JPS62202315A - Vertical magnetic recording medium - Google Patents

Vertical magnetic recording medium

Info

Publication number
JPS62202315A
JPS62202315A JP4315186A JP4315186A JPS62202315A JP S62202315 A JPS62202315 A JP S62202315A JP 4315186 A JP4315186 A JP 4315186A JP 4315186 A JP4315186 A JP 4315186A JP S62202315 A JPS62202315 A JP S62202315A
Authority
JP
Japan
Prior art keywords
linear expansion
substrate
recording medium
film
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4315186A
Other languages
Japanese (ja)
Other versions
JPH07101500B2 (en
Inventor
Hiroyoshi Nakamura
中村 弘喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61043151A priority Critical patent/JPH07101500B2/en
Publication of JPS62202315A publication Critical patent/JPS62202315A/en
Publication of JPH07101500B2 publication Critical patent/JPH07101500B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain a vertical magnetic recording medium which is free from curling and wrinkling and has good touch of a magnetic head and running property by forming a substrate which has the coefft. of linear expansion in a specific range and has the coefft. of linear expansion approximately isotropic with respect to the plane of the substrate. CONSTITUTION:The coefft. of linear expansion of the recording medium consisting of a high-polymer film is 4.5X10<-6>-9.5X10<-6>/ deg.C and the coefft. of linear expansion is approximately isotropic with respect to the plane of the substrate. The high-polymer film having such coefft. of linear expansion is obtd. by the adjustment of the skeleton of the constituting polymer particles, copolymn. thereof and the reaction method in the stage of adjusting the ratio thereof and synthesizing, the adjustment of the mol.wt., adjustment of the degree of stretching, a heat treatment, etc. Since the coefft. of linear expansion is made approximately isotropic within the plane of the substrate, the slightly generated curling does not affect the characteristics of the magnetic recording medium and such is advantageous in the case of using the medium in the form of a disk such as floppy disk in particular.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野〉 本発明は、高分子フィルム基板上にCo−Cr系強磁性
合金層が被着形成されてなる垂直磁気記録媒体に係り、
特に磁気へッドタッヂや走行性等へ悪影響をおよぼすカ
ール、しわ等の発生を防止した垂直磁気記録媒体に関す
る。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a perpendicular magnetic recording medium in which a Co-Cr based ferromagnetic alloy layer is deposited and formed on a polymer film substrate. ,
In particular, the present invention relates to a perpendicular magnetic recording medium that prevents the occurrence of curls, wrinkles, etc. that adversely affect magnetic head tack, runnability, etc.

(従来の技術) 近年、磁気記録媒体の媒体面に垂直な方的の残留磁化を
利用して磁気記録を行う垂直磁気記録方式が原理的に高
密度記録に適する方式として注目されている。
(Prior Art) In recent years, the perpendicular magnetic recording method, which performs magnetic recording using residual magnetization perpendicular to the medium surface of a magnetic recording medium, has been attracting attention as a method suitable in principle for high-density recording.

この垂直磁気記録に用いる垂直磁気記録媒体の代表的な
ものとしては、膜面に垂直な方的に磁化容易軸を有する
Go−Cr系強磁性合金層を高分子フィルム上にスパッ
タリングや蒸着により形成して磁性層としたもの′h亀
りられでいる。
As a typical perpendicular magnetic recording medium used for this perpendicular magnetic recording, a Go-Cr-based ferromagnetic alloy layer having an axis of easy magnetization perpendicular to the film surface is formed on a polymer film by sputtering or vapor deposition. The magnetic layer is made from a ceramic material.

このような垂直磁気記録媒体は、第1図に示すように、
ポリイミド、ポリエチレンテレフタレート、芳香族ポリ
アミド等の耐熱性高分子フィルムからなる基板1と、こ
の基板1の少くとも一方の表面にCo−Cr系合金など
からなる強磁性合金層2を形成し、この強磁性合金層2
上に保護膜3および潤滑層48順に設(プて構成されて
あり、磁気テープAbフロッピーディスクへの使用か考
えられている。
Such a perpendicular magnetic recording medium, as shown in FIG.
A substrate 1 made of a heat-resistant polymer film such as polyimide, polyethylene terephthalate, or aromatic polyamide, and a ferromagnetic alloy layer 2 made of a Co-Cr alloy or the like are formed on at least one surface of this substrate 1. Magnetic alloy layer 2
A protective film 3 and a lubricating layer 48 are sequentially provided on the magnetic tape, and it is considered to be used for magnetic tapes and floppy disks.

上記co−cr系強磁性合金層は一般にアルゴン雰囲気
中で通常のコンベンショナル・スパッタリング法あるい
はマグネトロン・スパッタリング法で形成されている。
The co-cr based ferromagnetic alloy layer is generally formed by conventional sputtering or magnetron sputtering in an argon atmosphere.

ぞしてこのようにして形成されたCo−Cr系強磁性合
金層はC軸に配向された柱状構成となり、磁気特性は主
としてCo−Cr系強磁性合金層の組成によって決まる
飽和磁化MSの他に膜面に垂直な磁気異方性エネルギー
Ku、膜面に垂直方的の保持カドlc+がそれぞれ大ぎ
く高密度記録が可能となる条件を備えている。
The Co-Cr ferromagnetic alloy layer thus formed has a columnar structure oriented along the C-axis, and its magnetic properties are determined mainly by the composition of the Co-Cr ferromagnetic alloy layer, as well as saturation magnetization MS. In addition, the magnetic anisotropy energy Ku perpendicular to the film surface and the retention quadrature lc+ perpendicular to the film surface each have conditions that enable extremely high-density recording.

しかしながら上述したi方法によって所望の磁気特性を
有するCo−0r系強磁性合金層を形成する場合、基板
でおる高分子フィルムを真空中で80〜200°Cに加
熱する必要があり、このため第2図(a)、(b)に示
したような、高分子フィルム5と強磁性合金層6の熱膨
張係数の違いに由来するカールを生じ、特に熱膨張係数
があまりjlいすぎるとしわが発生するようになる。こ
のようなカールやしわは磁気記録媒体と使用する際の磁
気ヘッドタッチや走行性等を悪くするという問題を引き
起す。このカール現象では、膜厚5000人のCo−C
r系強磁性合金層を75μm厚の異なる線膨脹係数を有
する高分子フィルムに形成した場合、Co−Cr系強磁
性合金層より線膨脹係数の大さいフィルムは強磁性合金
層6が外側になるアウターカールを生じ、逆に線膨脹係
数が小さい耐熱性フィルムは強磁性合金層6が内側にな
るインナーカールを生じる。Co−Cr強磁性合金層の
形成は、通常、量産性を考慮して、第3図に示すような
ロール式連続スパッタリング装置を用いてCo−Crタ
ーゲット7a、7bと対向した円筒状ロール8a、8b
の周側面に沿って萌後の供給口−ル9および春取りロー
ル10を用いて張力をかけながら高分子フィルム12を
走行させ、円筒状ロール8a、8bによって高分子フィ
ルム温度を制御しながら行われる。第3図中の符号13
a、13b、13cはフィルム転送のための補助ローラ
である。この場合、80〜200℃という強磁性合金層
の成膜時の高い温度から成膜後室温にまで温度が変化す
る際のCo−Cr合金層と高分子フィルムの収縮量が異
なるため、Co−Cr系強磁性合金層より線膨脹係数の
大きい高分子フィルムでは、アウターカールを生じ、逆
に線膨脹係数か小さいフィルムではインナーカールを生
じることになる。
However, when forming a Co-0r-based ferromagnetic alloy layer with desired magnetic properties by the above-mentioned method i, it is necessary to heat the polymer film covering the substrate to 80 to 200°C in vacuum. As shown in Figure 2 (a) and (b), curls occur due to the difference in thermal expansion coefficients between the polymer film 5 and the ferromagnetic alloy layer 6, and wrinkles occur especially when the thermal expansion coefficient is too high. I come to do it. Such curls and wrinkles cause problems such as poor magnetic head touch and running performance when used with magnetic recording media. In this curl phenomenon, Co-C with a film thickness of 5000
When the r-based ferromagnetic alloy layer is formed into a polymer film having a thickness of 75 μm and different coefficients of linear expansion, the ferromagnetic alloy layer 6 of the film having a larger coefficient of linear expansion than the Co-Cr-based ferromagnetic alloy layer is on the outside. An outer curl occurs, and conversely, a heat-resistant film with a small coefficient of linear expansion causes an inner curl with the ferromagnetic alloy layer 6 on the inside. The Co--Cr ferromagnetic alloy layer is usually formed by using a roll-type continuous sputtering apparatus as shown in FIG. 8b
The polymer film 12 is run while applying tension along the circumferential side of the cylindrical roll 9 using the supply port 9 and the spring removal roll 10, and the temperature of the polymer film is controlled by the cylindrical rolls 8a and 8b. be exposed. Code 13 in Figure 3
A, 13b, and 13c are auxiliary rollers for film transfer. In this case, the amount of shrinkage of the Co-Cr alloy layer and the polymer film is different when the temperature changes from 80 to 200°C, which is a high temperature during film formation of the ferromagnetic alloy layer, to room temperature after film formation. A polymer film with a larger coefficient of linear expansion than the Cr-based ferromagnetic alloy layer will cause outer curl, while a film with a smaller coefficient of linear expansion will cause inner curl.

したがってカールのない媒体を作る方法として以下のよ
うな方法が考えられる。
Therefore, the following method can be considered as a method for producing a curl-free medium.

■ 高分子フィルムの両面に同じ厚さの磁性層を形成す
る(両面化媒体)。
■ Forming magnetic layers of the same thickness on both sides of a polymer film (double-sided media).

■ 磁性層と同程度の線膨脹係数を有する高分子フィル
ムを用いる。
■ Use a polymer film with a linear expansion coefficient similar to that of the magnetic layer.

■ 高分子フィルムの磁性層と反対側の而に非磁性金属
層を・形成する。
■ Form a non-magnetic metal layer on the opposite side of the polymer film to the magnetic layer.

フロッピーディスクのような記録媒体を考えた場合、記
録容量を増加さける上で■の両面に磁性層を形成させる
ことか望ましいが、このためには片面づつ磁性層を被着
させる必要があり、片面に磁性層がついた状態では線膨
脹係数が複合化されたり、高分子フィルムの熱覆歴、熱
収縮性等の問題により高分子フィルム自体の線膨張1系
数が異なってくるため、同じ膜厚でカールをなくするこ
とは難しい。また■の磁性層と同じ線膨脹係数の高分子
フィルムを用いる方法でし、高分子フィルムの熱覆歴、
熱収縮性等の熱的特性が非直線性を示すため難しい。ざ
らに■の方法でも■の場合と同様の問題があるうえに、
被着された非磁性層はカール防止以外に何の機能も持た
ないため、機能まで考慮した1・−タルコストが高くな
るという問題があった。
When considering a recording medium such as a floppy disk, it is desirable to form a magnetic layer on both sides of (2) in order to avoid increasing the recording capacity. When a magnetic layer is attached to a film, the coefficient of linear expansion becomes complex, and the coefficient of linear expansion of the polymer film itself differs due to issues such as thermal coverage and heat shrinkage of the polymer film. It is difficult to get rid of curls. In addition, there is a method using a polymer film with the same linear expansion coefficient as the magnetic layer in (■).
This is difficult because thermal properties such as heat shrinkability exhibit nonlinearity. Rarani method ■ has the same problems as ■, and
Since the deposited non-magnetic layer has no function other than preventing curling, there is a problem in that the 1-tal cost is high even when functions are taken into account.

また特開昭58−159243公報には基板の線膨脹係
数を1. Ox 10−5〜2.5X10−5/ °C
とし、キャン(ロール)の周側面温度を150〜300
°Cとすることによりカールを防止するようにした方法
か開示されている。この方法では9〜26μmと博い基
板の上に片面に磁性層が形成されたものであり、またカ
ールの値64%以下とカール許容値の非常に大きいもの
を対象としており、例えば3.5インチフロッピーディ
スクの場合のように、0.6%以下でかつその等方性も
必要であるものには適用がガ[しい。
Furthermore, in Japanese Patent Application Laid-Open No. 58-159243, the coefficient of linear expansion of the substrate is 1. Ox 10-5~2.5X10-5/°C
and set the temperature of the peripheral side of the can (roll) to 150 to 300.
A method is disclosed in which curling is prevented by setting the temperature at .degree. In this method, a magnetic layer is formed on one side on a substrate with a diameter of 9 to 26 μm, and the curl value is 64% or less, which is a very large curl tolerance value, for example, 3.5 μm. It is difficult to apply this to something that requires less than 0.6% and isotropy, such as inch floppy disks.

また基板フィルムの線膨脹係数としてl0XIO−6〜
29X10−6/℃が示されているが、この値は蒸着時
のロール温度が150〜300℃と高く、フィルム走行
速度が10m /minと速い場合の例を示したもので
おって、温度範囲が80〜200℃の通常の蒸着条件で
使用される基板フィルムのものを示したものではない。
Also, the linear expansion coefficient of the substrate film is 10XIO-6~
29X10-6/℃, but this value shows an example when the roll temperature during vapor deposition is as high as 150 to 300℃ and the film running speed is as fast as 10m/min. This does not represent a substrate film used under normal vapor deposition conditions of 80 to 200°C.

いずれにしても磁気記録媒体においては、媒体のカール
やしわをなくすことが重要で必るが、線膨脹係数の異な
る物質による複合フィルムにおけるカールやしわの発生
防止は、高分子フィルムの熱的挙動が前後の熱処理条件
で変化しやすいため非常に難しい。
In any case, it is important to eliminate curls and wrinkles in magnetic recording media, but prevention of curls and wrinkles in composite films made of substances with different coefficients of linear expansion depends on the thermal behavior of polymer films. This is extremely difficult because it tends to change depending on the heat treatment conditions before and after the heat treatment.

本発明者はこのような従来の難点を解消すべく研究をす
すめたところ、高分子フィルムからなる基板上に、Co
−Cr系強磁性合金層を通常の加熱条件、すなわち温度
範囲80〜200℃で、かつロール走行速度を1〜20
mm/minと遅くしてロール温度とフィルム温度とを
ほぼ一致した状態でスパッタまたは蒸着させる際に、高
分子フィルムとしてその線膨脹係数が4.5X 10’
〜9.5X 10−6/ ℃で、かつ前記線膨脹係数が
基板平面に関してほぼ等方的であるものを用いた場合に
、直径85龍の円板状媒体としたときカールの高さが2
■■以下[(flo−λ) / fl oではほぼ0.
6%以下。ただし、β0:カールのない場合の媒体直径
(85■I11>(第4図aを参照)、fl二カールを
生じた場合の最短媒体直径(第4図すを参照)。以下同
じ]となり、カールヤしわが事実上解消することを見出
した。
The present inventor carried out research to solve these conventional difficulties, and found that Co
-The Cr-based ferromagnetic alloy layer is heated under normal heating conditions, that is, at a temperature range of 80 to 200°C and a roll running speed of 1 to 20°C.
When performing sputtering or vapor deposition with the roll temperature and film temperature almost the same at a slow speed of mm/min, the linear expansion coefficient of the polymer film is 4.5X 10'.
~9.5X 10-6/℃ and the linear expansion coefficient is approximately isotropic with respect to the substrate plane, and when using a disk-shaped medium with a diameter of 85 mm, the curl height is 2.
■■ Below [(flo-λ)/flo is almost 0.
Less than 6%. However, β0: Medium diameter when there is no curl (85 I11> (see Figure 4 a), shortest medium diameter when fl2 curl occurs (see Figure 4); the same applies hereinafter), It has been found that curly wrinkles are virtually eliminated.

本発明はこのような従来の難点を解消すべくなされたも
ので、カールやしわの発生がなく磁気へラドタッチおよ
び走行性のよい垂直磁気記録媒体を提供することを目的
とする。
The present invention has been made to solve these conventional problems, and it is an object of the present invention to provide a perpendicular magnetic recording medium that is free from curls and wrinkles and has good magnetic rad touch and running properties.

[発明の構成] (問題点を解決するための手段) 本発明の垂直磁気記録媒体は、高分子フィルムからなる
基板上に、強磁性合金層を被着形成させてなる垂直磁気
記録媒体において、前記基板の線膨脹係数が4.5X1
0’〜9.5X10−6/ ℃で、かつ前記線膨脹係数
が基板平面に関してほぼ等方的であることを特徴として
いる。
[Structure of the Invention] (Means for Solving the Problems) The perpendicular magnetic recording medium of the present invention is a perpendicular magnetic recording medium in which a ferromagnetic alloy layer is deposited on a substrate made of a polymer film. The linear expansion coefficient of the substrate is 4.5X1
0' to 9.5 x 10-6/°C, and the coefficient of linear expansion is substantially isotropic with respect to the plane of the substrate.

本発明に使用される高分子フィルムとしては、ポリイミ
ド、ポリエチレンテレフタレート、芳香族ポリアミド等
の耐熱性高分子フィルムが適している。そして本発明に
はこれらの高分子フィルムのうち線膨脹係数が4.5〜
9.5X 10−6/℃のものが使用される。このよう
な線膨脹係数を有する高分子フィルムは構成ポリマー分
子の骨格調整、共小合化及びその比率調整合成時の反応
方法、分子量の:A整、延伸率の調整、熱処理等により
得ることができる。なおフロッピーディスクのような円
板状で使用される場合もおり、カール状態も等方的に無
いことが望まれるので、線膨脹係数は基板平面内でほぼ
等方的なものが使用される。
As the polymer film used in the present invention, heat-resistant polymer films such as polyimide, polyethylene terephthalate, and aromatic polyamide are suitable. In the present invention, among these polymer films, linear expansion coefficients of 4.5 to 4.5 are used.
9.5X 10-6/°C is used. A polymer film having such a coefficient of linear expansion can be obtained by adjusting the skeleton of the constituent polymer molecules, copolymerization, adjusting the ratio, reaction method during synthesis, adjusting the molecular weight:A, adjusting the stretching ratio, heat treatment, etc. can. In some cases, the substrate is used in the form of a disk such as a floppy disk, and it is desired that the substrate is isotropically free from curling. Therefore, a coefficient of linear expansion that is approximately isotropic within the plane of the substrate is used.

また本発明の強磁性合金層に使用される強磁性合金とし
ては、Co−Cr系強磁性合金が適しており、特にCr
の含有率が10〜30原子%のCo−Cr系強磁性合金
か適している。なお磁性層を例えばN1−Fe(原子%
約80:20)軟磁性層とC。
Further, as the ferromagnetic alloy used in the ferromagnetic alloy layer of the present invention, a Co-Cr based ferromagnetic alloy is suitable, and in particular, a Co-Cr based ferromagnetic alloy is suitable.
A Co-Cr based ferromagnetic alloy having a content of 10 to 30 atomic % is suitable. Note that the magnetic layer is made of, for example, N1-Fe (atomic %
approximately 80:20) soft magnetic layer and C.

−Cr強磁性層のような二層構造としたものでも、下地
層の線膨脹係数がGO−Cr強磁性層と著しく異ならな
い場合には(N i −Fe (80:20)の線膨脹
係数は約12X10−6/℃) 、本発明を適用するこ
とができる。
Even with a two-layer structure such as a -Cr ferromagnetic layer, if the linear expansion coefficient of the underlayer is not significantly different from that of the GO-Cr ferromagnetic layer, the linear expansion coefficient of (N i -Fe (80:20) (approximately 12×10 −6 /° C.), the present invention can be applied.

ここで満足しうるカールとしては上記高さが2翻以下で
あり、(λo  fl>/floではほぼ16%以下に
相当する。上表に示した結果はCo−Cr合金層の厚さ
を2000人から7500人まで、またフィルム厚を3
0μmから100μmまで変化させてもほぼ同じでめっ
た。この場合のロール温度はフィルムがロールと接触し
ている時間d3よびロール走行速度が1〜20匪/mi
nと遅いことからほぼフィルム温度と一致している。
A satisfactory curl here is that the above height is 2 times or less, which corresponds to approximately 16% or less for (λo fl>/flo).The results shown in the table above show that the thickness of the Co-Cr alloy layer is 200 From 7,500 people to 3,000 people and film thickness 3
Even when the thickness was changed from 0 μm to 100 μm, it remained almost the same. In this case, the roll temperature is determined by the time d3 during which the film is in contact with the roll and the roll running speed of 1 to 20 mo/mi.
Since the temperature is slow (n), it almost matches the film temperature.

また高分子フィルムを成lIω前に一度10−” to
rrよりよい真空中で100〜300”Cu)温IMで
5分〜1時間加熱処理することによってさらにカール防
止の安定性を向上させることができる。この熱処理によ
って、熱覆歴性、熱収縮性などが解除され、次に熱を加
える時の線膨張特性が安定なものとなる。
Also, before forming the polymer film, 10-” to
The stability of curl prevention can be further improved by heat treatment for 5 minutes to 1 hour at a temperature of 100 to 300" Cu) in a vacuum better than rr. This heat treatment improves heat coverage and heat shrinkability. etc. are removed, and the linear expansion characteristics become stable the next time heat is applied.

(作 用) 本発明によってカールの琵生がなくなることの理由は必
ずしも明確ではないが、磁性膜と高分子フィルムの厚さ
、ヤング率の違い、磁性膜の内部応力、高分子フィルム
の熱膨張特性の非直線性、高分子フィルムの熱変形性、
磁性膜との線膨脹係数の差等の影響を加味したとき、通
常のスパッタまたは蒸着条件である温度範囲80〜20
0℃で磁性膜を形成する場合に、たまたまこの範囲でカ
ールの生じない[カールの高さが21nT11以下[(
J2.o −Q ) / 、9 oてはほぼ0.6%以
下コ条件が現れたものと考えられる。なおり−ル防止の
安定性は高分子フィルムを成膜前に一1io−s to
r’r以下の真空中で100〜300”Cの温度で5分
〜1時間加熱処理することによってざらに向上さぜるこ
とができる。
(Function) The reasons why the present invention eliminates curling are not necessarily clear, but include the difference in thickness and Young's modulus between the magnetic film and the polymer film, internal stress in the magnetic film, thermal expansion of the polymer film, etc. Nonlinearity of properties, thermal deformability of polymer films,
When considering the influence of the difference in linear expansion coefficient with the magnetic film, the temperature range is 80 to 20, which is the normal sputtering or vapor deposition condition.
When forming a magnetic film at 0°C, it happens that no curl occurs in this range [curl height is 21nT11 or less [(
J2. o - Q ) /, 9 o is considered to be approximately 0.6% or less. The stability of the roll prevention is determined by the stability of the polymer film before it is formed.
Rough improvement can be achieved by heat treatment at a temperature of 100 to 300''C for 5 minutes to 1 hour in a vacuum below r'r.

なお本発明はCo−Qr合金層の厚さを2000人から
7500人まて゛、まlごフィルム厚を30μmから1
100A1まで変化ざIJでも同(、Kの効果か得られ
る。
In addition, in the present invention, the thickness of the Co-Qr alloy layer is increased from 2000 to 7500 mm, and the thickness of the aluminum film is increased from 30 μm to 1 μm.
Even if the IJ changes up to 100A1, the effect of K can be obtained.

さらに本発明では、線膨脹係数がM板平面内でほば等方
面とされ−Cいるので、わずかに生り−るカールも磁気
記録媒体の特性に影響をおよぼすようなことかほとんど
なく、特に)[」ツピーディスクのにうな円板状で使用
する場合に右゛利である1゜(実施例) [実験例] まず第3図に示したロール式連続スパッタリング装置を
用いて、75μm厚さの高分子フィルムを10’ to
rrより低い真空度の中で温[100−300°Cで5
分間〜1時間加熱処理した後、アルゴン雰囲気中でCo
−Cr強磁性合金層を基板の両面に5000人の厚さに
形成した。そして365インチのフロッピーディスク状
に打ち↑々ざ反り側を上にして平坦なガラス、仮の上に
のせ最外周部にJ3りるガラス仮から離れでいる高さを
測定することににり力−ル状態を評価した。以上の方法
を異なる線膨脹係数を有する高分子フィルムに対−して
ロール温度も変えて適用した結果を次表に示す。
Furthermore, in the present invention, since the coefficient of linear expansion is almost isotropic within the plane of the M plate, even slight curling hardly affects the characteristics of the magnetic recording medium, especially )['' 1° which is advantageous when used in the disk shape of a tsupi disk (Example) [Experimental example] First, using the roll type continuous sputtering apparatus shown in Fig. 3, Polymer film of 10' to
Temperature [5 at 100-300°C] in a vacuum lower than rr
After heat treatment for minutes to 1 hour, Co
-Cr ferromagnetic alloy layers were formed on both sides of the substrate to a thickness of 5000 nm. Then, beat a 365-inch floppy disk and place it on top of a flat piece of glass with the curved side facing up. - Assessed the condition of the vehicle. The following table shows the results of applying the above method to polymer films having different coefficients of linear expansion and varying the roll temperature.

表 α 4,5〜6゜56.6〜9.5 15〜44なお上
表の線膨脹係数の値は−H200℃程度に加熱した後、
室温まで冷却し、再度室温から200°Cまで昇温ざぜ
たときの平均線膨脹係数を示している。この測定は熱機
械分析装置を用いて乾燥窒素雰囲気中で昇温速度5°C
/minで行った結果である。
Table α 4,5~6°56.6~9.5 15~44 The values of linear expansion coefficient in the above table are after heating to about -H200℃,
It shows the average linear expansion coefficient when the sample was cooled to room temperature and then heated again from room temperature to 200°C. This measurement was performed using a thermomechanical analyzer at a heating rate of 5°C in a dry nitrogen atmosphere.
/min.

なおこの実験においては、ロールと接触している時間お
よびロール走行速度か1〜20IIITll/I[li
nと遅いことからフィルム温度はほぼロール温度と一致
している。
In this experiment, the contact time with the roll and the roll running speed were determined to be 1 to 20IIITll/I[li
Since the film temperature is slow as n, the film temperature almost matches the roll temperature.

上表の結果からCo−(:r合金層の磁気特性を確保す
るのに必要なロール温度80〜200℃の磁性層形成温
度範囲において、高分子フィルムの線膨脹係数を4.5
〜9.5xlO’/℃にすることによってカールおよび
しわのない媒体が得られることがわかる。
From the results in the above table, the linear expansion coefficient of the polymer film was determined to be 4.5 in the magnetic layer forming temperature range of 80 to 200°C, which is the roll temperature necessary to ensure the magnetic properties of the Co-(:r alloy layer).
It can be seen that curl and wrinkle free media is obtained by ~9.5xlO'/°C.

なおこの実験では、Go−Cr強磁性合金層の厚さを2
000人から7500人よて′、まIごフィルム厚を3
0μmから100μmまで変化させても同様の効果が得
られた。
In this experiment, the thickness of the Go-Cr ferromagnetic alloy layer was set to 2
From 000 to 7500 people, the film thickness is 3
Similar effects were obtained even when the thickness was changed from 0 μm to 100 μm.

またカール防止の安定性は高分子フィルムを成膜前に一
度10’ torrより高度の真空中で100〜300
℃の温度で5分〜1時間加熱処理することによってさら
によくなる。これは、この熱処理によって、熱覆歴性、
熱収縮性などが解除され、次に熱をかける時の線膨張特
性が安定するためである。
In addition, the stability of preventing curling is determined by heating the polymer film once in a vacuum higher than 10' torr at a temperature of 100 to 300 torr before forming the film.
It is further improved by heat treatment at a temperature of 5 minutes to 1 hour. Due to this heat treatment, thermal hysteresis,
This is because the thermal shrinkage properties are removed and the linear expansion characteristics become stable when heat is next applied.

実施例1 基板として線膨脹係数が7. Ox 10’ 、y”C
てほぼ等方面な厚さ75μmのポリイミド系フィルムを
用いて第3図に示すようなロール式連続スパッタ装置て
Co−Cr系強磁性合金層の形成前に1O−7t。
Example 1 The linear expansion coefficient of the substrate is 7. Ox 10', y"C
A polyimide film having a thickness of 75 μm and an approximately isotropic surface was used to form a Co-Cr based ferromagnetic alloy layer of 10-7 t using a continuous roll sputtering apparatus as shown in FIG.

rrの真空中で200℃で40分間稈度の加熱処理を行
うようなフィルム十行速磨てフィルムを走行さけた。そ
の後Go−Cr系強磁性合金層をアルゴン雰囲気中でス
パッタリング法により5000Åりつ両面に形成した。
The film was polished at a high speed of 10 lines to avoid running the film, which was subjected to heat treatment at 200° C. for 40 minutes in a vacuum of 100 mm. Thereafter, Go--Cr based ferromagnetic alloy layers were formed on both sides with a thickness of 5000 Å by sputtering in an argon atmosphere.

このときのロール温度は150℃とした。この実施例の
磁気記録媒体のカール(高さ)は1mTIf以下であっ
た。
The roll temperature at this time was 150°C. The curl (height) of the magnetic recording medium of this example was 1 mTIf or less.

実施例2 基板として線膨脹係数が7.0X 10−6/°Cでほ
ぼ等方的な厚さ75μmのポリイミド系フィルムを用い
て、Co−Cr強磁性合金層の厚さを3000人に変え
た以外は実施例1と同様の方法で磁気記録媒体を作成し
た。この実施例のカールは11IITn以下であった。
Example 2 Using a nearly isotropic polyimide film with a linear expansion coefficient of 7.0×10-6/°C and a thickness of 75 μm as a substrate, the thickness of the Co-Cr ferromagnetic alloy layer was changed to 3000 μm. A magnetic recording medium was produced in the same manner as in Example 1 except for the above. The curl in this example was 11 IITn or less.

実施例3 基板として線膨脹係数が6.8xlO’/℃でかつほぼ
等方的な厚さ45μmのポリイミド系の耐熱性高分子フ
ィルムを用いた以外は、実施例1と同じ条件で磁気記録
媒体を作成した。この実施例で作成した3、5インチ媒
体のカールは1mm以下でおった。
Example 3 A magnetic recording medium was prepared under the same conditions as in Example 1, except that a polyimide-based heat-resistant polymer film with a linear expansion coefficient of 6.8xlO'/°C and an approximately isotropic thickness of 45 μm was used as the substrate. It was created. The curl of the 3.5-inch medium produced in this example was 1 mm or less.

比較例1 基板として、線膨脹係数が22xlO’/℃てやや等方
的でない厚さ75μmのポリイミド系フィルムを用いて
実施例1と同じ条件で磁気記録媒体を作成した。この比
較例のカールは6龍であった。
Comparative Example 1 A magnetic recording medium was prepared under the same conditions as in Example 1 using a polyimide film having a linear expansion coefficient of 22×lO'/° C. and a slightly non-isotropic thickness of 75 μm as a substrate. The curl of this comparative example was 6 dragons.

比較例2 基板として線膨脹係数が44x10−6/℃でやヤ等方
的でない厚さ75μmのポリイミド系フィルムを用いて
実施例1と同じ条件で媒体を作成した。この比較例では
10+nmのカールが発生したばか著しくしわが発生し
た。
Comparative Example 2 A medium was prepared under the same conditions as in Example 1, using a polyimide film having a linear expansion coefficient of 44 x 10-6/°C and a thickness of 75 μm, which was not slightly isotropic, as a substrate. In this comparative example, not only curls of 10+ nm occurred but also significant wrinkles occurred.

比較例3 基板として線膨脹係数が15X10−6/°Cで少し等
方性の悪い厚さ75μmのポリエステルフィルムを用い
て実施例1と同じ条件で媒体を作成した。この比較例の
カールは5■でめった。
Comparative Example 3 A medium was prepared under the same conditions as in Example 1 using a 75 μm thick polyester film with a linear expansion coefficient of 15×10 −6 /°C and slightly poor isotropy as a substrate. The curl in this comparative example was 5 cm.

[発明の効果] 以上の実施例からも明らかなように、本発明によれば、
通常のCo−Cr系強磁性合金層のスパッタまたは蒸着
に用いられる作業条件によってはカールやしわの発生が
なく、磁気へラドタッチ、走行性のよい垂直磁気記録媒
体を得ることができる。
[Effect of the invention] As is clear from the above examples, according to the present invention,
Depending on the working conditions used for sputtering or vapor deposition of a typical Co--Cr based ferromagnetic alloy layer, it is possible to obtain a perpendicular magnetic recording medium that does not generate curls or wrinkles and has good magnetic rad touch and running properties.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は垂直磁気記録媒体を概略的に示す断面図、第2
図は片面磁性層の場合のカール状態を示す斜視図、第3
図は磁気媒体の製造に用いられる連続スパッタ装置を概
略的に示す図、第4図はカールの値を説明するための図
である。 1.5・・・高分子フィルム基板 2.6・・・磁性層 3・・・・・・・・・保護層 4・・・・・・・・・潤滑層
FIG. 1 is a cross-sectional view schematically showing a perpendicular magnetic recording medium, and FIG.
The figure is a perspective view showing the curled state in the case of a single-sided magnetic layer.
This figure schematically shows a continuous sputtering apparatus used for manufacturing magnetic media, and FIG. 4 is a diagram for explaining the curl value. 1.5... Polymer film substrate 2.6... Magnetic layer 3... Protective layer 4... Lubricating layer

Claims (3)

【特許請求の範囲】[Claims] (1)高分子フィルムからなる基板上に、Co−Cr系
強磁性合金層を被着形成させてなる垂直磁気記録媒体に
おいて、前記基板の線膨脹係数が4.5×10^−^6
〜9.5×10^−^6/℃で、かつ前記線膨脹係数が
基板平面に関してほぼ等方的であることを特徴とする垂
直磁気記録媒体。
(1) In a perpendicular magnetic recording medium in which a Co-Cr-based ferromagnetic alloy layer is deposited on a substrate made of a polymer film, the coefficient of linear expansion of the substrate is 4.5×10^-^6
˜9.5×10^-^6/°C, and the linear expansion coefficient is approximately isotropic with respect to the plane of the substrate.
(2)強磁性合金層は、高分子フィルムを80〜200
℃で加熱しつつスパッタリングまたは蒸着により形成さ
れたものである特許請求の範囲第1項記載の垂直磁気記
録媒体。
(2) The ferromagnetic alloy layer has a polymer film of 80 to 200
The perpendicular magnetic recording medium according to claim 1, which is formed by sputtering or vapor deposition while heating at .degree.
(3)Co−Cr系強磁性合金が、Crの含有率が10
〜30原子%のCo−Cr系強磁性合金である特許請求
の範囲第1項または第2項記載の垂直磁気記録媒体。
(3) The Co-Cr-based ferromagnetic alloy has a Cr content of 10
3. The perpendicular magnetic recording medium according to claim 1 or 2, which is a Co-Cr based ferromagnetic alloy containing up to 30 atomic %.
JP61043151A 1986-02-28 1986-02-28 Perpendicular magnetic recording medium Expired - Lifetime JPH07101500B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61043151A JPH07101500B2 (en) 1986-02-28 1986-02-28 Perpendicular magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61043151A JPH07101500B2 (en) 1986-02-28 1986-02-28 Perpendicular magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS62202315A true JPS62202315A (en) 1987-09-07
JPH07101500B2 JPH07101500B2 (en) 1995-11-01

Family

ID=12655839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61043151A Expired - Lifetime JPH07101500B2 (en) 1986-02-28 1986-02-28 Perpendicular magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH07101500B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01192012A (en) * 1988-01-28 1989-08-02 Hitachi Maxell Ltd Magnetic recording medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58168655A (en) * 1982-03-30 1983-10-05 Toray Ind Inc Magnetic recording medium
JPS5945124A (en) * 1982-09-08 1984-03-13 Toray Ind Inc Aromatic polyamide film
JPS60129920A (en) * 1983-12-16 1985-07-11 Hitachi Ltd Magnetic recording medium
JPS60261027A (en) * 1984-06-07 1985-12-24 Matsushita Electric Ind Co Ltd Vertical magnetic recording medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58168655A (en) * 1982-03-30 1983-10-05 Toray Ind Inc Magnetic recording medium
JPS5945124A (en) * 1982-09-08 1984-03-13 Toray Ind Inc Aromatic polyamide film
JPS60129920A (en) * 1983-12-16 1985-07-11 Hitachi Ltd Magnetic recording medium
JPS60261027A (en) * 1984-06-07 1985-12-24 Matsushita Electric Ind Co Ltd Vertical magnetic recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01192012A (en) * 1988-01-28 1989-08-02 Hitachi Maxell Ltd Magnetic recording medium
JP2674655B2 (en) * 1988-01-28 1997-11-12 日立マクセル株式会社 Magnetic tape cartridge

Also Published As

Publication number Publication date
JPH07101500B2 (en) 1995-11-01

Similar Documents

Publication Publication Date Title
JPH1196534A (en) Magnetic recording medium and its production as well as magnetic disk device
US5496606A (en) Magnetic recording medium
JPS62202315A (en) Vertical magnetic recording medium
JPS6329332B2 (en)
US6037069A (en) Magnetic recording medium
Xiong et al. Cr-Ta/sub 2/O/sub 5/seedlayer for recording media on alternative substrates
JPS62128019A (en) Magnetic recording medium
JPH04311809A (en) Perpendicular magnetic recording medium and production thereof
JPS6330691B2 (en)
JP3752360B2 (en) Biaxially oriented polyester film
JPH0526249B2 (en)
JPS59191130A (en) Base material for magnetic recording medium and magnetic recording medium
JPH0668822B2 (en) Perpendicular magnetic recording medium
JP2970219B2 (en) Magnetic recording medium and manufacturing method thereof
JPH10247312A (en) Magnetic recording medium
JPH06282841A (en) Magnetic recording medium and manufacture thereof
JPS62277623A (en) Magnetic recording medium
JPH0833989B2 (en) Method of manufacturing magnetic recording medium
JPH08102052A (en) Recording medium and production thereof
JPS6124023A (en) Manufacture of magnetic recording medium
JPH04295626A (en) Manufacture of magnetic recording medium
JPH04362521A (en) Production of thin film
JPH04295615A (en) Magnetic recording medium
JPH0766524B2 (en) Magnetic recording medium
JPH09270121A (en) Magnetic recording medium