形成し
ている。また、非磁性基板の上記各層の積層側と反対側
に、高分子材料を主としたバインダー中にカーボン等を
含む混合物塗料の樹脂で厚み〜0.5μmのバックコー
ト層を形成している。
First, the structure of a metal thin-film type magnetic recording medium which is the subject of the present invention will be briefly described. First, at least one selected from the group consisting of Fe, Co and Ni is placed on a non-magnetic substrate.
Ferromagnetic metals containing more than one species, or Mn, Cr,
A ferromagnetic metal containing at least one element selected from Ti, P, Y, Sm, Bi and the like or an oxide of these oxides, particularly Co, Cr and Ni, is vacuum-deposited, sputtered or the like to a thickness of from 0 to 0. A metal thin film type magnetic recording layer having a thickness of about 2 μm or less is formed, and a volatile lower hydrocarbon compound is coated on the metal thin film type magnetic recording layer with a plasma CV.
Forming a carbon protective layer composed of a carbon thin film formed to a thickness of about 100 angstroms by D, and lubricating a low molecular lubricant developed on the carbon protective layer in consideration of the bonding property with the carbon protective layer. Forming a layer. A backcoat layer having a thickness of 0.5 μm is formed on the non-magnetic substrate on the side opposite to the lamination side of each layer with a resin of a mixture paint containing carbon or the like in a binder mainly composed of a polymer material.

【0008】上記構成の金属薄膜型磁気記録媒体の熱物
性値を、温度領域20〜60℃で平均熱膨張係数
(β’)の値が0.5〜2×10-5deg-1、かつ、そ
のMD/TD比が0.8〜1.5とすることにより、熱
物性が改良された熱膨張・熱収縮の小さい熱変形が改良
された性質を有するので、用途、環境保存における温度
変化に対しても安定した記録・再生が実現できる。
The metal thin-film type magnetic recording medium having the above-described structure has a thermal property value of 0.5 to 2 × 10 -5 deg -1 at an average thermal expansion coefficient (β ') in a temperature range of 20 to 60 ° C. When the MD / TD ratio is set to 0.8 to 1.5, the thermal properties are improved and the thermal deformation with small thermal expansion and thermal shrinkage is improved. , Stable recording and reproduction can be realized.

【0009】次に、本発明に最も関連する非磁性基板に
ついて説明する。非磁性基板はポリアミド、ポリイミ
ド、ポリエチレン、ポリエチレンテレフタタレート、ポ
リエチレンナフタタレート、ポリブチレンナフタレー
ト、塩化ビニルの高分子フィルムがある。そして本発明
に適用される要求から好ましくは耐熱性、熱収縮、表面
性、機械的強度等の物性面及び入手の容易さ、取扱い、
価格、量産性を考えるとポリエチレンテレフタレート
(PET)またはポリエチレンナフタレート(PEN)
が良く、薄膜化の方向を考えると機械的強度、耐熱面で
有利なPENが最も好ましい。また非磁性基板の有する
好ましい熱物性値として熱収縮率が長手方向(MD)と
幅方向(TD)で小さいことが良く、具体的には100
℃の熱収縮率でMD方向で<0.5%、TD方向で<
0.3%を有するのが良い。そして表面性は信号品質の
面で表面性が>φ5μmの粗大突起物の平均個数で0〜
1個/cm2、<φ5μmの粗大突起物の平均個数で5
〜10個/cm2の表面性を合わせもつとデジタル化で
の映像品質の良品化が実現される。
Next, a non-magnetic substrate most relevant to the present invention will be described. Non-magnetic substrates include polymer films of polyamide, polyimide, polyethylene, polyethylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, and vinyl chloride. And from the requirements applied to the present invention, preferably heat resistance, heat shrinkage, surface properties, physical properties such as mechanical strength and availability, handling,
Considering price and mass productivity, polyethylene terephthalate (PET) or polyethylene naphthalate (PEN)
Considering the direction of thinning, PEN which is advantageous in terms of mechanical strength and heat resistance is most preferable. Further, as a preferable thermophysical property value of the non-magnetic substrate, the heat shrinkage ratio is preferably small in the longitudinal direction (MD) and the width direction (TD).
<0.5% in MD direction and <0.5% in TD direction
It is better to have 0.3%. In terms of signal quality, the surface quality is 0 to the average number of coarse projections having a diameter of> φ5 μm.
1 / cm 2 , average number of coarse projections of <φ5 μm is 5
With a surface property of 〜1010 / cm 2 , it is possible to improve the quality of the image by digitization.

【0010】本発明の製造方法における熱処理の単位操
作では、紫外、赤外、電磁波等の光源輻射、電気炉、乾
燥炉、熱交換炉等の加熱炉を用いて操作される。中で
も、本発明の製造方法では温度設定が必要でかつ制御が
容易なしかも工業化、量産性の面で乾燥炉が好ましい。
そしてこれは磁気記録媒体の製法条件として張力、加熱
温度、処理速度の因子によって本発明に適合した条件の
適正化が検討される。
In the unit operation of the heat treatment in the production method of the present invention, the operation is performed using a light source such as ultraviolet, infrared, electromagnetic waves, or a heating furnace such as an electric furnace, a drying furnace or a heat exchange furnace. Above all, a drying furnace is preferable in the production method of the present invention because it requires temperature setting, is easy to control, and is industrial and mass-producible.
As for the manufacturing conditions of the magnetic recording medium, optimization of conditions suitable for the present invention is examined by factors such as tension, heating temperature, and processing speed.

【0011】例えば張力であればあまり強いと磁気記録
層の幅方向でのクラックが生じる一方、弱過ぎると磁気
記録媒体の巻き取りで支障が生じ、作製プロセスで問題
点が生じる。
For example, if the tension is too high, cracks in the width direction of the magnetic recording layer will occur if the tension is too high, whereas if the tension is too low, there will be a problem in winding the magnetic recording medium, causing a problem in the manufacturing process.

【0012】加熱温度の設定は低すぎると磁気記録媒体
に挿入しなければならない熱量を得るためには処理速度
が遅くなる。高温すぎると他の構成層の影響がでること
や、伸びの現象で良くない。また処理速度は量産化、工
業化、作製の迅速化を考慮すると遅い処理速度での実現
は無意味である。したがって、上記の条件の適正化を図
ることによって、磁気記録媒体の加熱収縮率が<0.1
5%になるように磁気記録媒体に挿入される総熱量が>
20cal/g、引っ張り張力が<3g/mm、加熱温
度100〜130℃で熱処理するのが好ましい。そして
得られる磁気記録媒体が、TMA(熱機械試験)によっ
て測定される熱特性で、磁気記録媒体の膨張を始める温
度が熱処理しない磁気記録媒体よりも5〜10℃高くシ
フトしかつ、膨張から収縮へと熱変形が変化する温度が
熱処理しない磁気記録媒体よりも>5℃になるように熱
処理する製造方法を実施することが、熱変形を小さくし
た磁気記録媒体の実現にとって好ましい。
If the setting of the heating temperature is too low, the processing speed becomes slow in order to obtain the amount of heat that must be inserted into the magnetic recording medium. If the temperature is too high, the influence of other constituent layers may occur, and the phenomenon of elongation is not good. Considering mass processing, industrialization, and rapid production, realization at a low processing speed is meaningless. Therefore, by optimizing the above conditions, the heat shrinkage of the magnetic recording medium can be reduced to <0.1.
The total amount of heat inserted into the magnetic recording medium so that it becomes 5%>
The heat treatment is preferably performed at 20 cal / g, a tensile tension of <3 g / mm, and a heating temperature of 100 to 130 ° C. The temperature at which the magnetic recording medium begins to expand shifts by 5 to 10 ° C. higher than that of the non-heat-treated magnetic recording medium in terms of thermal characteristics measured by TMA (thermomechanical test), and expands and contracts. It is preferable to implement a manufacturing method in which heat treatment is performed so that the temperature at which thermal deformation changes to> 5 ° C. than that of a magnetic recording medium that is not heat-treated, in order to realize a magnetic recording medium with reduced thermal deformation.

【0013】以上のように本発明で示される金属薄膜型
磁気記録媒体及びその製造方法で実現される金属薄膜型
磁気記録媒体は、熱変形の改良されたかつ表面性の優れ
た特性を有するため、用途、環境保存での温度変化に対
しても安定した記録・再生特性を示し、かつ映像品質の
良い、走行耐久性にも優れた金属薄膜型磁気記録媒体を
提供できる。
As described above, the metal thin-film magnetic recording medium shown in the present invention and the metal thin-film magnetic recording medium realized by the method for manufacturing the same have characteristics of improved thermal deformation and excellent surface properties. In addition, it is possible to provide a metal thin-film magnetic recording medium which exhibits stable recording / reproducing characteristics even with temperature changes during use and environmental preservation, has good image quality, and has excellent running durability.

【0014】[0014]

【発明の実施の形態】本発明の請求項1に記載の発明
は、非磁性基板にポリエチレンナフタレートを用い、磁
気記録媒体の全厚みが<8μmで、温度領域20〜60
℃で平均熱膨張係数(β’)の値が0.5〜2×10-5
deg-1を有し、かつ、そのMD/TD比が0.8〜
1.5の熱物性値を有する金属薄膜型磁気記録媒体であ
り、平均熱膨張係数(β’)の値が0.5〜2×10-5
deg-1と小さく、かつ、そのMD/TD比が0.8〜
1.5であるので、リニア特性は3〜4μmとほぼ満足
される結果が得られる。
DETAILED DESCRIPTION OF THE INVENTION The invention according to claim 1 of the present invention uses polyethylene naphthalate for the non-magnetic substrate, has a total thickness of the magnetic recording medium of <8 μm, and has a temperature range of 20 to 60.
The average thermal expansion coefficient (β ′) at 0.5 ° C. is 0.5 to 2 × 10 −5.
deg -1 and the MD / TD ratio is 0.8 to
A metal thin-film magnetic recording medium having a thermophysical property value of 1.5, and having an average coefficient of thermal expansion (β ′) of 0.5 to 2 × 10 −5.
deg -1 and its MD / TD ratio is 0.8 to
Since it is 1.5, the linear characteristic is 3 to 4 μm, which is almost satisfactory.

【0015】本発明の請求項2に記載の発明は、100
℃の熱収縮率がMD方向で<0.5%、TD方向で<
0.3%の熱物性値を有する非磁性基板を用いる請求項
1に記載の金属薄膜型磁気記録媒体であり、非磁性基板
の熱収縮率がMD方向で<0.5%、TD方向で<0.
3%であるので、リニア特性を満足し、かつ、BERの
値が小さい欠陥の少ない高品質の磁気記録媒体が得られ
る。
According to a second aspect of the present invention,
C. <0.5% in MD and <0.5% in TD
2. The metal thin-film magnetic recording medium according to claim 1, wherein a non-magnetic substrate having a thermophysical property value of 0.3% is used, wherein the non-magnetic substrate has a thermal shrinkage of <0.5% in the MD direction and in the TD direction. <0.
Since it is 3%, a high-quality magnetic recording medium that satisfies the linear characteristics and has a small BER value and few defects can be obtained.

【0016】本発明の請求項3に記載の発明は、表面性
が>φ5μmの粗大突起物の平均個数で0〜1個/cm
2、<φ5μmの粗大突起物の平均個数で5〜10個/
cm2の表面性を合わせもつ非磁性基板を用いる請求項
1に記載の金属薄膜型磁気記録媒体であり、表面性が>
φ5μmの粗大突起物の平均個数で0〜1個/cm2
<φ5μmの粗大突起物の平均個数で5〜10個/cm
2であるので、表面欠陥がなく、映像品質に優れ、繰り
返し走行耐久性の良い磁気記録媒体が得られる。
According to a third aspect of the present invention, the average number of coarse projections having a surface property of> φ5 μm is 0 to 1 / cm.
2 , 5 to 10 / average number of coarse projections of <φ5 μm
2. The metal thin-film magnetic recording medium according to claim 1, wherein a non-magnetic substrate having a surface property of cm 2 is used.
The average number of coarse protrusions of φ5 μm is 0 to 1 / cm 2 ,
<Average number of coarse protrusions of φ5 μm is 5 to 10 / cm
Since it is 2 , a magnetic recording medium free from surface defects, excellent in image quality, and excellent in repeated running durability can be obtained.

【0017】本発明の請求項4に記載の発明は、磁気記
録媒体に挿入される総熱量が>20cal/g、引っ張
り張力が<3g/mm、加熱温度100〜130℃で熱
処理する単位操作を付加する金属薄膜型磁気記録媒体の
製造方法であり、総熱量が>20cal/g、引っ張り
張力が<3g/mm、加熱温度100〜130℃で熱処
理する単位操作を付加することにより、加熱収縮率が<
0.15%となり、熱変形の小さい金属薄膜型磁気記録
媒体が得られる。
According to a fourth aspect of the present invention, a unit operation of performing heat treatment at a total heat quantity of> 20 cal / g, a tensile tension of <3 g / mm, and a heating temperature of 100 to 130 ° C. inserted into a magnetic recording medium is described. This is a method of manufacturing a metal thin film type magnetic recording medium to be added, in which the total heat quantity is> 20 cal / g, the tensile tension is <3 g / mm, and the heat shrinkage is obtained by adding a unit operation of heat treatment at a heating temperature of 100 to 130 ° C. Is <
0.15%, so that a metal thin-film magnetic recording medium having small thermal deformation can be obtained.

【0018】本発明の請求項5に記載の発明は、磁気記
録媒体の膨張を始める温度が熱処理しない磁気記録媒体
よりも5〜10℃高くシフトしかつ、膨張から収縮へと
熱変形が変化する温度が熱処理しない磁気記録媒体より
も>5℃になるように熱処理することを特徴とする請求
項4に記載の金属薄膜型磁気記録媒体の製造方法であ
り、熱変形の小さい金属薄膜型磁気記録媒体が得られ
る。
In the invention according to claim 5 of the present invention, the temperature at which the expansion of the magnetic recording medium starts is shifted by 5 to 10 ° C. higher than that of the magnetic recording medium without heat treatment, and the thermal deformation changes from expansion to contraction. 5. The method for producing a metal thin film magnetic recording medium according to claim 4, wherein the heat treatment is performed so that the temperature is higher than 5 DEG C. than the magnetic recording medium which is not heat treated. A medium is obtained.

【0019】以下本発明の実施の形態について図を用い
て説明する。 (実施の形態1)図1は、本発明の実施の形態1におけ
る金属薄膜型磁気記録媒体の構成を示す断面図であり、
厚み6.2μm、幅500mmのPETフィルムよりな
る非磁性基板1の上に、酸素グロー状態でCoを1層積
層した厚み0.16μmの金属薄膜型磁気記録層2を形
成し、その金属薄膜型磁気記録層2の上に、プラズマC
VD成膜法によるカーボン保護層3を形成し、そのカー
ボン保護層3の上に、パーフロロオクチルカルボン酸を
1000ppm溶解させたイソピロピルアルコールで塗
布して潤滑層4を形成し、非磁性基板1の上記各層の積
層側と反対側に樹脂のバックコート層5が積層されてい
る。
An embodiment of the present invention will be described below with reference to the drawings. (Embodiment 1) FIG. 1 is a sectional view showing a configuration of a metal thin film type magnetic recording medium according to Embodiment 1 of the present invention.
On a non-magnetic substrate 1 made of a PET film having a thickness of 6.2 μm and a width of 500 mm, a 0.16 μm-thick metal thin-film type magnetic recording layer 2 is formed by laminating one layer of Co in an oxygen glow state. On the magnetic recording layer 2, a plasma C
A carbon protective layer 3 is formed by a VD film forming method, and a lubricating layer 4 is formed on the carbon protective layer 3 by applying perfluorooctyl carboxylic acid with isopropyl alcohol in which 1000 ppm is dissolved. A resin back coat layer 5 is laminated on the side opposite to the lamination side of each of the above-mentioned layers.

【0020】上記構成の金属薄膜型磁気記録媒体を1/
4インチにスリットし60分長でカセットに収納して記
録テープとした。そしてこれを電気炉で表1に示す加熱
条件の温度、炉内放置時間で処置した4種類の試料と比
較例として未処理の1種類の試料を作製した。
The metal thin film type magnetic recording medium having the above structure is
The recording tape was slit into 4 inches and stored in a cassette with a length of 60 minutes. The samples were treated with an electric furnace at the temperature of the heating conditions shown in Table 1 and left in the furnace for a period of time, and one untreated sample was produced as a comparative example.

【0021】[0021]

【表1】 [Table 1]

【0022】評価は熱物性を測定する観点から一般的に
用いられているTMA(真空理工TM7000)を用い
て平均熱膨張係数(β’)を求め、環境温度変化におけ
るリニア特性は市販のDVCデッキを用いて、カセット
を温度60℃の環境下で20Hr放置した後、再生後の
トラックずれによる角度変化から値を算出した。
In the evaluation, an average coefficient of thermal expansion (β ') was obtained using TMA (Vacuum Riko TM7000) which is generally used from the viewpoint of measuring thermophysical properties. After the cassette was left for 20 hours in an environment of a temperature of 60 ° C., a value was calculated from an angle change due to a track shift after reproduction.

【0023】すると比較例の未処理の試料は、β’もM
D3.3、TD1.9と大きく、また、そのβ’の長手
方向と幅方向の比、MD/TD比も1.7で>1.5で
MD方向への片寄った伸びを示すことから、リニアの値
は7〜8μmと大きくずれ、信号の低下ならびにブロッ
クエラーが増大した。これに対し、表1における加熱条
件を加えた本発明の実施の形態1のおける試料No.1
〜3はβ’がMD方向で0.5〜2と小さい値を有し、
かつそのβ’のMD/TD比も0.8〜1.5の熱物性
値を示す時にリニア特性では3〜4μmとほぼ満足され
た結果が得られている。しかしながら同時に得た試料N
o.4では加熱時間が長すぎたためかリニア特性として
は5〜6μmと比較例よりは改善されているものの顕著
な効果は見られず、β’も大きく、MD/TD比も範囲
からは外れていた。
Then, the untreated sample of the comparative example has β ′ of M
D3.3 and TD1.9 are large, and the ratio of β ′ between the longitudinal direction and the width direction and the MD / TD ratio are 1.7 and> 1.5. The linear value greatly deviated from 7 to 8 μm, and the signal drop and the block error increased. On the other hand, Sample No. 1 in Embodiment 1 of the present invention to which the heating conditions in Table 1 were added 1
~ 3 has a small value of β 'as 0.5 to 2 in the MD direction,
In addition, when the MD / TD ratio of β ′ also shows a thermophysical property value of 0.8 to 1.5, a linear characteristic of 3 to 4 μm, which is almost satisfied, is obtained. However, the sample N obtained at the same time
o. In No. 4, because the heating time was too long, the linear characteristic was 5 to 6 μm, which was improved from the comparative example, but no remarkable effect was observed, β ′ was large, and the MD / TD ratio was out of the range. .

【0024】このことからリニア特性を満足させる磁気
記録媒体としては、表1に示したように、β’の値が
0.5〜2×10-5deg-1を有し、かつそのβ’のM
D/TD比が0.8〜1.5の熱物性値を有した磁気記
録媒体になって始めて達成可能であることがわかった。
Thus, as shown in Table 1, a magnetic recording medium satisfying the linear characteristic has a value of β ′ of 0.5 to 2 × 10 −5 deg −1 and the value of β ′. M
It has been found that a magnetic recording medium having a D / TD ratio of 0.8 to 1.5 having thermophysical properties can be achieved only when a magnetic recording medium is used.

【0025】(実施の形態2)本実施の形態2の金属薄
膜型磁気記録媒体は、前記実施の形態1の図1における
非磁性基板1として4.8μm厚みのPENフィルムを
用いた以外の構成は実施の形態1と同様である。そして
この実施の形態2における非磁性基板1として表2に示
すように熱収縮率と表面状態の突起物の個数が変化した
3種類の試料No.5〜7を用い、比較試料として熱収
縮率が大きく、表面状態の突起物の個数の多い基板を用
いてリニア値とBERを比較評価した。
(Embodiment 2) A metal thin film type magnetic recording medium according to Embodiment 2 is different from Embodiment 1 in that a PEN film having a thickness of 4.8 μm is used as the nonmagnetic substrate 1 in FIG. Is the same as in the first embodiment. As shown in Table 2, three types of sample Nos. Having different thermal shrinkage rates and surface state projections were used as the non-magnetic substrate 1 in the second embodiment. The linear value and the BER were comparatively evaluated using a substrate having a large heat shrinkage ratio and a large number of surface state protrusions as a comparative sample using 5 to 7 as comparative samples.

【0026】なお、突起物の個数は、表面観察で3箇所
の平均個数を算出し、>φ5μm、<φ5μmの大きさ
で分類して突起による欠陥の影響を調べた。
The number of protrusions was calculated by averaging the number of protrusions at three places by surface observation, and classified into sizes of> φ5 μm and <φ5 μm to examine the influence of defects due to the protrusions.

【0027】[0027]

【表2】 [Table 2]

【0028】表2に示すようにリニア特性を満足し、か
つ、BERの値が小さい欠陥の少ない高品質の磁気記録
媒体は、熱収縮率ではMD方向で<0.5%、TD方向
で<0.3%を示すとともに、表面性では>φ5μmの
粗大突起物の平均個数で0〜1個/cm2、<φ5μm
の粗大突起物の平均個数で5〜10個/cm2の表面状
態となっている試料No.5〜7のフィルムを用いると
達成されることがわかった。ところが比較試料では、こ
の状態になっていないので、リニア値、BERともに良
くなかった。
As shown in Table 2, a high-quality magnetic recording medium which satisfies the linear characteristic and has a small BER value and few defects has a thermal shrinkage of <0.5% in the MD direction and <0.5% in the TD direction. In addition to 0.3%, in terms of surface properties, the average number of coarse projections of> φ5 μm is 0 to 1 / cm 2 , <φ5 μm
The sample No. having a surface state of 5 to 10 / cm 2 in average number of coarse projections of No. It has been found that this is achieved with 5-7 films. However, the comparative sample was not in this state, so that both the linear value and the BER were not good.

【0029】したがって、非磁性基板を改良した状態で
金属薄膜型磁気記録媒体を作製すると、加熱の手間等が
新たに加える必要もなくリニアを達成でき、また表面欠
陥もないため映像品質に優れた繰り返し走行耐久性も良
い磁気記録媒体が得られる。
Therefore, when a metal thin film type magnetic recording medium is manufactured with an improved non-magnetic substrate, linearity can be achieved without the need for additional heating and the like, and the image quality is excellent because there are no surface defects. A magnetic recording medium having good repeated running durability can be obtained.

【0030】(実施の形態3)本実施の形態3における
金属薄膜型磁気記録媒体の製造方法では、実施の形態1
と同様に厚み6.2μmのPETフィルム(試料No.
8〜10)と、厚み4.8μmのPENフィルム(試料
No.11〜12)を用い、表3に示すように温度、張
力、処理速度を変えたものと、上記試料と別の製造条件
による比較試料について、磁気記録媒体の比熱から製造
中に付加される総熱量を算出して金属薄膜型磁気記録媒
体の製造方法を比較評価した。
(Embodiment 3) In the method of manufacturing a metal thin film type magnetic recording medium according to Embodiment 3, Embodiment 1
6.2 μm thick PET film (sample No.
8 to 10) and a 4.8 μm-thick PEN film (Sample Nos. 11 to 12) with different temperatures, tensions, and processing speeds as shown in Table 3, and different manufacturing conditions from the above samples. For the comparative sample, the total amount of heat added during the production was calculated from the specific heat of the magnetic recording medium, and the production method of the metal thin-film magnetic recording medium was comparatively evaluated.

【0031】[0031]

【表3】 [Table 3]

【0032】そして評価は温度60℃で20Hr放置し
た後の加熱収縮率を測定した。またTMAによって膨張
・収縮の挙動を室温から150℃まで測定し膨張の開始
する温度及び、膨張から収縮に転化する温度を求めた。
The evaluation was performed by measuring the heat shrinkage after leaving at a temperature of 60 ° C. for 20 hours. The expansion and contraction behavior was measured from room temperature to 150 ° C. by TMA, and the temperature at which expansion started and the temperature at which expansion was converted to contraction were determined.

【0033】表3に示すように、本実施の形態3の製造
方法、即ち、引っ張り張力が<3g/mm、加熱温度1
00〜130℃でかつ熱媒体に挿入される総熱量が>2
0cal/gの時に、加熱収縮率が<0.15%になり
比較試料よりも1/3に熱変形が小さくなることがわか
った。またこれらの試料は、金属薄膜型磁気記録媒体が
膨張を始める温度が比較試料よりも5〜10℃高くシフ
トしかつ、膨張から収縮へと熱変形が変化する温度が同
じように>5℃になるような変化が生じていた。
As shown in Table 3, the manufacturing method of the third embodiment, that is, a tensile tension of <3 g / mm and a heating temperature of 1
00 to 130 ° C. and the total amount of heat inserted into the heating medium is> 2
At 0 cal / g, it was found that the heat shrinkage ratio was <0.15%, and the thermal deformation was reduced to one third of that of the comparative sample. In these samples, the temperature at which the metal thin-film magnetic recording medium starts to expand is shifted by 5 to 10 ° C. higher than that of the comparative sample, and the temperature at which the thermal deformation changes from expansion to contraction is similarly increased to> 5 ° C. Such a change had occurred.

【0034】したがって、本実施の形態3に述べるよう
に製造方法における温度、張力、処理速度ならびに媒体
に挿入される熱量の適正化と制御によって製造される金
属薄膜型磁気記録媒体は熱変形が改良され、このことに
よって初めてリニア特性を常に達成できる金属薄膜型磁
気記録媒体を提供できることがわかった。
Therefore, as described in the third embodiment, the thermal deformation of the metal thin film type magnetic recording medium manufactured by optimizing and controlling the temperature, tension, processing speed and the amount of heat inserted into the medium in the manufacturing method is improved. It has been found that, for the first time, a metal thin-film magnetic recording medium capable of always achieving linear characteristics can be provided.

【0035】[0035]

【発明の効果】本発明で述べている金属薄膜型磁気記録
媒体及びその製造方法により、20〜60℃の高温度範
囲においても安定した記録・再生特性を示す金属薄膜型
磁気記録媒体を提供でき、また、寸法変化の小さい、走
行耐久性に優れた高性能、高品質の金属薄膜型磁気記録
媒体が実現できる。
According to the metal thin-film magnetic recording medium and the method of manufacturing the same described in the present invention, a metal thin-film magnetic recording medium exhibiting stable recording and reproducing characteristics even in a high temperature range of 20 to 60 ° C. can be provided. In addition, a high-performance, high-quality metal thin-film magnetic recording medium with small dimensional change and excellent running durability can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1における金属薄膜型磁気
記録媒体の構成を示す断面図
FIG. 1 is a cross-sectional view illustrating a configuration of a metal thin-film magnetic recording medium according to a first embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 非磁性基板 2 金属薄膜型磁気記録層 3 カーボン保護層 4 潤滑層 5 バックコート層 DESCRIPTION OF SYMBOLS 1 Non-magnetic substrate 2 Metal thin film type magnetic recording layer 3 Carbon protective layer 4 Lubricating layer 5 Back coat layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤田 隆志 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takashi Fujita 1006 Kadoma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 非磁性基板にポリエチレンナフタレート
を用い、磁気記録媒体の全厚みが<8μmで、温度領域
20〜60℃で平均熱膨張係数(β’)の値が0.5〜
2×10-5deg-1を有し、かつ、そのMD/TD比が
0.8〜1.5の熱物性値を有する金属薄膜型磁気記録
媒体。
1. A non-magnetic substrate made of polyethylene naphthalate, a magnetic recording medium having a total thickness of <8 μm, a temperature range of 20 to 60 ° C. and an average thermal expansion coefficient (β ′) of 0.5 to 0.5 μm.
A metal thin-film magnetic recording medium having 2 × 10 -5 deg -1 and a thermophysical property value of which the MD / TD ratio is 0.8 to 1.5.
【請求項2】 100℃の熱収縮率がMD方向で<0.
5%、TD方向で<0.3%の熱物性値を有する非磁性
基板を用いる請求項1に記載の金属薄膜型磁気記録媒
体。
2. The heat shrinkage at 100 ° C. is <0.
2. The metal thin-film magnetic recording medium according to claim 1, wherein a non-magnetic substrate having a thermophysical property value of 5% and <0.3% in the TD direction is used.
【請求項3】 表面性が>φ5μmの粗大突起物の平均
個数で0〜1個/cm2、<φ5μmの粗大突起物の平
均個数で5〜10個/cm2の表面性を合わせもつ非磁
性基板を用いる請求項1に記載の金属薄膜型磁気記録媒
体。
3. A non-woven fabric having a surface property of 0 to 1 / cm 2 in average number of coarse protrusions having a diameter of> φ5 μm, and a surface property of 5 to 10 / cm 2 in average number of coarse protrusions of <φ5 μm. 2. The metal thin-film magnetic recording medium according to claim 1, wherein a magnetic substrate is used.
【請求項4】 磁気記録媒体に挿入される総熱量が>2
0cal/g、引っ張り張力が<3g/mm、加熱温度
100〜130℃で熱処理する単位操作を付加する金属
薄膜型磁気記録媒体の製造方法。
4. The total amount of heat inserted into the magnetic recording medium is> 2
0 cal / g, tensile strength <3 g / mm, and a method of manufacturing a metal thin film type magnetic recording medium in which a unit operation of heat treatment at a heating temperature of 100 to 130 ° C. is added.
【請求項5】 磁気記録媒体の膨張を始める温度が熱処
理しない磁気記録媒体よりも5〜10℃高くシフトし、
かつ、膨張から収縮へと熱変形が変化する温度が熱処理
しない磁気記録媒体よりも>5℃になるように熱処理す
る請求項4に記載の金属薄膜型磁気記録媒体の製造方
法。
5. The temperature at which expansion of the magnetic recording medium starts is shifted by 5 to 10 ° C. higher than that of the magnetic recording medium without heat treatment.
5. The method according to claim 4, wherein the heat treatment is performed so that the temperature at which the thermal deformation changes from expansion to contraction is> 5 [deg.] C. as compared with the magnetic recording medium without heat treatment.
JP6220397A 1997-02-28 1997-02-28 Metallic thin film type magnetic recording medium and its manufacture Pending JPH10241143A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6220397A JPH10241143A (en) 1997-02-28 1997-02-28 Metallic thin film type magnetic recording medium and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6220397A JPH10241143A (en) 1997-02-28 1997-02-28 Metallic thin film type magnetic recording medium and its manufacture

Publications (1)

Publication Number Publication Date
JPH10241143A true JPH10241143A (en) 1998-09-11

Family

ID=13193364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6220397A Pending JPH10241143A (en) 1997-02-28 1997-02-28 Metallic thin film type magnetic recording medium and its manufacture

Country Status (1)

Country Link
JP (1) JPH10241143A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000163730A (en) * 1998-11-24 2000-06-16 Matsushita Electric Ind Co Ltd Magnetic recording medium
JP6816851B1 (en) * 2019-10-10 2021-01-20 ソニー株式会社 Magnetic recording medium
WO2021070907A1 (en) * 2019-10-10 2021-04-15 ソニー株式会社 Magnetic recording medium

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000163730A (en) * 1998-11-24 2000-06-16 Matsushita Electric Ind Co Ltd Magnetic recording medium
JP6816851B1 (en) * 2019-10-10 2021-01-20 ソニー株式会社 Magnetic recording medium
WO2021070907A1 (en) * 2019-10-10 2021-04-15 ソニー株式会社 Magnetic recording medium
US11581014B2 (en) 2019-10-10 2023-02-14 Sony Corporation Magnetic recording medium

Similar Documents

Publication Publication Date Title
JP2006216195A (en) Magnetic recording medium supporting body
WO1991006948A1 (en) Method of producing magnetic recording medium
JP2003030818A (en) Supporting body for magnetic recording medium and magnetic recording medium
JPH10241143A (en) Metallic thin film type magnetic recording medium and its manufacture
JP2953060B2 (en) High density magnetic recording media
US20070111038A1 (en) Magnetic recording medium
JPH1139636A (en) Magnetic recording medium and its production
JP5112923B2 (en) Magnetic recording medium support
JP2000163730A (en) Magnetic recording medium
JP4576721B2 (en) Biaxially oriented laminated thermoplastic film
JP4529326B2 (en) Support for magnetic recording medium and magnetic recording tape
JPH11126320A (en) Magnetic record medium and its production
JP2659016B2 (en) Magnetic recording media
JP3691941B2 (en) Magnetic recording medium and support thereof
JP4138348B2 (en) Method for manufacturing magnetic recording medium
JP2004013958A (en) Support for magnetic recording medium
JP2002237027A (en) Magnetic recording medium
JP2002269725A (en) Base material for magnetic recording medium
JP4529323B2 (en) Polyester film for magnetic recording medium and magnetic recording tape
JPH07272247A (en) Magnetic recording medium
JP2004046948A (en) Method for manufacturing magnetic recording medium
JPH0227733B2 (en) JIKEHAIROKUBAITAINOSEIZOHOHO
JPH0434715A (en) Magnetic tape
JPS62277625A (en) Magnetic recording medium
JP2001250216A (en) Magnetic recording medium and its manufacturing method

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040824