JPS58168655A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPS58168655A
JPS58168655A JP5189582A JP5189582A JPS58168655A JP S58168655 A JPS58168655 A JP S58168655A JP 5189582 A JP5189582 A JP 5189582A JP 5189582 A JP5189582 A JP 5189582A JP S58168655 A JPS58168655 A JP S58168655A
Authority
JP
Japan
Prior art keywords
film
magnetic recording
ferromagnetic layer
polymer
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5189582A
Other languages
Japanese (ja)
Other versions
JPH0251463B2 (en
Inventor
Hiroaki Kobayashi
弘明 小林
Toshiyuki Asakura
朝倉 敏之
Nobuaki Ito
伸明 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP5189582A priority Critical patent/JPS58168655A/en
Priority to DE8383301031T priority patent/DE3379923D1/en
Priority to EP83301031A priority patent/EP0090499B1/en
Publication of JPS58168655A publication Critical patent/JPS58168655A/en
Priority to US06/685,965 priority patent/US4645702A/en
Publication of JPH0251463B2 publication Critical patent/JPH0251463B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To provide a magnetic recording material which has a high practical adhesion between a ferromagnetic layer and a substrate, and high overall endurance for use under severe conditions, by providing a ferromagnetic layer composed of metal (compd.) on a specified high-molecular material molding. CONSTITUTION:A polymer having an intrinsic viscosity of 0.5 or above and contg. at least 50mol% of a (chlorine-substd.) arom. polyamide of the formula (wherein m, n are each 0-3) is molded to obtain a high-molecular material molding in the form of film or sheet which has a thickness of 1mu-1mm. and tensile modulus is 400-10,000kg/mm.<2> and in which 10% heat shrinkage factor at 200 deg.C is 0-10% under no load conditions. Metal (compd.) such as Ni, Co, Cr or Fe is deposited in a thickness of 0.01-1mu on one side of the molding to form a ferromagnetic layer. EFFECT:A magnetic recording material which has excellent high strength, elongation and tensile modulus and good dimensional stability to changes in temperature and environment can be obtd.

Description

【発明の詳細な説明】 本発明は高分子成形物、特に高分子フィルム上に強磁性
層を蒸着、スパッタリングなどにより形成した磁気記録
媒体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetic recording medium in which a ferromagnetic layer is formed on a polymer molded product, particularly a polymer film, by vapor deposition, sputtering, or the like.

近年磁気記録の高密度化が時代の要請として注目を浴び
ているが、従来のγ−Fe20.などの酸化物磁性粉や
コバルト、ニッケルなどの合金磁性粉を適当な有機高分
子のバインダー中に均一に混入し塗布する。いわゆる塗
布形に対して、真空蒸着やスパッタリングなどの手法に
より基板に直接的にコバルトなどの高分子バインダーを
含まない強磁性体金属薄膜からなる強磁性層を基材の上
に形成させた磁気記録媒体が記録の高密度化に極めて有
利な形態として開発されている。
In recent years, increasing the density of magnetic recording has attracted attention as a requirement of the times, but the conventional γ-Fe20. An oxide magnetic powder such as oxide magnetic powder or an alloy magnetic powder such as cobalt or nickel is mixed uniformly into a suitable organic polymer binder and applied. In contrast to so-called coating type magnetic recording, a ferromagnetic layer consisting of a ferromagnetic metal thin film that does not contain a polymeric binder such as cobalt is directly formed on the substrate using methods such as vacuum evaporation or sputtering. Media have been developed in a form that is extremely advantageous for high-density recording.

かかる強磁性層を設けた磁気記録媒体を実用化する場合
の最大の問題点は基材と強磁性層との付着強さである。
The biggest problem when putting into practical use a magnetic recording medium provided with such a ferromagnetic layer is the adhesion strength between the base material and the ferromagnetic layer.

かかる強磁性層は一般に1000オングストローム前後
の厚さを有しており基材の表面平滑性は従来の塗布形と
は比較にならないほど厳しい条件を要求されているため
、いわゆる基材表面の凹凸によるアンカー効果は全く期
待できない。また強磁性層は金属または金属化合物の単
体であるため、それ自身は伸度が乏しく、塗布形のよう
にバインダーによる緩衝効果もないため外力に対する脆
さがある。さらに基材は一般に有機高分子より成るため
従来の塗布形が有機のバインダーを使い基材との相性を
よくしているのと対照的に有機と無機の接着という本質
的な問題をかかえている。
Such a ferromagnetic layer generally has a thickness of around 1,000 angstroms, and the surface smoothness of the base material is required to have conditions that are incomparably more severe than those of conventional coating types. Anchor effects cannot be expected at all. Furthermore, since the ferromagnetic layer is made of a single metal or metal compound, it itself has poor elongation, and unlike the coated type, it does not have the buffering effect of a binder, making it brittle against external forces. Furthermore, since the base material is generally made of organic polymers, conventional coating methods use an organic binder to improve compatibility with the base material, but this method has the inherent problem of adhesion between organic and inorganic materials. .

このような強磁性層の付着力を改良すべく種々の方法が
とられている。例えば蒸着の場合、電子ビーム蒸着条件
を種々変更して付着力に対し最適な条件を選ぶとか、最
も一般的に使用されている基材であるポリエチレンテレ
フタレートのフィルムを蒸着直前にグロー放電処理やパ
フ処理などのいわゆる表面処理を施す工夫も多く行なわ
れている。しかしこのような手法では付着力の本質的な
改良はむずかしい。それは第一に付着力といっても単な
るセロテープ剥離テスト的なものだけではなく磁気記録
媒体、特に磁気テープがヘッドと接触したり、走行系の
ロールと接°触したりして欠落したり、きすがついたシ
しないか5といった広い意味の付着力が実用上問題にな
る背景がある。例えばビデオテープなどではヘッドとの
高相対速度下での接触、スチル時の同−箇所繰り返し接
触。
Various methods have been used to improve the adhesion of such ferromagnetic layers. For example, in the case of vapor deposition, the electron beam vapor deposition conditions may be varied to select the optimum conditions for adhesion, or the most commonly used base material, polyethylene terephthalate film, may be subjected to glow discharge treatment or puff treatment immediately before vapor deposition. Many efforts have been made to apply so-called surface treatments such as surface treatment. However, it is difficult to substantially improve adhesion using such methods. First of all, adhesion is not just a cellophane tape peel test, but also a magnetic recording medium, especially a magnetic tape, that comes into contact with a head or a roll in a running system, causing it to break off. There is a background in which adhesion in a broad sense, such as whether it is scratched or not, becomes a practical problem. For example, in video tapes, etc., there is contact with the head at high relative speed, and during stills, there is repeated contact at the same point.

さらにポストとの接触など非常に厳しい条件にさらされ
る。50回走行、100回走行後にもドロップアウトが
ほとんどないほど付着力が優れていることが要求される
。また第二にはこのような実用的な意味での付着力は強
磁性層自身の剛性、靭性が重要であり、基材の表面処理
が十分に行なえ得たとしても付着物の特性にまで影響を
与えることは小さいであろう。さらに第三に物理的表面
処理は前述のように強磁性層を設けた磁気記録媒体に最
も重要な基材の表面平滑性に致命的な悪影響を与える可
能性がある。
Furthermore, they are exposed to extremely harsh conditions, including contact with posts. It is required that the adhesion is so excellent that there is almost no dropout even after running 50 or 100 times. Secondly, the rigidity and toughness of the ferromagnetic layer itself are important for adhesion in a practical sense, and even if the surface of the base material is sufficiently treated, it may affect the properties of the deposits. would be small. Third, physical surface treatment may have a fatal adverse effect on the surface smoothness of the base material, which is most important for magnetic recording media provided with a ferromagnetic layer, as described above.

またこの付着力以外にも総合的に優れた磁気記録媒体を
得るためには次のような耐久性が要求される。
In addition to this adhesion, the following durability is required in order to obtain a magnetic recording medium that is comprehensively excellent.

(1)高い機械的特性。すなわち強伸度の他に引張り弾
性率が優れていること。(外力に対する寸法安定性) (2)高温での寸法安定性に優れていること。
(1) High mechanical properties. In other words, it has excellent tensile modulus in addition to strength and elongation. (Dimensional stability against external forces) (2) Excellent dimensional stability at high temperatures.

(3)温度、湿度など環境変化に対する寸法安定性に優
れていること。
(3) Excellent dimensional stability against environmental changes such as temperature and humidity.

本発明者らはこのような種々の問題点を解決すべく鋭意
検討を進めた結果9本発明に到達したも  1のである
。すなわち本発明の目的は磁気記録媒体の強磁性層と基
材との実用的付着力と、過酷な使用に対する総合的な耐
久性の高い磁気記録媒体を提供するものである。
The inventors of the present invention have conducted intensive studies to solve these various problems, and as a result, they have arrived at the present invention. That is, an object of the present invention is to provide a magnetic recording medium that has practical adhesion between a ferromagnetic layer and a base material and has high overall durability against severe use.

本発明は、上記目的を達成するため次の構成。The present invention has the following configuration to achieve the above object.

すなわち高分子成形物に金属または金属化合物からなる
強磁性層を少なぐとも一層以上設けた磁気記録媒体にお
いて、該高分子成形物が一般式(ここでm、nは0〜3
の整数)で示される基本構成単位を50モルチ以上含む
構造を有する磁気記録媒体を特徴とするものである。
That is, in a magnetic recording medium in which a polymer molding is provided with at least one ferromagnetic layer made of a metal or a metal compound, the polymer molding has a general formula (where m and n are 0 to 3).
The present invention is characterized by a magnetic recording medium having a structure containing 50 mol or more of the basic structural unit represented by (an integer of ).

本発明における高分子成形物とは1組成が上述の通りで
その結合はパラ−パラ結合、パラ−メタ結合、メタ−パ
ラ結合またはメタ−メタ結合のいずれかである全芳香族
ポリアミドまたはクロル置換全芳香族ポリアミドを50
モルチ以上含む構造を有するフィルムまたはシートであ
る。
The polymer molded article in the present invention is a wholly aromatic polyamide or chlorine-substituted material whose composition is as described above and whose bonds are para-para bonds, para-meta bonds, meta-para bonds, or meta-meta bonds. 50% fully aromatic polyamide
It is a film or sheet having a structure containing more than molti.

本構造を有する全芳香族ポリアミドまたはクロル置換全
芳香族ポリアミドを主成分とする基材を構成する単量体
としては、酸クロリドとジアミンからのポリマ合成を例
にとると、テレフタル酸クロリド、2−クロルテレフタ
ル酸クロIJ)”、2.5−ジクロルテレフタル酸クロ
リド、  2.6− シフ。
Examples of monomers constituting a base material mainly composed of a wholly aromatic polyamide or a chlorine-substituted wholly aromatic polyamide having this structure include terephthalic acid chloride, 2 2.5-dichloroterephthalic acid chloride, 2.6-Schiff.

ルテレフタル酸クロリド、イソフタル酸クロリド。Luterephthalic acid chloride, isophthalic acid chloride.

2−クロルイソフタル酸クロリド、2.6−ジクロルイ
ソフタル酸クロリド等とp−フェニレンジアミン、2−
クロルpフェニレンジアミン、2.5−ジクロル−p−
フ二二しンジアミン、2,6−ジクロル−p−フェニレ
ンジアミン、m−フェニレンジアミン、2−クロル−m
−7エニレンジアミン。
2-chloroisophthalic acid chloride, 2,6-dichloroisophthalic acid chloride, etc. and p-phenylenediamine, 2-
Chlor p-phenylenediamine, 2,5-dichloro-p-
Phenyl diamine, 2,6-dichloro-p-phenylenediamine, m-phenylenediamine, 2-chloro-m
-7 enylenediamine.

2、5− シクロルーm−7エニレンジアミンナトカ挙
げられる。
2,5-cyclo-m-7 enylenediamine natka.

上記一般式で示される基本構成単位は本発明で使用する
基材ポリマの50モルチ以上であることが必須である。
It is essential that the basic structural unit represented by the above general formula is 50 mol or more of the base polymer used in the present invention.

基本構成が芳香族ポリアミドであること、さらに好まし
くは塩素置換基を有することがよシ望ましい。基本構成
単位が50モルチ未溝になると強磁性層の付着力の低下
が見られると同時に、磁気記録媒体の支持基板としての
本来の特性9例えば機械的特性や吸湿寸法安定性などが
悪化し本発明を満足しない。なお50モルチ未満の構成
については特に限定するものではないが。
It is more desirable that the basic structure is an aromatic polyamide, and more preferably that it has a chlorine substituent. If the basic structural unit is less than 50 molar grooves, the adhesion force of the ferromagnetic layer will decrease, and at the same time, the original properties as a support substrate for magnetic recording media, such as mechanical properties and moisture absorption dimensional stability, will deteriorate. Not satisfied with invention. Note that there are no particular limitations on the composition of less than 50 molti.

下記のような構成単位が代表例として挙げることができ
る。
The following structural units can be cited as representative examples.

ここでXは一〇H,、−No2あるいはC1以外のハロ
ゲンなどであり、p、qは0〜3の整数であり、同時に
0にはならない。
Here, X is 10H, -No2 or a halogen other than C1, and p and q are integers from 0 to 3, and cannot be 0 at the same time.

−CH2−、−0@−0−、−0℃−8O2つ一〇−か
ら選ばれ、Sは0〜3の整数である。
-CH2-, -0@-0-, -0°C-8O210-, and S is an integer from 0 to 3.

また1本発明の高分子成形物゛は、形状が、フィルムま
たはシート状で厚さは1ミクロン以上1ミリメートル以
下、好ましくは3ミクロン以上。
The polymer molded article of the present invention has a film or sheet shape and a thickness of 1 micron or more and 1 mm or less, preferably 3 microns or more.

500ミクロン以下である。この高分子成形物は200
℃、10チの熱収縮率が実質的に無荷重の条件下で0チ
以上、10%以下、好ましくは0チ以上296以下であ
ることが望ましい。さらに磁気記録媒体は強磁性層が金
属層のため実質的にほとんど伸度を持たないため基材が
外力によって変形することは不都合である。またこの分
野は従来にない高密度記録を目標にしているため1例え
ばテープ走行中のテンションなどによるテープ本体の変
形には厳格である。従って本発明を構成する高分子成形
物は、少なくとも一方向にその引張り弾性率は400以
上10.OD’ Okg/mm2以下、好ましくは50
0以上5.000 kg/mm2以下であるのが望まし
い。これらの基板の特性は磁気媒体を構成した状態にお
けるものであり1強磁性層を適当な手法で除去すること
によって測定することができるが、磁性層の厚さが薄く
、その影響は無視できるほど小さいので磁気記録媒体全
体の特性と考えて差支えない。     1このような
基材は次のようにして製造される。
It is 500 microns or less. This polymer molded product is 200
It is desirable that the thermal shrinkage rate at 10 inches at 10 degrees Celsius is 0 inches or more and 10% or less, preferably 0 inches or more and 296 or less, under substantially no-load conditions. Furthermore, since the ferromagnetic layer of the magnetic recording medium is a metal layer and has virtually no elongation, it is inconvenient that the base material is deformed by external force. Furthermore, since this field aims at unprecedented high-density recording, it is difficult to deform the tape body due to tension during tape running, for example. Therefore, the polymer molded article constituting the present invention has a tensile modulus of 400 or more and 10. OD'Okg/mm2 or less, preferably 50
It is desirable that it is 0 or more and 5,000 kg/mm2 or less. The characteristics of these substrates are in the state in which they constitute a magnetic medium, and can be measured by removing the ferromagnetic layer using an appropriate method, but the thickness of the magnetic layer is so thin that its influence can be ignored. Since it is small, it can be considered to be a characteristic of the entire magnetic recording medium. 1 Such a base material is manufactured as follows.

すなわちポリマはN−メチルピロリドン、ジメチルアセ
トアミド、γ−ブチロラクトンなどの有機極性溶媒中で
低温溶液重合したり、水系媒体を使用する界面重合など
によって合成される。ポリマ溶液は単量体として酸クロ
リドとジアミンを使用すると塩化水素が副生ずるためこ
れを中和すべく水酸化カルシウムなどの無機の中和剤ま
たはエチレンオキサイドなどの有機の中和剤を添加する
That is, the polymer is synthesized by low-temperature solution polymerization in an organic polar solvent such as N-methylpyrrolidone, dimethylacetamide, or γ-butyrolactone, or by interfacial polymerization using an aqueous medium. When acid chloride and diamine are used as monomers in the polymer solution, hydrogen chloride is produced as a by-product, so an inorganic neutralizing agent such as calcium hydroxide or an organic neutralizing agent such as ethylene oxide is added to neutralize this.

このポリマ溶液はそのまま基材すなわちフィルムを成形
する製膜原液にしてもよく、またポリマを一度単離して
から上記の溶媒に再溶解して製膜原液を調製してもよい
。製膜原液には溶解助剤として無機塩例えば塩化カルシ
ウム、塩化マグネシウムなどを添加する場合もあるが、
添加量9種類などは基本構成単位の量や共重合単位の種
類などによって異なる。
This polymer solution may be used as it is as a film-forming stock solution for forming a base material, that is, a film, or the polymer may be isolated once and then redissolved in the above-mentioned solvent to prepare a film-forming stock solution. In some cases, inorganic salts such as calcium chloride, magnesium chloride, etc. are added to the membrane forming stock solution as a solubilizing agent.
The amount of the nine types added varies depending on the amount of basic structural units, the type of copolymerized units, etc.

実用的な強度をもつフィルムを得るためにはポリマの固
有粘度は0.5以上のものが必要であり。
In order to obtain a film with practical strength, the intrinsic viscosity of the polymer must be 0.5 or more.

その時の製膜原液中のポリマ濃度は2〜40 wt%程
度が好ましい。ここでポリマの固有粘度はポリマ0.5
gを臭化リチウム2.5 wt%を含むN−メチルピロ
リドンで100m1!の溶液として30℃で測定して代
表する。
At that time, the polymer concentration in the membrane forming stock solution is preferably about 2 to 40 wt%. Here, the intrinsic viscosity of the polymer is 0.5
g to 100ml of N-methylpyrrolidone containing 2.5 wt% lithium bromide! Measured as a solution at 30°C and is representative.

上記のように調製された製膜原液はいわゆる溶液製膜法
によりフィルム化が行なわれる。製膜原液を口金からド
ラム、またはエンドレスのベルト上に流延押出しして薄
膜を形成し、溶媒または溶媒と無機塩を乾式、湿式、乾
湿式などのプロセスで除去した後、熱固定して最終フィ
ルムを得るものであるが、このプロセスならびに製造条
件はポリマの特性ならびに目的とするフィルムの物性な
どから決定されるべきものである。例えばプロセスの適
当な段階で同時または逐次で面倍率1.0〜90の延伸
をするとフィルムの機械特性を向上することができるの
みならずフィルムの平面性、厚みむらを均一なものとす
ることに大きく寄与する。
The membrane forming stock solution prepared as described above is formed into a film by a so-called solution casting method. A thin film is formed by casting and extruding the film-forming stock solution from a die onto a drum or an endless belt, and after removing the solvent or solvent and inorganic salt by a dry, wet, dry-wet process, etc., it is heat-set to form the final film. Although a film is obtained, the process and manufacturing conditions should be determined based on the characteristics of the polymer and the desired physical properties of the film. For example, by simultaneously or sequentially stretching the film at an area magnification of 1.0 to 90 at an appropriate stage of the process, it is possible to not only improve the mechanical properties of the film but also to make the film uniform in its flatness and thickness. Contribute greatly.

また熱固定は一般的にフィルムの高温での寸法安定性に
好ましいが熱処理温度が高すぎるとポリマの劣化や配向
の緩和を招き逆に最終フィルムの機械的、熱的特性を悪
化させるので注意が必要である。
Additionally, heat setting is generally preferred for the film's dimensional stability at high temperatures; however, caution should be taken as heat treatment temperatures that are too high can lead to polymer deterioration and relaxation of orientation, conversely deteriorating the mechanical and thermal properties of the final film. is necessary.

本発明の強磁性層とは、いわゆる薄膜型磁性層を指し、
金属または金属化合物からなる強磁性層で、具体的には
、 Ni、 Co、 Cr、 Fe、 1−Fe2O3
などの単体または合金を主成分とするものである。
The ferromagnetic layer of the present invention refers to a so-called thin film magnetic layer,
A ferromagnetic layer made of metal or metal compound, specifically Ni, Co, Cr, Fe, 1-Fe2O3
The main component is a simple substance or an alloy such as.

また、この強磁性層は、“厚さが0.01〜1μ、好ま
しくは001〜0.5μ、より好ましくは0.05〜0
.20μであるのが望ましい。
Further, this ferromagnetic layer has a thickness of 0.01 to 1μ, preferably 0.001 to 0.5μ, more preferably 0.05 to 0.
.. It is desirable that the thickness be 20μ.

強磁性層を形成する方法は、真空中で金属や合金を加熱
蒸発させて基板上に付着させる蒸着法。
The method for forming the ferromagnetic layer is the vapor deposition method, in which metals and alloys are heated and evaporated in a vacuum and deposited on the substrate.

さらに高真空中で放電によって活性化されたイオン化し
たアルゴンなどによりターゲットである金属または金属
化合物の分子を叩き出して基板上に付着させるスパッタ
リング法、その他イオンプレーテング法など周知の方法
を用いて形成する仁とができる。
Furthermore, it is formed using well-known methods such as sputtering method, which uses ionized argon activated by electric discharge in a high vacuum to drive out molecules of the target metal or metal compound, and deposits them on the substrate, as well as other ion plating methods. You can do that.

なお1強磁性層の形成において、単体元素で最も磁気特
性もよく、かつ付着力も良好な金属はコバルトで、これ
にニッケルを少量加えて耐蝕性を改善したり、クローム
を加えて垂直方向に磁化されやすい膜を作ることができ
る。蒸着方法は電子ビーム加熱により強磁性体の蒸気流
を発生させ冷却ドラムなどに接触したフィルム上に厚み
0.旧〜0.5μ、好ましくは0.05〜0.20μの
制御された薄膜を形成させるのが望ましい。ここで真空
度は10−7から10−2r0−2rr、が一般的であ
り、蒸着雰囲気は磁気特性との関連で外部よシ酸素、窒
素、アルゴンなどのガスを積極的に導入してもよい。
In forming the ferromagnetic layer, cobalt is the single element with the best magnetic properties and good adhesion, and a small amount of nickel is added to improve the corrosion resistance, and chromium is added to improve the corrosion resistance in the vertical direction. It is possible to create a film that is easily magnetized. The vapor deposition method uses electron beam heating to generate a vapor flow of ferromagnetic material, and deposits it on a film in contact with a cooling drum or the like to a thickness of 0. It is desirable to form a controlled thin film of ~0.5μ, preferably 0.05-0.20μ. The degree of vacuum here is generally from 10-7 to 10-2r0-2rr, and in relation to the magnetic properties, external gases such as oxygen, nitrogen, and argon may be actively introduced into the deposition atmosphere. .

本発明において蒸着を行なう前処理としてアルゴンや酸
素の雰囲気1例えば真空度10−2〜数mmHg下でグ
ロー放電処理をすることは好ましいことであシ、未処理
の場合に比較して付着力に明確な有意差が認められる。
In the present invention, it is preferable to perform glow discharge treatment in an argon or oxygen atmosphere 1, for example, in a vacuum degree of 10-2 to several mmHg, as a pretreatment for vapor deposition, and the adhesive strength will be lower than in the case of no treatment. A clear significant difference is observed.

また3本発明の磁気記録媒体は9%定の基本構成単位を
50モルチ以上含む高分子成形物を基材としているため
、高温における熱安定性がよく。
Furthermore, the magnetic recording medium of the present invention has good thermal stability at high temperatures because it is based on a polymer molded product containing 50 moles or more of 9% basic structural units.

蒸着時に発生する熱に耐えることができ、したがって、
蒸着時の数々の制約1例えば基材を80℃以下に冷却す
る手段の導入や、また基材の熱変形   1を軽減させ
る条件、すなわち磁気特性や耐久性を犠牲にする条件を
とらなくてもよいだけでなく。
It can withstand the heat generated during deposition and therefore
Numerous constraints during vapor deposition 1. For example, it is necessary to introduce a means to cool the substrate to 80°C or less, or to reduce thermal deformation 1 of the substrate, that is, without sacrificing magnetic properties or durability. Not just good.

さらに蒸着時や蒸着後の基材に熱処理を付与することが
でき、その処理により著しく付着力を向上させることも
できる。これは金属膜の凝集力が増大し、基材との界面
の分子的ななじみを強化するためと考えられる。なお、
この処理温度は100℃以上400℃、好ましくは12
0℃以上250℃で強磁性層の特性が劣化しない範囲が
望ましい。また熱処理によって単に付着力向上だけでな
く薄膜の化学的特性や結晶構造、結晶形態が変わり磁気
記録特性を改良する場合など本法の効果はさらに高めら
れる。
Furthermore, heat treatment can be applied to the base material during or after vapor deposition, and the adhesion can be significantly improved by such treatment. This is considered to be because the cohesive force of the metal film increases and the molecular conformity of the interface with the base material is strengthened. In addition,
The treatment temperature is 100°C or higher and 400°C, preferably 12°C.
It is desirable that the temperature be within a range where the characteristics of the ferromagnetic layer do not deteriorate at temperatures above 0°C and 250°C. Furthermore, the effects of this method are further enhanced when heat treatment not only improves adhesion but also changes the chemical properties, crystal structure, and crystal morphology of the thin film and improves magnetic recording characteristics.

このように本発明の磁気記録媒体は従来の塗布形磁気記
録媒体やポリエステルフィルムおよび既存の耐熱フィル
ム(例えばデュポン社の”カプトン”)をペースとする
薄膜形−磁気記録媒体に比べ優れた性能を有する。すな
わち高い付着力、高温における寸法安定性、外力に対す
る寸法安定性。
As described above, the magnetic recording medium of the present invention has superior performance compared to conventional coated magnetic recording media, thin film magnetic recording media based on polyester films, and existing heat-resistant films (for example, DuPont's "Kapton"). have Namely, high adhesion, dimensional stability at high temperatures, and dimensional stability against external forces.

さらには使用される環境下での寸法安定性など総合的な
特性に優れた高性能高記録密度の磁気記録媒体である。
Furthermore, it is a high-performance, high-density magnetic recording medium that has excellent overall characteristics such as dimensional stability under the environment in which it is used.

本発明の具体的な用途としてはビデオテープ。A specific application of the present invention is video tape.

オーディオテープ、さらに各種のフロッピーディスクに
好適な材料を提供するものである。また電子カメラやビ
デオディスクなどあらゆる種類の磁気記録材料の分野に
本発明を応用することが可能である。また磁気記録方式
は水平磁化、垂直磁化を問わない。
It provides materials suitable for audio tapes and various floppy disks. Furthermore, the present invention can be applied to the field of all kinds of magnetic recording materials such as electronic cameras and video discs. Further, the magnetic recording method does not matter whether horizontal magnetization or perpendicular magnetization is used.

なお本発明の磁性層の上に保護層を設けたり。Note that a protective layer may be provided on the magnetic layer of the present invention.

フィルム基板の裏面に走行性や帯電防止性その他の目的
でバックコート層を設けることは磁気記録材料全体の性
能を向上させるため好ましい場合も多い。
It is often preferable to provide a back coat layer on the back surface of the film substrate for running properties, antistatic properties, and other purposes since this improves the performance of the magnetic recording material as a whole.

本発明の磁気記録媒体ならびに基材としてのフィルムの
評価は次の基準によシ判定した。
The magnetic recording medium of the present invention and the film as a base material were evaluated based on the following criteria.

(1)固有粘度 次の式によって算出した。(1) Intrinsic viscosity It was calculated using the following formula.

/n (ηrel ) ηinh  = に こでηrelは25℃で測定した相対粘度、Cは0゜5
grのポリマを100!D/のN−メチルビロリドンと
2.5grの臭化リチウムの溶液に溶かした時の値を用
いた。
/n (ηrel) ηinh = Niko where ηrel is the relative viscosity measured at 25°C, C is 0°5
100 gr polymers! The value obtained when D/ was dissolved in a solution of N-methylpyrrolidone and 2.5 gr of lithium bromide was used.

(2)強伸度、引張弾性率 20℃、75%RHの下に1テンシロン”を用いてJ工
5L−1073に従っ、て測定した。
(2) Strength and elongation, tensile modulus Measured at 20° C. and 75% RH using 1 tensilon” in accordance with J Engineering 5L-1073.

(3)  熱収縮率 約25(至)のフィルムを巾5mmで切シ出し20■の
間隔に印をつけ、所定の温度のオープン中に吊り下げ下
端に5grの荷重を付けた。10分後にこのサンプルを
取シ出し印の間の距離を求め、熱収縮率を計算した。
(3) A film with a heat shrinkage rate of about 25 (up to) was cut out to a width of 5 mm and marks were made at intervals of 20 cm, and a load of 5 gr was applied to the lower end of the cut film while it was being hung at a predetermined temperature. After 10 minutes, the sample was taken out, the distance between the marks was determined, and the heat shrinkage rate was calculated.

(4)湿度膨張係数 巾5 mm 、長さ20a11に切り出したテープ状サ
ンプルを20℃、7096RHに24時間放置した後。
(4) Humidity expansion coefficient: A tape-shaped sample cut out to a width of 5 mm and a length of 20a11 was left at 20°C and 7096RH for 24 hours.

恒温恒湿槽の条件を904RHに変え、テープ長さを連
続的に測定し、平衡に達した後の値から湿度膨張係数を
計算した。
The conditions of the constant temperature and humidity chamber were changed to 904RH, the tape length was continuously measured, and the humidity expansion coefficient was calculated from the value after equilibrium was reached.

(5)付着力 フィルム基板と金属薄膜の付着力のテストは種々の方法
を検討したが、主としてビデオ装置による実機テストが
再現性のよい結果が得られた。実機としては市販の“ベ
ータマックス”を使用しサンプルを1m〜10rnの長
さのテープに切シ出し。
(5) Adhesion Although various methods were considered for testing the adhesion between the film substrate and the metal thin film, results with good reproducibility were mainly obtained using actual equipment testing using a video device. For the actual machine, a commercially available "Betamax" was used to cut the sample into tapes with a length of 1m to 10rn.

これを繰シ返し送行させてその薄膜のダメージを受けて
いく様子を観察した。またスチルの状態で長時間放置し
て同様の観察を行なった。
By repeatedly feeding the thin film, we observed how the thin film was damaged. Similar observations were also made after leaving the device in a still state for a long time.

次に実施例に基づいて本発明の実施態様を説明する。Next, embodiments of the present invention will be described based on Examples.

実施例1 乾燥したNメチルピロリドンを200 l!の攪拌槽中
に100/入れ、これに塩化リチウム8?、2−クロル
pフェニレンジアミン2.42¥、4.4’−ジアミノ
ジフェニルエーテル0.60yを溶解させ0℃に保ち、
全体をゆつ〈シ攪拌した。攪拌を続けながら約30分間
にわたり粒状化したテレフタル酸クロライド4.07q
を添加した。1時間そのまま攪拌を続は粘稠なポリマ溶
液を得た。大型ミキサー中に大量の水を入れ、ポリマ溶
液をこれに添加し再   警沈させ繊維状の固形ポリマ
を得た。これを洗浄。
Example 1 200 liters of dry N-methylpyrrolidone! Put 100% in a stirring tank and add 8% of lithium chloride to it. , 2-chlor p-phenylenediamine 2.42 yen, 4.4'-diaminodiphenyl ether 0.60 y were dissolved and kept at 0°C,
The whole thing was stirred. 4.07q of terephthalic acid chloride granulated for about 30 minutes with continuous stirring
was added. After stirring for 1 hour, a viscous polymer solution was obtained. A large amount of water was placed in a large mixer, the polymer solution was added thereto, and the mixture was re-precipitated to obtain a fibrous solid polymer. Wash this.

乾燥した後、ポリマ2鞄、臭化リチウム1kg、Nメチ
ルピロリドン40I!を混合し室温にて均一な溶液を調
製した。このポリマの固有粘度は4.57であった。こ
の液を表面研磨されたステンレスのドラム上へ均一に口
金から流延し120℃の雰囲気で約20分間加熱した。
After drying, 2 bags of polymer, 1 kg of lithium bromide, 40 I of N-methylpyrrolidone! A homogeneous solution was prepared at room temperature. The intrinsic viscosity of this polymer was 4.57. This liquid was uniformly cast from a nozzle onto a stainless steel drum whose surface had been polished, and heated in an atmosphere of 120° C. for about 20 minutes.

・このフィルムをドラムから剥離し、連続的に水槽中へ
約10分間浸漬した。
- This film was peeled off from the drum and continuously immersed in a water tank for about 10 minutes.

このフィルムをテンターで定長下に300℃、約5分間
加熱し厚さ16μの透明な表面平滑なフィルムを得た。
This film was heated in a tenter at 300° C. for about 5 minutes at a constant length to obtain a transparent film with a thickness of 16 μm and a smooth surface.

このフィルムは強度40kg/mm2.引張り弾性率1
500z/mm2を示し、250℃での熱収縮率がゎず
か03チという極めて高強力、耐熱フィルムであること
が判明した。また室温付近での温度膨張係数が4 x 
10−’mm/mm/’℃、湿度膨張係数が5 x 1
0−’mm/mm/ RH%と環境安定性にも優れてい
ることがわかった。
This film has a strength of 40kg/mm2. Tensile modulus 1
500z/mm2, and the heat shrinkage rate at 250°C was only 0.3cm, making it an extremely strong and heat-resistant film. Also, the coefficient of thermal expansion near room temperature is 4 x
10-'mm/mm/'℃, humidity expansion coefficient 5 x 1
It was also found that it has excellent environmental stability with 0-'mm/mm/RH%.

このフィルムを真空槽内に装填し、10−2トールのA
rガス雰囲気下でイオンボンバード処理を行なった。次
いで、真空槽を10−’)−ル台まで真空排気し、フィ
ルムを走行させながら、電子ビーム蒸着により、 Co
−阻合金(Co 75重量%、 Ni 25重量%)を
、入射角70°以上となる斜め蒸着法で015μの膜厚
になるように蒸着して1強磁性金属薄層を有する磁気テ
ープを作製した。得られた膜の磁気特性は、長手方向の
保磁力が7200θ1幅方向の保磁力が4800e 、
角型比が0.92であり。
This film was loaded into a vacuum chamber, and the A
Ion bombardment was performed in an r gas atmosphere. Next, the vacuum chamber was evacuated to the 10-') level, and while the film was running, Co was deposited by electron beam evaporation.
- Fabricate a magnetic tape having a thin ferromagnetic metal layer by depositing an inhibitory alloy (75% by weight of Co, 25% by weight of Ni) to a film thickness of 0.15 μm using an oblique evaporation method with an incident angle of 70° or more. did. The magnetic properties of the obtained film are such that the coercive force in the longitudinal direction is 7200θ1, the coercive force in the width direction is 4800e,
The squareness ratio is 0.92.

長手方向に配向した磁気テープとしてオーディオテープ
、ビデオテープに適した性能を有している。
As a longitudinally oriented magnetic tape, it has performance suitable for audio tapes and video tapes.

この磁気テープを市販のホームビデオ「ベータマックス
」にかけ、100回走行テストや艮チルテストを行なっ
た結果、磁性層の付着力が極めてすぐれており、磁性層
の脱落やテープの変形がほとんどなく目立ったドロップ
アウトの増加がないことを確認した。
We ran this magnetic tape on a commercially available home video system, Betamax, and ran it 100 times and subjected it to a chill test.The results showed that the adhesion of the magnetic layer was extremely good, and there was hardly any drop-off of the magnetic layer or deformation of the tape. It was confirmed that there was no increase in dropouts.

比較実施例1 実施例1と同様な方法でポリエチレンテレフタレートフ
ィルム(東し製1ルミラー″16μ)とポリイミドフィ
ルム(米国デュポン社製“カプトン”25μ)をベース
として磁気テープを作製した。
Comparative Example 1 A magnetic tape was produced in the same manner as in Example 1 using a polyethylene terephthalate film (1 Lumirror, manufactured by Toshi Corporation, 16 μm) and a polyimide film (Kapton, manufactured by DuPont, USA, 25 μm) as a base.

ポリエチレンテレフタレートの場合はイオンボンバード
処理や蒸着処理時に頻繁に熱による孔あき現象があり、
長いテープを作製するのが不可能であった。またこれを
「ベータマックス」で走行させた結果、多数回走行やス
チル走行によって磁性層の部分的な破壊、脱落などが生
じポリエチレンテレフタレートなど金属層との付着力が
不十分であることが確認された。
In the case of polyethylene terephthalate, there are frequent holes caused by heat during ion bombardment treatment and vapor deposition treatment.
It was impossible to make long tapes. In addition, as a result of running this with "Betamax", it was confirmed that the magnetic layer was partially destroyed or fell off due to multiple runs or still running, and the adhesion with the metal layer such as polyethylene terephthalate was insufficient. Ta.

また「カプトン」の場合は作製時の熱負けはなかったが
表面平滑性が貧しいためか安定した磁気記録特性を有す
るテープを得ることができなかった。またそのテープの
腰の強さや湿度に対する寸法安定性が悪い(湿度膨張係
数52 x 10−’mm/mm/RH%)ことにより
良好なテープ特性を得ることはできなかった。
In the case of ``Kapton,'' there was no heat loss during production, but it was not possible to obtain a tape with stable magnetic recording properties, perhaps due to poor surface smoothness. In addition, good tape properties could not be obtained due to the tape's stiffness and poor dimensional stability against humidity (humidity expansion coefficient: 52 x 10-' mm/mm/RH%).

実施例2 実施例1で得られた厚さ16μのフィルム上にマグネト
ロン型RFスパッタ装置を用いて、Co−Cr合金より
成る磁性薄膜を形成した。
Example 2 A magnetic thin film made of a Co--Cr alloy was formed on the 16 μm thick film obtained in Example 1 using a magnetron type RF sputtering device.

まず、真空槽内にフィルムを装填し、10−’)−ルま
で排気したのち、Arガスを導入して2×10−21−
−ルの圧力に保つ。次いで、直径150mmのCo −
Cr合金ターゲット(Co81重量%、Cr19重量%
)に13.56MHz  の高周波電圧を印加し。
First, a film is loaded into a vacuum chamber and the vacuum chamber is evacuated to 10-'), and then Ar gas is introduced and 2×10-21-
− Maintain the pressure at Then, Co − with a diameter of 150 mm
Cr alloy target (Co81% by weight, Cr19% by weight
) was applied with a high frequency voltage of 13.56MHz.

200Wの投入電力で30分間スパッタし、厚さ05μ
の磁性薄膜を得た。このCo −Cr膜の膜面に垂直お
よび平行方向の保磁力は、それぞれ11000θおよび
<SOO,Oeであった。また、この磁性薄膜は、膜面
に垂直方向の残留磁化が、膜面に平行方向の残留磁化よ
り大きく、垂直方向に容易磁化軸を有しており、垂直記
録媒体として適した特性を持っている。
Sputtered for 30 minutes with input power of 200W to a thickness of 05μ
A magnetic thin film was obtained. The coercive forces of this Co-Cr film in the directions perpendicular and parallel to the film surface were 11000θ and <SOO, Oe, respectively. In addition, this magnetic thin film has characteristics that make it suitable as a perpendicular recording medium, as the residual magnetization in the direction perpendicular to the film surface is larger than the residual magnetization in the direction parallel to the film surface, and it has an axis of easy magnetization in the perpendicular direction. There is.

このテープも市販のビデオ装置で耐久性のテストをした
結果、ベースフィルムと磁性層の付着力が十分に優れて
いることがわかった。
As a result of testing the durability of this tape using a commercially available video device, it was found that the adhesion between the base film and the magnetic layer was sufficiently excellent.

実施例6 実施例1で得られた16μのフィルム上にマ Fθ304焼結体をターゲットとして、マグネトロン型
RFスパッタ装置を用いて、酸化鉄薄膜を形成した。
Example 6 An iron oxide thin film was formed on the 16 μm film obtained in Example 1 using a magnetron type RF sputtering device using a sintered body of MaFθ304 as a target.

まず、真空装置内にフィルムを装填し、io−’トール
まで排気したのち、酸素ガスを6体積チ含むArガスを
導入して、圧力を5x10−5 トールに維持する。次
いで、ターゲットに1!1.56MH2の高周波電圧を
印加し、 20QWの投入電力にて15分間スパッタし
て、厚さ0,2μのFe、04膜を形成した。続いて、
このフィルムを、大気中で260℃。
First, a film is loaded into a vacuum apparatus, and after the vacuum is evacuated to io-' Torr, Ar gas containing 6 volumes of oxygen gas is introduced to maintain the pressure at 5 x 10-5 Torr. Next, a high frequency voltage of 1!1.56 MH2 was applied to the target, and sputtering was performed for 15 minutes at an input power of 20 QW to form a Fe, 04 film with a thickness of 0.2 μm. continue,
This film was heated at 260°C in the atmosphere.

60分間加熱酸化し、 1−Fe2O3膜に変換した。It was heated and oxidized for 60 minutes to convert it into a 1-Fe2O3 film.

得られたγ−Fθ20.膜は、保磁力が3500e、残
留磁束密度が1500G、角型比が081の磁気特性を
示した。
The obtained γ-Fθ20. The film exhibited magnetic properties with a coercive force of 3500e, a residual magnetic flux density of 1500G, and a squareness ratio of 081.

高温処理によっても本テープはt1!とんど変形が認め
られず、また実施例1.2と同様に磁性層の耐久性も十
分実用的であることが確認された。
Even after high temperature treatment, this tape achieves t1! Almost no deformation was observed, and it was confirmed that the durability of the magnetic layer was sufficiently practical as in Example 1.2.

実施例4 実施例1と同様に乾燥したN 、 N’ジメチルアセト
アミド1001中に塩化リチウム10q、2−クロルp
−フェニレンジアミ°ン2.00y 、 4.4’ジア
ミノジフェニルメタン1.19yを溶解させ0℃に保っ
た。
Example 4 Lithium chloride 10q, 2-chlorop in 1001 N,N' dimethylacetamide dried as in Example 1
- 2.00 y of phenylene diamine and 1.19 y of 4.4'diaminodiphenylmethane were dissolved and kept at 0°C.

次いでテレフタル酸クロライド408襠を添加し実施例
1と同様に固形ポリマを得た。このポリマの固有粘度は
2.89であった。ポリマ2kg、塩化カルシウム11
1q(、N−メチルピロリドン251!を混合し実施例
1と同様に厚さ16μの透明で表面平滑々フィルムを得
た。
Next, 408 g of terephthalic acid chloride was added to obtain a solid polymer in the same manner as in Example 1. The intrinsic viscosity of this polymer was 2.89. 2 kg of polymer, 11 calcium chloride
1q (251!) of N-methylpyrrolidone was mixed to obtain a transparent film with a thickness of 16 μm and a smooth surface in the same manner as in Example 1.

このフィルムは強度32 kg/mm2.引張シ弾性率
950 kg/mm 2を示し、250℃での熱収縮率
は1.2 %であり高強力、耐熱フィルムであることが
わかった。また温度膨張係数は6 x 10−’ mm
/rmrr/ ℃、湿度膨張係数は11 x 10−’
mm/mm/RH%であった。
This film has a strength of 32 kg/mm2. It showed a tensile modulus of elasticity of 950 kg/mm 2 and a heat shrinkage rate of 1.2% at 250° C., indicating that it was a high-strength, heat-resistant film. Also, the coefficient of thermal expansion is 6 x 10-' mm
/rmrr/ °C, humidity expansion coefficient is 11 x 10-'
mm/mm/RH%.

実施例1から3に示したと同様に本実施例のベースフィ
ルムよシ磁気テープを作製したが実施例1のフィルムよ
りは多少劣るものの、十分に実用的な性能を示すことを
確認した。
A magnetic tape was prepared using the base film of this example in the same manner as shown in Examples 1 to 3, and although it was somewhat inferior to the film of Example 1, it was confirmed that it exhibited sufficient practical performance.

比較実施例2 前例と同様に乾燥したN、N’ジメチルアセトアミ)”
1001!中に2−クロル−p−フェニレンジアミン1
.14職、 4.4’ジアミノジフェニルメタン2.3
8qを溶解させ0℃に保った。次いでテレフタル酸クロ
ライド4.07kBを添加し実施例1と同様に固有粘度
252の固形ポリマを得た。ポリマ2kg、N−メチル
ピロリドン25/、塩化カルシウム0.5 zを混合し
前例と同様のプロセスで厚さ15μの表面の平滑なフィ
ルムを得た。
Comparative Example 2 N,N' dimethylacetamide dried in the same manner as in the previous example
1001! 2-chloro-p-phenylenediamine 1 in
.. 14 positions, 4.4'diaminodiphenylmethane 2.3
8q was dissolved and kept at 0°C. Next, 4.07 kB of terephthalic acid chloride was added to obtain a solid polymer having an intrinsic viscosity of 252 in the same manner as in Example 1. 2 kg of polymer, 25 kg of N-methylpyrrolidone, and 0.5 z of calcium chloride were mixed and a smooth film with a thickness of 15 μm was obtained using the same process as in the previous example.

このフィルムは吸湿率が6.8チと高く、湿度膨張係数
20 x 10””mm/mm/RH%であり磁気テー
プのベースフィルムとして適していなかった。また耐熱
性も乏しく200℃で約5.3チの熱収縮を示し蒸着中
に熱負けによるトラブルが多発した。また得られた磁気
テープの耐久性も多数回走行テストの結果ポリエチレン
テレフタレートペースの場合と同様の磁性層の脱落など
が多く発生した。
This film had a high moisture absorption rate of 6.8 inches and a humidity expansion coefficient of 20 x 10''mm/mm/RH%, making it unsuitable as a base film for magnetic tapes. It also had poor heat resistance, exhibiting a thermal shrinkage of about 5.3 inches at 200°C, and frequently suffered from heat loss during vapor deposition. Furthermore, the durability of the obtained magnetic tape was tested many times, and as a result, the magnetic layer often fell off, similar to the case with polyethylene terephthalate paste.

特許出願人  東 し 株 式 会 社手  続  補
  正  書 特許庁長官 若 杉 和 夫 殿 1、事件の表示 昭和57年特許願第51895  号 2、発明の名称 磁気記録媒体 3、補正をする者 事件との関係 特許出願人 住 所  東京都中央区日本橋室町2丁目2番地6、補
正の対象 明細書の「発明の詳細な説明」の欄 2補正の内容 (1)  明細書 第11頁4行目 「主成分とするものである。」を「主成分とし。
Patent Applicant: Toshi Co., Ltd. Company Procedures Amendment Letter: Kazuo Wakasugi, Commissioner of the Patent Office1, Indication of Case, Patent Application No. 51895 of 1982, Title of Invention: Magnetic Recording Medium, 3, Person Making Amendment Case Relationship with Patent Applicant Address 2-2-6 Nihonbashi Muromachi, Chuo-ku, Tokyo Contents of the amendment in Column 2 “Detailed Description of the Invention” of the specification to be amended (1) Specification Page 11, line 4 "The main component." should be changed to "The main component is the main component."

乾式法で形成された層である。」と補正する。This layer is formed using a dry method. ” he corrected.

(2)  同 第11頁14行目 「周知の方法」を「周知の乾式法」と補正する。(2) Same page 11, line 14 "Well-known method" is corrected to "well-known dry method."

Claims (1)

【特許請求の範囲】 高分子成形物に金属または金属化合物からなる強磁性層
を少なくとも1層以上設けた磁気記録媒体において、該
高分子成形物が一般式 の整数)で示される基本構成単位を50モルチ以上含む
構造を有することを特徴とする磁気記録媒体。
[Scope of Claims] A magnetic recording medium in which a polymer molding is provided with at least one ferromagnetic layer made of a metal or a metal compound, wherein the polymer molding has a basic structural unit represented by an integer in the general formula. A magnetic recording medium characterized by having a structure containing 50 molti or more.
JP5189582A 1982-03-30 1982-03-30 Magnetic recording medium Granted JPS58168655A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP5189582A JPS58168655A (en) 1982-03-30 1982-03-30 Magnetic recording medium
DE8383301031T DE3379923D1 (en) 1982-03-30 1983-02-25 Magnetic recording medium
EP83301031A EP0090499B1 (en) 1982-03-30 1983-02-25 Magnetic recording medium
US06/685,965 US4645702A (en) 1982-03-30 1984-12-27 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5189582A JPS58168655A (en) 1982-03-30 1982-03-30 Magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS58168655A true JPS58168655A (en) 1983-10-05
JPH0251463B2 JPH0251463B2 (en) 1990-11-07

Family

ID=12899607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5189582A Granted JPS58168655A (en) 1982-03-30 1982-03-30 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS58168655A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59107424A (en) * 1982-12-08 1984-06-21 Fuji Photo Film Co Ltd Manufacture of magnetic recording medium
JPS6085419A (en) * 1983-10-14 1985-05-14 Matsushita Electric Ind Co Ltd Magnetic recording medium
JPS60111322A (en) * 1983-11-21 1985-06-17 Matsushita Electric Ind Co Ltd Thin metallic film type magnetic recording medium
JPS60151830A (en) * 1984-01-20 1985-08-09 Fuji Photo Film Co Ltd Magnetic recording medium
JPS62112218A (en) * 1985-11-11 1987-05-23 Asahi Chem Ind Co Ltd Magnetic tape
JPS62202315A (en) * 1986-02-28 1987-09-07 Toshiba Corp Vertical magnetic recording medium
JPS6363124A (en) * 1986-09-03 1988-03-19 Asahi Chem Ind Co Ltd Perpendicular magnetic recording medium
EP0702361A1 (en) 1994-09-14 1996-03-20 Toray Industries, Inc. Magnetic recording medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5394397A (en) * 1977-01-21 1978-08-18 Upjohn Co Copoly amide
JPS5584417A (en) * 1978-12-20 1980-06-25 Asahi Chem Ind Co Ltd Copolyamide fiber
JPS5584323A (en) * 1978-12-20 1980-06-25 Asahi Chem Ind Co Ltd Copolyamide containing aromatic oligoamide unit and preparation thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5394397A (en) * 1977-01-21 1978-08-18 Upjohn Co Copoly amide
JPS5584417A (en) * 1978-12-20 1980-06-25 Asahi Chem Ind Co Ltd Copolyamide fiber
JPS5584323A (en) * 1978-12-20 1980-06-25 Asahi Chem Ind Co Ltd Copolyamide containing aromatic oligoamide unit and preparation thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59107424A (en) * 1982-12-08 1984-06-21 Fuji Photo Film Co Ltd Manufacture of magnetic recording medium
JPS6085419A (en) * 1983-10-14 1985-05-14 Matsushita Electric Ind Co Ltd Magnetic recording medium
JPH0531206B2 (en) * 1983-10-14 1993-05-12 Matsushita Electric Ind Co Ltd
JPS60111322A (en) * 1983-11-21 1985-06-17 Matsushita Electric Ind Co Ltd Thin metallic film type magnetic recording medium
JPH0475573B2 (en) * 1983-11-21 1992-12-01 Matsushita Electric Ind Co Ltd
JPS60151830A (en) * 1984-01-20 1985-08-09 Fuji Photo Film Co Ltd Magnetic recording medium
JPH0473214B2 (en) * 1984-01-20 1992-11-20 Fuji Photo Film Co Ltd
JPS62112218A (en) * 1985-11-11 1987-05-23 Asahi Chem Ind Co Ltd Magnetic tape
JPH0522969B2 (en) * 1985-11-11 1993-03-31 Asahi Chemical Ind
JPS62202315A (en) * 1986-02-28 1987-09-07 Toshiba Corp Vertical magnetic recording medium
JPS6363124A (en) * 1986-09-03 1988-03-19 Asahi Chem Ind Co Ltd Perpendicular magnetic recording medium
EP0702361A1 (en) 1994-09-14 1996-03-20 Toray Industries, Inc. Magnetic recording medium

Also Published As

Publication number Publication date
JPH0251463B2 (en) 1990-11-07

Similar Documents

Publication Publication Date Title
EP0090499B1 (en) Magnetic recording medium
JPH03183759A (en) Laminated plastic film and its production
JPS60127523A (en) Base film for magnetic recording medium in high density
JPS58168655A (en) Magnetic recording medium
JPS61246919A (en) Base film for high-density recording medium
US4673612A (en) Magnetic recording medium
US4977230A (en) Heat-resistant film or sheet
KR100561133B1 (en) Aromatic Polyamide Film and Magnetic Recording Media Made by Using the Same
US6203884B1 (en) Magnetic recording medium
US5645918A (en) Magnetic recording medium having an aromatic polyamide substrate
JPH01247162A (en) Base film for high density recording medium
JP3511643B2 (en) Base film for high density recording medium and method for producing the same
JPS61248218A (en) Vertical magnetic recording medium
JPS5967015A (en) Preparation of biaxially stretched polyester film
JPH113513A (en) Magnetic recording medium
JPS60224128A (en) Production of thin film type magnetic recording medium
JPH0687298B2 (en) Base film for high density recording medium
JP2959110B2 (en) Manufacturing method of magnetic tape
JPS6363124A (en) Perpendicular magnetic recording medium
JP2001031779A (en) Aromatic polyamide film and magnetic recording medium
JPS63183613A (en) Magnetic recording medium
JP2019182888A (en) Aromatic polyamide and film consisting of the same
JP2002053678A (en) Aromatic polyamide film and magnetic recording medium
JP2002208131A (en) Polyester film for magnetic recording medium and magnetic recording tape
JPS59171027A (en) Magnetic recording medium and its manufacture