JPH0251463B2 - - Google Patents

Info

Publication number
JPH0251463B2
JPH0251463B2 JP57051895A JP5189582A JPH0251463B2 JP H0251463 B2 JPH0251463 B2 JP H0251463B2 JP 57051895 A JP57051895 A JP 57051895A JP 5189582 A JP5189582 A JP 5189582A JP H0251463 B2 JPH0251463 B2 JP H0251463B2
Authority
JP
Japan
Prior art keywords
film
polymer
magnetic
magnetic recording
adhesion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57051895A
Other languages
Japanese (ja)
Other versions
JPS58168655A (en
Inventor
Hiroaki Kobayashi
Toshuki Asakura
Nobuaki Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP5189582A priority Critical patent/JPS58168655A/en
Priority to DE8383301031T priority patent/DE3379923D1/en
Priority to EP83301031A priority patent/EP0090499B1/en
Publication of JPS58168655A publication Critical patent/JPS58168655A/en
Priority to US06/685,965 priority patent/US4645702A/en
Publication of JPH0251463B2 publication Critical patent/JPH0251463B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は高分子成形物、特に高分子フイルム上
に強磁性層を蒸着、スパツタリングなどにより形
成した磁気記録媒体に関するものである。 近年磁気記録の高密度化が時代の要請として注
目を浴びているが、従来のγ−Fe2O3などの酸化
物磁性粉やコバルト、ニツケルなどの合金磁性粉
を適当な有機高分子のバインダー中に均一に混入
し塗布する。いわゆる塗布型に対して、真空蒸着
やスパツタリングなどの手法により基板に直接的
にコバルトなどの高分子バインダーを含まない強
磁性体金属薄膜からなる強磁性層を基材の上に形
成させた磁気記録媒体が記録の高密度化に極めて
有利な形態として開発されている。 かかる強磁性層を設けた磁気記録媒体を実用化
する場合の最大の問題点は基材と強磁性層との付
着強さである。かかる強磁性層を一般に1000オン
グストローム前後の厚さを有しており基材の表面
平滑性は従来の塗布形とは比較にならないほど厳
しい条件を要求されているため、いわゆる基材表
面の凹凸によるアンカー効果は全く期待できな
い。また強磁性層は金属または金属化合物の単体
であるため、それ自身は伸度が乏しく、塗布形の
ようにバインダーによる緩衝効果もないため外力
に対する脆さがある。さらに基材は一般に有機高
分子より成るため従来の塗布型が有機のバインダ
ーを使い基材との相性をよくしているのと対照的
に有機と無機の接着という本質的な問題をかかえ
ている。 このような強磁性層の付着力を改良すべく種々
の方法がとられている。例えば蒸着の場合、電子
ビーム蒸着条件を種々変更して付着力に対し最適
な条件を選ぶとか、最も一般的に使用されている
基材であるポリエチレンテレフタレートのフイル
ムを蒸着直前にグロー放電処理やバフ処理などの
いわゆる表面処理を施す工夫も多く行なわれてい
る。しかしこのような手法では付着力の本質的な
改良はむずかしい。それは第一に付着力といつて
も単なるセロテープ剥離テスト的なものだけでは
なく磁気記録媒体、特に磁気テープがヘツドと接
触したり、走行系のロールと接触したりして欠落
したり、きずがついたりしないか、といつた広い
意味の付着力が実用上問題になる背景がある。例
えばビデオテープなどではヘツドとの高相対速度
下での接触、スチル時の同一箇所繰り返し接触、
さらにポストとの接触など非常に厳しい条件にさ
らされる。50回走行、100回走行後にもドロツプ
アウトがほとんどないほど付着力が優れているこ
とが要求される。また第二にはこのような実用的
な意味での付着力は強磁性層自身の剛性、靭性が
重要であり、基材の表面処理が十分に行なえ得た
としても付着物の特性にまで影響を与えることは
小さいであろう。さらに第三に物理的表面処理は
前述のように強磁性層を設けた磁気記録媒体に最
も重要な基材の表面平滑性に致命的な悪影響を与
える可能性がある。 またこの付着力以外にも総合的に優れた磁気記
録媒体を得るためには次のような耐久性が要求さ
れる。 (1) 高い機械的特性。すなわち強伸度の他に引張
り弾性率が優れていること。(外力に対する寸
法安定性) (2) 高温での寸法安定性に優れていること。 (3) 温度、湿度など環境変化に対する寸法安定性
に優れていること。 本発明者らはこのような種々の問題点を解決す
べく鋭意検討を進めた結果、本発明に到達したも
のである。すなわち本発明の目的は磁気記録媒体
の強磁性層と基材との実用的付着力と、過酷な使
用に対する総合的な耐久性の高い磁気記録媒体を
提供するものである。 本発明は、上記目的を達成するため次の構成、
すなわち高分子成形物に金属または金属化合物か
らなる強磁性層を少なくとも一層以上設けた磁気
記録媒体において、面内の少なくとも一方向の引
張り弾性率が500Kg/mm2以上であり、該高分子成
形物が一般式 (ここでm、nは0〜3の整数)で示される基本
構成単位を50モル%以上含む構造を有する磁気記
録媒体を特徴とするものである。 本発明における高分子成形物とは、組成が上述
の通りでその結合はパラ−パラ結合である全芳香
族ポリアミドまたはクロル置換全芳香族ポリアミ
ドを50モル%以上含む構造を有するフイルムまた
はシートであり、メタ位で結合するものと比較し
て、機械的特性、耐熱特性等において優れてい
る。 本構造を有する全芳香族ポリアミドまたはクロ
ル置換全芳香族ポリアミドを主成分とする基材を
構成する単量体としては、酸クロリドとジアミン
からのポリマ合成を例にとると、テレフタル酸ク
ロリド、2−クロルテレフタル酸クロリド、2,
5−ジクロルテレフタル酸クロリド、2,6−ジ
クロルテレフタル酸クロリド等とp−フエニレン
ジアミン、2−クロルpフエニレンジアミン、
2,5−ジクロル−p−フエニレンジアミン、
2,6−ジクロル−p−フエニレンジアミンなど
が挙げられる。 上記一般式で示される基本構成単位は本発明で
使用する基材ポリマの50モル%以上であることが
必須である。基本構成が芳香族ポリアミドである
こと、さらに好ましくは塩素置換基を有すること
がより望ましい。基本構成単位が50モル%未満に
なると強磁性層の付着力の低下が見られると同時
に、磁気記録媒体の支持基板としての本来の特
性、磁気記録媒体の支持基板としての本来の特
性、例えば機械的特性や吸湿寸法安定性などが悪
化し本発明を満足しない。なお50モル%未満の構
成については、全芳香族ポリアミド単位であれば
特に限定するものではないが、下記のような構成
単位が代表例として挙げることができる。 すなわち、 ここでXは−CH3、−NO2あるいはCl以外のハ
ロゲンなどであり、p、qは0〜3の整数であ
り、同時に0にはならない。 さらに、 ここでYはなし、−O−、−SO2−、−S−、
The present invention relates to a magnetic recording medium in which a ferromagnetic layer is formed on a polymer molded product, particularly a polymer film, by vapor deposition, sputtering, or the like. In recent years, increasing the density of magnetic recording has attracted attention as a requirement of the times, but conventional oxide magnetic powders such as γ-Fe 2 O 3 and alloy magnetic powders such as cobalt and nickel are combined with suitable organic polymer binders. Mix and apply evenly. In contrast to so-called coating type magnetic recording, a ferromagnetic layer consisting of a ferromagnetic metal thin film that does not contain a polymeric binder such as cobalt is directly formed on the substrate using techniques such as vacuum evaporation or sputtering. Media have been developed in a form that is extremely advantageous for high-density recording. The biggest problem when putting into practical use a magnetic recording medium provided with such a ferromagnetic layer is the adhesion strength between the base material and the ferromagnetic layer. This ferromagnetic layer generally has a thickness of around 1000 angstroms, and the surface smoothness of the base material is required to have conditions that are incomparably more severe than those of conventional coating types. An anchor effect cannot be expected at all. Furthermore, since the ferromagnetic layer is made of a single metal or metal compound, it itself has poor elongation, and unlike the coated type, it does not have the buffering effect of a binder, making it brittle against external forces. Furthermore, since the base material is generally made of organic polymers, conventional coating methods use an organic binder to improve compatibility with the base material, but this method has the fundamental problem of adhesion between organic and inorganic materials. . Various methods have been used to improve the adhesion of such ferromagnetic layers. For example, in the case of vapor deposition, electron beam vapor deposition conditions may be varied to select the optimum conditions for adhesion, or polyethylene terephthalate film, the most commonly used base material, may be subjected to glow discharge treatment or buffing immediately before vapor deposition. Many efforts have been made to apply so-called surface treatments such as surface treatment. However, it is difficult to substantially improve adhesion using such methods. First of all, adhesion is not just a simple cellophane tape peel test, but also a magnetic recording medium, especially when the magnetic tape comes into contact with the head or the roll of the running system, causing chips or scratches. There is a background in which adhesion in a broad sense, such as whether it sticks or not, becomes a practical problem. For example, in video tapes, etc., contact with the head at high relative speeds, repeated contact at the same point during stills,
Furthermore, they are exposed to extremely harsh conditions, including contact with posts. It is required that the adhesion is so good that there is almost no dropout even after 50 or 100 runs. Secondly, the rigidity and toughness of the ferromagnetic layer itself are important for adhesion in a practical sense, and even if the surface of the base material is sufficiently treated, it may affect the properties of the deposits. would be small. Third, physical surface treatment may have a fatal adverse effect on the surface smoothness of the base material, which is most important for magnetic recording media provided with a ferromagnetic layer, as described above. In addition to this adhesion, the following durability is required in order to obtain a magnetic recording medium that is comprehensively excellent. (1) High mechanical properties. In other words, it has excellent tensile modulus in addition to strength and elongation. (Dimensional stability against external forces) (2) Excellent dimensional stability at high temperatures. (3) Excellent dimensional stability against environmental changes such as temperature and humidity. The present inventors have conducted intensive studies to solve these various problems, and as a result, they have arrived at the present invention. That is, an object of the present invention is to provide a magnetic recording medium that has practical adhesion between a ferromagnetic layer and a base material and has high overall durability against severe use. In order to achieve the above object, the present invention has the following configuration:
That is, in a magnetic recording medium in which a polymer molded product is provided with at least one ferromagnetic layer made of a metal or a metal compound, the tensile modulus in at least one in-plane direction is 500 Kg/mm 2 or more, and the polymer molded product is the general formula The present invention is characterized by a magnetic recording medium having a structure containing 50 mol% or more of the basic structural unit represented by (where m and n are integers of 0 to 3). The polymer molded article in the present invention is a film or sheet having a structure containing 50 mol% or more of a wholly aromatic polyamide or a chloro-substituted wholly aromatic polyamide whose composition is as described above and whose bonds are para-para bonds. , superior in mechanical properties, heat resistance properties, etc., compared to those bonded at the meta position. Examples of monomers constituting a base material mainly composed of a wholly aromatic polyamide or a chlorine-substituted wholly aromatic polyamide having this structure include terephthalic acid chloride, 2 -Chlorterephthalic acid chloride, 2,
5-dichloroterephthalic acid chloride, 2,6-dichloroterephthalic acid chloride, etc. and p-phenylene diamine, 2-chloro p-phenylene diamine,
2,5-dichloro-p-phenylenediamine,
Examples include 2,6-dichloro-p-phenylenediamine. It is essential that the basic structural unit represented by the above general formula accounts for 50 mol% or more of the base polymer used in the present invention. It is more desirable that the basic structure is an aromatic polyamide, and more preferably that it has a chlorine substituent. When the basic structural unit content is less than 50 mol%, the adhesion of the ferromagnetic layer decreases, and at the same time, the original characteristics as a supporting substrate of a magnetic recording medium, the original characteristics as a supporting substrate of a magnetic recording medium, etc. The physical properties and moisture absorption dimensional stability deteriorate, and the present invention is not satisfied. The composition of less than 50 mol% is not particularly limited as long as it is a wholly aromatic polyamide unit, but the following structural units can be cited as representative examples. That is, Here, X is -CH3 , -NO2, or a halogen other than Cl, and p and q are integers from 0 to 3, and cannot be 0 at the same time. moreover, Here, Y is absent, -O-, -SO 2 -, -S-,

【式】−CH2−、[Formula] −CH 2 −,

【式】【formula】

【式】から選ばれ、 Sは0〜3の整数である。これらの全芳香族ポリ
アミドまたはクロル置換全芳香族ポリアミドは工
業的に利用可能な融点をもたない(ポリマの分解
温度が理論上の溶融温度より低い、あるいは両者
が非常に接近している)ため、溶融成形すること
ができず、溶液製膜によつてフイルム化され、得
られたフイルムは耐熱性に優れており、蒸着等の
後加工の際に発生する熱に対して十分安定であ
る。また、本発明の高分子成形物は、形状が、フ
イルムまたはシート状で厚さは1ミクロン以上1
ミリメートル以下、好ましくは3ミクロン以上、
500ミクロン以下である。この高分子成形物は200
℃、10%の熱収縮率が実質的に無荷重の条件下で
0%以上、10%以下、好ましくは0%以上2%以
下であることが望ましい。さらに磁気記録媒体は
強磁性層が金属層のため実質的にほとんど伸度を
持たないため基材が外力によつて変形することは
不都合である。またこの分野は従来にない高密度
記録を目標にしているため、例えばテープ走行中
のテンシヨンなどによるテープ本体の変形には厳
格である。従つて本発明を構成する高分子成形物
は、少なくとも一方向にその引張り弾性率は500
Kg/mm2以上である必要があり、好ましくは5000
Kg/mm2以下である。これらの基板の特性は磁気媒
体を構成した状態におけるものであり、強磁性層
を適当な手法で除去することによつて測定するこ
とができるが、磁性層の厚さが薄く、その影響は
無視できるほど小さいので磁気記録媒体全体の特
性と考えて差支えない。 このような基材は次のようにして製造される。
すなわちポリマーはN−メチルピロリドン、ジメ
チルアセトアミド、γ−ブチロラクトンなどの有
機極性溶媒中で低温溶液重合したり、水系媒体を
使用する界面重合などによつて合成される。ポリ
マ溶液は単量体として酸でクロリドとジアミンを
使用すると塩化水素が副生するためこれを中和す
べく水酸化カルシウムなどの無機の中和剤または
エチレンオキサイドなどの有機の中和剤を添加す
る。このポリマ溶液はそのまま基材すなわちフイ
ルムを成形する製膜原液にしてもよく、またポリ
マを一度単離してから上記の溶媒に再溶解して製
膜原液を調製してもよい。製膜原液には溶解助剤
として無機塩例えば塩化カルシウム、塩化マグネ
シウムなどを添加する場合もあるが、添加量、種
類などは基本構成単位の量や共重合単位の種類な
どによつて異なる。 実用的な強度をもつフイルムを得るためにはポ
リマの固有粘度は0.5以上のものが必要であり、
その時の製膜原液中のポリマ濃度は2〜40wt%
程度が好ましい。ここでポリマの固有粘度はポリ
マ0.5gを臭化リチウム2.5wt%を含むN−メチル
ピロリドンで100mlの溶液として30℃で測定して
代表する。 上記のように調製された製膜原液はいわゆる溶
液製膜法によりフイルム化が行なわれる。製膜原
液を口金からドラム、またはエンドレスのベルト
上に流延押出しして薄膜を形成し、溶媒または溶
媒と無機塩を乾式、湿式、乾湿式などのプロセス
で除去した後、熱固化して最終フイルムを得るも
のであるが、このプロセスならびに製造条件はポ
リマの特性ならびに目的とするフイルムの物性な
どから決定されるべきものである。例えばプロセ
スの適当な段階で同時または逐次で面倍率1.0〜
9.0の延伸をするとフイルムの機械特性を向上す
ることができるのみならずフイルムの平面性、厚
みむらを均一なものとすることに大きく寄与す
る。また熱固定または一般的にフイルムの高温で
の寸法安定性に好ましい熱処理温度が高すぎると
ポリマの劣化や配向の緩和を招き逆に最終フイル
ムの機械的、熱的特性を悪化させるので注意が必
要である。 本発明の強磁性層とは、いわゆる薄膜型磁性層
を指し、金属または金属化合物からなる強磁性層
で、具体的には、Ni、Co、Cr、Fe、γ−Fe2O3
などの単体または合金を主成分とし、乾式法で形
成された層である。また、この強磁性層は、厚さ
が0.01〜1μ、好ましくは0.01〜0.5μ、より好まし
くは0.05〜0.20μであるのが望ましい。 強磁性層を形成する方法は、真空中で金属が合
金を加熱蒸発させて基板上に付着させる蒸着法、
さらに高真空中で放電によつて活性化されたイオ
ン化したアルゴンなどによりターゲツトである金
属または金属化合物の分子を叩き出して基板上に
付着させるスパツタリング法、その他イオンプレ
ーテイング法など周知の乾式方法を用いて形成す
ることができる。 なお、強磁性層の形成において、単体元素で最
も磁気特性もよく、かつ付着力も良好な金属はコ
バルトで、これにニツケルを少量加えて耐蝕性を
改善したり、クロームを加えて垂直方向に磁化さ
れやすい膜を作ることができる。蒸着方法は電子
ビーム加熱により強磁性体の蒸気流を発生させ冷
却ドラムなどに接触したフイルム上に厚み0.01〜
0.5μ、好ましくは0.05〜0.20μの制御された薄膜を
形成させるのが望ましい。ここで真空度は10-7
ら10-2mmHgが一般的であり、蒸着雰囲気は磁気
特性との関連で外部より酸素、窒素、アルゴンな
どのガスを積極的に導入してもよい。 本発明において蒸着を行なう前処理としてアル
ゴンや酸素の雰囲気、例えば真空度10-2〜数mm
Hg下でグロー放電処理をすることは好ましいこ
とであり、未処理の場合に比較して付着力に明確
な有意差が認められる。 また、本発明の磁気記録媒体は、特定の基本構
成単位を50モル%以上含む高分子成形物を基材と
しているため、高温における熱安定性がよく、蒸
着時に発生する熱に耐えることができ、したがつ
て、蒸着時の数々の制約、例えば基材を80℃以下
に冷却する手段の導入や、また基材の熱変形を軽
減させる条件、すなわち磁気特性や耐久性を犠牲
にする条件をとらなくてもよいだけでなく、さら
に蒸着時や蒸着後の基材に熱処理を付与すること
ができ、その処理により著しく付着力を向上させ
ることもできる。これは金属膜の凝集力が増大
し、基材との界面の分子的ななじみを強化するた
めと考えられる。なお、この処理温度は100℃以
上400℃、好ましくは120℃以上250℃で強磁性層
の特性が劣化しない範囲が望ましい。また熱処理
によつて単に付着力向上だけでなく薄膜の化学特
性や結晶構造、結晶形態が変わり磁気記録特性を
改良する場合など本法の効果はさらに高められ
る。 このように本発明の磁気記録媒体は従来の塗布
型磁気記録媒体がポリエステルフイルムおよび既
存の耐熱フイルム(例えばデユポン社の“カプト
ン”)をベースとする薄膜磁気記録媒体に比べ優
れた性能を有する。すなわち高い付着力、高温に
おける寸法安定性、外力に対する寸法安定性、さ
らには使用される環境下での寸法安定性など総合
的な特性に優れた高性能高記録密度の磁気記録媒
体である。 本発明の具体的な用途としてはビデオテープ、
オーデイオテープ、さらに各種のフロツピーデイ
スクに好適な材料を提供するものである。また電
子カメラやビデオデイスクなどあらゆる種類の磁
気記録材料の分野に本発明を応用することが可能
である。また磁気記録方式は水平磁化、垂直磁化
を問わない。 なお本発明の磁性層の上に保護層を設けたり、
フイルム基板の裏面に走行性や帯電防止性その他
の目的でバツクコート層を設けることは磁気記録
材料全体の性能を向上させるため好ましい場合も
多い。 本発明の磁気記録媒体ならびに基材としてのフ
イルムの評価は次の基準により判定した。 (1) 固有粘度 次の式によつて算出した。 ηinh=ln(ηrel)/C ここでηrelは25℃で測定した相対粘度、Cは
0.5grのポリマを100mlのN−メチルピロリドン
と2.5grの臭化リチウムの溶液に溶かした時の
値を用いた。 (2) 強伸度、引張弾性率 20℃、75%RHの下に“テンシロン”を用い
てJIS L−1073に従つて測定した。 (3) 熱収縮率 約25cmのフイルムを巾5mmで切り出し20cmの
間隔に印をつけ、所定の温度のオーブン中に吊
り下げ下端に5grの荷重を付けた。10分後にこ
のサンプルを取り出し印の間の距離を求め、熱
収縮率を計算した。 (4) 湿度膨脹係数 巾5mm、長さ20cmに切り出したテープ状サン
プルを20℃、70%RHに24時間放置した後、恒
温恒湿槽の条件を90%RHに変え、テープ長さ
を連続的に測定し、平衡に達した後の値から湿
度膨脹係数を計算した。 (5) 付着力 フイルム基板と金属薄膜の付着力のテストは
種々の方法を検討したが、主としてビデオ装置
による実機テストが再現性のよい結果が得られ
た。実機としては市販の“ベータマツクス”を
使用しサンプルを1m〜10mの長さのテープに
切り出し、これを繰り返し送行させてその薄膜
のダメージを受けていく様子を観察した。また
スチルの状態で長時間放置して同様の観察を行
なつた。 次に実施例に基づいて本発明の実施態様を説明
する。 実施例 1 乾燥したNメチルピロリドンを200の撹拌槽
中に100入れ、これに塩化リチウム8Kg、2−
クロルpフエニレンジアミン2.42Kg、4,4′−ジ
アミノジフエニルエーテル0.60Kgを溶解させ0℃
に保ち、全体をゆつくり撹拌した。撹拌を続けな
がら約30分間にわたり粒状化したテレフタル酸ク
ロライド4.07Kgを添加した。1時間そのまま撹拌
を続け粘稠なポリマ溶液を得た。大型ミキサー中
に大量の水を入れ、ポリマ溶液をこれに添加し再
沈させ繊維状の固形ポリマを得た。これを洗浄、
乾燥した後、ポリマ2Kg、臭化リチウム1Kg、N
メチルピロリドン40を混合し室温にて均一な溶
液を調製した。このポリマの固有粘度では4.57で
あつた。この液を表面研磨されたステンレスのド
ラム上へ均一に口金から流延し120℃の雰囲気で
約20分間加熱した。このフイルムをドラムから剥
離し、連続的に水槽中へ約10分間浸漬した。この
フイルムをテンターで定長下に300℃、約5分間
加熱し厚さ16μの透明な表面平滑なフイルムを得
た。 このフイルムは強度40Kg/mm2、引張り弾性率
1500Kg/mm2を示し、250℃での熱収縮率がわずか
0.3%という極めて高強力、耐熱フイルムである
ことが判明した。また室温付近での温度膨脹係数
が4×10-6mm/mm/℃、湿度膨脹係数が5×10-6
mm/mm/RH%と環境安定性にも優れていること
がわかつた。 このフイルムを真空槽内に装填し、10-2トール
のArガス雰囲気下でイオンボンバード処理を行
なつた。次いで、真空槽を10-6トール台まで真空
排気し、フイルムを走行させながら、電子ビーム
蒸着により、Co−Ni合金(Co75重量%、Ni25重
量%)を、入射角70゜以上となる斜め蒸着法で
0.15μの膜厚になるように蒸着して、強磁性金属
薄層を有する磁気テープを作製した。得られた膜
の磁気特性は、長手方向の保磁力が720Oe、幅方
向の保磁力が480Oe、角型比が0.92であり、長手
方向に配向した磁気テープとしてオーデイオテー
プ、ビデオテープに適した性能を有している。 この磁気テープを市販のホームビデオ「ベータ
マツクス」にかけ、100回走行テストやスチルテ
ストを行なつた結果、磁性層の付着力が極めてす
ぐれており、磁性層の脱落やテープの変形がほと
んどなく目立つたドロツプアウトの増加がないこ
とを確認した。 比較実施例 1 実施例1と同様な方法でポリエチレンテレフタ
レートフイルム(東レ製“ルミラー”16μ)とポ
リイミドフイルム(米国デユポン社製“カプト
ン”25μ)をベースとして磁気テープを作製し
た。 ポリエチレンテレフタレートの場合はイオンボ
ンバード処理や蒸着処理時に頻繁に熱による孔あ
き現象があり、長いテープを作製するのが不可能
であつた。またこれを「ベータマツクス」で走行
させた結果、多数回走行やスチル走行によつて磁
性層の部分的な破壊、脱落などが生じポリエチレ
ンテレフタレートなど磁性層との付着力が不十分
であることが確認された。 また「カプトン」の場合は作製時の熱負けはな
かつたが表面平滑性が貧しいためか安定した磁気
記録特性を有するテープを得ることができなかつ
た。またそのテープの腰の強さや湿度に対する寸
法安定性が悪い(湿度膨脹係数32×10-6mm/mm/
RH%)ことにより良好なテープ特性を得ること
はできなかつた。 実施例 2 実施例1で得られた厚さ16μのフイルム上にマ
グネトロン型RFスパツタ装置を用いて、Co−Cr
合金により成る磁性薄膜を形成した。 まず、真空槽内にフイルムを装填し、10-6トー
ルまで排気したのち、Arガスを導入して2×
10-2トールの圧力に保つ。次いで、直径150mmの
Co−Cr合金ターゲツト(Co81重量%、Cr19重量
%)に13.56MHzの高周波電圧を印加し、200W
の投入電力で30分間スパツタし、厚さ0.5μの強性
薄報を得た。このCo−Cr膜の膜面に垂直および
平行方向の保磁力は、それぞれ1100Oeおよび
600Oeであつた。また、この磁性薄膜は、膜面に
垂直方向の残留磁化が、膜面に平行方向の残留磁
化より大きく、垂直方向に容易磁化軸を有してお
り、垂直記録媒体として適した特性を持つてい
る。 このテープも市販のビデオ装置で耐久性のテス
トをした結果、ベースフイルムと磁性層の付着力
が十分に優れていることがわかつた。 実施例 3 実施例1で得られた16μのフイルム上にFe3O4
焼結体をターゲツトとして、マグネトロン型RF
スパツタ装置を用いて、酸化鉄薄膜を形成した。 まず、真空装置内にフイルムを装填し、10-6
ールまで排気したのち、酸素ガスを6体積%含む
Arガスを導入して、圧力を5×10-3トールに維
持する。次いで、ターゲツトに13.56MHzの高周
波電圧を印加し、200Wの投入電力にて15分間ス
パツタして、厚さ0.2μのFe3O4膜を形成した。続
いて、このフイルムを、大気中で260℃、60分間
加熱酸化し、γ−Fe2O3膜に変換した。得られた
γ−Fe2O3膜は、保磁力が350Oe、残留磁束密度
が1500G、角型比が0.81の磁気特性を示した。 高温処理によつても本テープはほとんど変形が
認められず、また実施例1、2と同様に磁性層の
耐久性も十分実用的であることが確認された。 実施例 4 実施例1と同様に乾燥したN,N′ジメチルア
セトアミド100中に塩化リチウム10Kg、2−ク
ロルp−フエニレンジアミン2.00Kg、4,4びジ
アミノジフエニルメタン1.19Kgを溶解させ0℃に
保つた。次いでテレフタル酸クロライド4.08Kgを
添加し実施例1と同様に固形ポリマを得た。この
ポリマの固有粘度は2.89であつた。ポリマ2Kg、
塩化カルシウム1Kg、N−メチルピロリドン25
を混合し実施例1と同様に厚さ16μの透明で表面
平滑なフイルムを得た。 このフイルムは強度32Kg/mm2、引張り弾性率
950Kg/mm2を示し、250℃での熱収縮率は1.2%で
あり高強力、耐熱フイルムであることがわかつ
た。また温度膨脹係数は6×10-6mm/mm/℃、湿
度膨脹係数は11×10-6mm/mm/RH%であつた。 実施例1から3に示したと同様に本実施例のベ
ースフイルムより磁気テープを作製したが実施例
1のフイルムよりは多少劣るものの、十分に実用
的な性能を示すことを確認した。 比較実施例 2 前例と同様に乾燥したN,N′ジメチルアセト
アミド100中に2−クロル−p−フエニレンジ
アミン1.14Kg、4,4′ジアミノジフエニルメタン
2.38Kgを溶解させ0℃に保つた。次いでテレフタ
ル酸クロライド4.07Kgを添加し実施例1と同様に
固有粘度2.52の固形ポリマを得た。ポリマ2Kg、
N−メチルピロリドン25、塩化カルシウム0.5
Kgを混合し前例と同様のプロセスで厚さ15μの表
面の平滑なフイルムを得た。 このフイルムは吸湿率が6.8%と高く、湿度膨
脹係数20×10-6mm/mm/RH%であり磁気テープ
のベースフイルムとして適していなかつた。また
耐熱性も乏しく200℃で約5.3%の熱収縮を示し蒸
着中に熱負けによるトラブルが多発した。また得
られた磁気テープの耐久性も多数回走行テストの
結果ポリエチレンテレフタレートベースの場合と
同様の磁性層の脱落などが多く発生した。
[Formula], S is an integer from 0 to 3. These wholly aromatic polyamides or chloro-substituted wholly aromatic polyamides do not have industrially usable melting points (the decomposition temperature of the polymer is lower than the theoretical melting temperature, or the two are very close to each other). , cannot be melt-molded, and is made into a film by solution casting, and the resulting film has excellent heat resistance and is sufficiently stable against heat generated during post-processing such as vapor deposition. Further, the polymer molded article of the present invention has a shape of a film or a sheet and a thickness of 1 micron or more.
millimeter or less, preferably 3 microns or more,
Less than 500 microns. This polymer molding has 200
It is desirable that the heat shrinkage rate at 10% at 100° C. is 0% or more and 10% or less, preferably 0% or more and 2% or less under substantially no-load conditions. Furthermore, since the ferromagnetic layer of the magnetic recording medium is a metal layer, it has virtually no elongation, so it is inconvenient that the base material deforms due to external force. Furthermore, since this field aims at unprecedented high-density recording, it is difficult to deform the tape body due to, for example, tension while the tape is running. Therefore, the polymer molded article constituting the present invention has a tensile modulus of 500 in at least one direction.
Kg/mm 2 or more, preferably 5000
Kg/ mm2 or less. These characteristics of the substrate are in the state in which it is configured as a magnetic medium, and can be measured by removing the ferromagnetic layer using an appropriate method, but the thickness of the magnetic layer is so thin that its effects can be ignored. Since it is as small as possible, it can be considered to be a characteristic of the entire magnetic recording medium. Such a base material is manufactured as follows.
That is, the polymer is synthesized by low-temperature solution polymerization in an organic polar solvent such as N-methylpyrrolidone, dimethylacetamide, or γ-butyrolactone, or by interfacial polymerization using an aqueous medium. The polymer solution is an acid as a monomer, and when chloride and diamine are used, hydrogen chloride is produced as a by-product, so an inorganic neutralizing agent such as calcium hydroxide or an organic neutralizing agent such as ethylene oxide is added to neutralize this. do. This polymer solution may be used as it is as a film-forming stock solution for forming a base material, that is, a film, or the polymer may be isolated once and then redissolved in the above-mentioned solvent to prepare a film-forming stock solution. In some cases, inorganic salts such as calcium chloride, magnesium chloride, etc. are added to the film-forming stock solution as a solubilizing agent, but the amount and type of addition vary depending on the amount of basic structural units and the type of copolymerized units. In order to obtain a film with practical strength, the intrinsic viscosity of the polymer must be 0.5 or higher.
At that time, the polymer concentration in the film forming stock solution is 2 to 40 wt%.
degree is preferred. Here, the intrinsic viscosity of the polymer is represented by measuring 0.5 g of the polymer in 100 ml of N-methylpyrrolidone solution containing 2.5 wt% of lithium bromide at 30°C. The film-forming stock solution prepared as described above is formed into a film by a so-called solution film-forming method. A thin film is formed by casting and extruding the film-forming stock solution from a die onto a drum or an endless belt, and after removing the solvent or solvent and inorganic salt by dry, wet, dry-wet, etc. processes, it is thermally solidified to form the final film. The process and manufacturing conditions for obtaining a film should be determined based on the characteristics of the polymer and the desired physical properties of the film. For example, at an appropriate stage of the process, the area magnification is 1.0 or more simultaneously or sequentially.
Stretching by 9.0 not only improves the mechanical properties of the film, but also greatly contributes to making the film uniform in its flatness and thickness. Also, care must be taken as heat setting or generally preferred heat treatment temperatures for film dimensional stability at high temperatures are too high, as this may lead to polymer deterioration and relaxation of orientation, and conversely worsen the mechanical and thermal properties of the final film. It is. The ferromagnetic layer of the present invention refers to a so-called thin film type magnetic layer, and is a ferromagnetic layer made of metal or a metal compound, specifically, Ni, Co, Cr, Fe, γ-Fe 2 O 3
It is a layer formed by a dry method, consisting mainly of a single substance or an alloy of . Further, it is desirable that this ferromagnetic layer has a thickness of 0.01 to 1μ, preferably 0.01 to 0.5μ, more preferably 0.05 to 0.20μ. The method for forming the ferromagnetic layer is the vapor deposition method, in which the metal alloy is heated and evaporated in vacuum and deposited on the substrate.
Furthermore, well-known dry methods such as the sputtering method, in which molecules of the target metal or metal compound are driven out using ionized argon activated by electric discharge in a high vacuum, and adhered to the substrate, and other well-known dry methods such as the ion plating method are used. It can be formed using In forming the ferromagnetic layer, cobalt is the single element with the best magnetic properties and good adhesion, and a small amount of nickel is added to improve the corrosion resistance, and chromium is added to improve the corrosion resistance in the vertical direction. It is possible to create a film that is easily magnetized. The vapor deposition method uses electron beam heating to generate a vapor flow of ferromagnetic material, and deposits the film to a thickness of 0.01~
It is desirable to form a controlled thin film of 0.5μ, preferably 0.05-0.20μ. Here, the degree of vacuum is generally 10 -7 to 10 -2 mmHg, and a gas such as oxygen, nitrogen, or argon may be actively introduced from the outside into the deposition atmosphere in relation to magnetic properties. In the present invention, as a pretreatment for vapor deposition, an atmosphere of argon or oxygen, for example, a vacuum degree of 10 -2 to several mm is used.
It is preferable to perform glow discharge treatment under Hg, and a clear significant difference in adhesion is observed compared to the case without treatment. In addition, since the magnetic recording medium of the present invention is based on a polymer molded product containing 50 mol% or more of a specific basic structural unit, it has good thermal stability at high temperatures and can withstand the heat generated during vapor deposition. Therefore, there are a number of constraints during vapor deposition, such as the introduction of a means to cool the substrate to below 80°C, and conditions that reduce thermal deformation of the substrate, which sacrifices magnetic properties and durability. Not only does it not have to be removed, but the base material can be further heat-treated during or after vapor deposition, and the adhesion can be significantly improved by this treatment. This is considered to be because the cohesive force of the metal film increases and the molecular conformity of the interface with the base material is strengthened. Note that this treatment temperature is desirably within a range of 100° C. or higher and 400° C., preferably 120° C. or higher and 250° C., so that the characteristics of the ferromagnetic layer do not deteriorate. Furthermore, the effects of this method are further enhanced when heat treatment not only improves adhesion but also changes the chemical properties, crystal structure, and crystal morphology of the thin film and improves magnetic recording characteristics. As described above, the magnetic recording medium of the present invention has superior performance compared to conventional coating-type magnetic recording media, which are thin film magnetic recording media based on polyester films and existing heat-resistant films (for example, DuPont's "Kapton"). In other words, it is a high-performance, high-density magnetic recording medium that has excellent comprehensive properties such as high adhesion, dimensional stability at high temperatures, dimensional stability against external forces, and dimensional stability under the environment in which it is used. Specific uses of the present invention include video tape,
It provides a material suitable for audio tapes and various types of floppy disks. Furthermore, the present invention can be applied to the field of all kinds of magnetic recording materials such as electronic cameras and video discs. Further, the magnetic recording method does not matter whether horizontal magnetization or perpendicular magnetization is used. Note that a protective layer may be provided on the magnetic layer of the present invention,
It is often preferable to provide a back coat layer on the back surface of the film substrate for running properties, antistatic properties, and other purposes since this improves the performance of the magnetic recording material as a whole. The evaluation of the magnetic recording medium of the present invention and the film as a base material was determined based on the following criteria. (1) Intrinsic viscosity Calculated using the following formula. ηinh=ln(ηrel)/C where ηrel is the relative viscosity measured at 25℃, and C is
The value obtained when 0.5 gr of polymer was dissolved in a solution of 100 ml of N-methylpyrrolidone and 2.5 gr of lithium bromide was used. (2) Strength and elongation, tensile modulus Measured according to JIS L-1073 at 20°C and 75% RH using "Tensilon". (3) Heat shrinkage rate A film of approximately 25 cm in width was cut out to a width of 5 mm, marks were made at 20 cm intervals, and the film was hung in an oven at a predetermined temperature, with a load of 5 gr applied to the lower end. After 10 minutes, the sample was taken out, the distance between the marks was determined, and the heat shrinkage rate was calculated. (4) Humidity expansion coefficient A tape-shaped sample cut out to a width of 5 mm and a length of 20 cm was left at 20°C and 70% RH for 24 hours, then the conditions of the constant temperature and humidity chamber were changed to 90% RH, and the tape length was continuously The humidity expansion coefficient was calculated from the value after equilibrium was reached. (5) Adhesion Although various methods were considered to test the adhesion between the film substrate and the metal thin film, results with good reproducibility were mainly obtained using an actual test using a video device. For the actual machine, we used a commercially available "Betamax" to cut out samples into tapes 1 m to 10 m long, and then repeatedly fed the tape to observe how the thin film was damaged. Similar observations were also made after leaving the sample in a still state for a long time. Next, embodiments of the present invention will be described based on Examples. Example 1 100 ml of dry N-methylpyrrolidone was placed in a 200 ml stirring tank, and 8 kg of lithium chloride, 2-
Dissolve 2.42Kg of chlor p-phenylenediamine and 0.60Kg of 4,4'-diaminodiphenyl ether at 0℃.
The mixture was kept at a constant temperature and the whole was stirred gently. 4.07 Kg of granulated terephthalic acid chloride was added over approximately 30 minutes with continued stirring. Stirring was continued for 1 hour to obtain a viscous polymer solution. A large amount of water was placed in a large mixer, and the polymer solution was added thereto and reprecipitated to obtain a fibrous solid polymer. Wash this,
After drying, 2 kg of polymer, 1 kg of lithium bromide, N
A homogeneous solution was prepared by mixing 40 ml of methylpyrrolidone at room temperature. The intrinsic viscosity of this polymer was 4.57. This liquid was uniformly cast from a nozzle onto a stainless steel drum with a polished surface and heated in an atmosphere of 120°C for about 20 minutes. This film was peeled off from the drum and continuously immersed in a water bath for about 10 minutes. This film was heated in a tenter at 300° C. for about 5 minutes at a constant length to obtain a transparent film with a thickness of 16 μm and a smooth surface. This film has a strength of 40Kg/mm 2 and a tensile modulus
Shows 1500Kg/mm 2 and has minimal heat shrinkage at 250℃
It turned out to be a heat-resistant film with an extremely high strength of 0.3%. In addition, the temperature expansion coefficient near room temperature is 4 × 10 -6 mm/mm/℃, and the humidity expansion coefficient is 5 × 10 -6
It was also found that it has excellent environmental stability (mm/mm/RH%). This film was loaded into a vacuum chamber and subjected to ion bombardment in an Ar gas atmosphere of 10 -2 Torr. Next, the vacuum chamber was evacuated to a level of 10 -6 Torr, and while the film was running, a Co-Ni alloy (75% by weight of Co, 25% by weight of Ni) was deposited obliquely by electron beam evaporation at an incident angle of 70° or more. by law
A magnetic tape having a thin ferromagnetic metal layer was produced by vapor deposition to a film thickness of 0.15μ. The magnetic properties of the obtained film include a coercive force in the longitudinal direction of 720 Oe, a coercive force in the width direction of 480 Oe, and a squareness ratio of 0.92, making it suitable for audio and video tapes as a longitudinally oriented magnetic tape. have. This magnetic tape was run on a commercially available home video system, Betamax, and the results showed that the adhesion of the magnetic layer was extremely good, and there was hardly any fall-off of the magnetic layer or deformation of the tape, which was noticeable. It was confirmed that there was no increase in dropout. Comparative Example 1 A magnetic tape was produced in the same manner as in Example 1 using a polyethylene terephthalate film ("Lumirror" 16μ, manufactured by Toray Industries, Ltd.) and a polyimide film ("Kapton", 25μ, manufactured by DuPont, USA) as a base. In the case of polyethylene terephthalate, holes frequently occur due to heat during ion bombardment treatment or vapor deposition treatment, making it impossible to produce long tapes. In addition, as a result of running this with "Betamax", the magnetic layer was partially destroyed or fell off due to multiple runs or still running, resulting in insufficient adhesion with the magnetic layer such as polyethylene terephthalate. confirmed. In the case of ``Kapton,'' there was no heat loss during production, but it was not possible to obtain a tape with stable magnetic recording properties, probably due to poor surface smoothness. In addition, the tape's stiffness and dimensional stability against humidity are poor (humidity expansion coefficient: 32 x 10 -6 mm/mm/
RH%), it was not possible to obtain good tape properties. Example 2 Co-Cr was deposited on the 16μ thick film obtained in Example 1 using a magnetron type RF sputtering device.
A magnetic thin film made of the alloy was formed. First, a film is loaded into a vacuum chamber, the vacuum chamber is evacuated to 10 -6 Torr, and then Ar gas is introduced and 2×
Maintain pressure at 10 -2 Torr. Then, with a diameter of 150mm
A high frequency voltage of 13.56MHz was applied to a Co-Cr alloy target (81% by weight of Co, 19% by weight of Cr), and 200W
Sputtering was carried out for 30 minutes with the input power of 0.5 μm, and a strong thin film with a thickness of 0.5 μm was obtained. The coercive forces of this Co-Cr film in the directions perpendicular and parallel to the film surface are 1100 Oe and 1100 Oe, respectively.
It was 600 Oe. In addition, this magnetic thin film has characteristics that make it suitable as a perpendicular recording medium, as the residual magnetization in the direction perpendicular to the film surface is larger than the residual magnetization in the direction parallel to the film surface, and it has an axis of easy magnetization in the perpendicular direction. There is. As a result of testing the durability of this tape using a commercially available video device, it was found that the adhesion between the base film and the magnetic layer was sufficiently excellent. Example 3 Fe 3 O 4 was deposited on the 16μ film obtained in Example 1.
Magnetron type RF targeting sintered bodies
An iron oxide thin film was formed using a sputtering device. First, the film is loaded into a vacuum device, which is evacuated to 10 -6 Torr, and then contains 6% by volume of oxygen gas.
Ar gas is introduced to maintain the pressure at 5×10 −3 Torr. Next, a high frequency voltage of 13.56 MHz was applied to the target, and sputtering was performed for 15 minutes at an input power of 200 W to form a Fe 3 O 4 film with a thickness of 0.2 μm. Subsequently, this film was heated and oxidized in the atmosphere at 260° C. for 60 minutes to convert it into a γ-Fe 2 O 3 film. The obtained γ-Fe 2 O 3 film exhibited magnetic properties with a coercive force of 350 Oe, a residual magnetic flux density of 1500 G, and a squareness ratio of 0.81. This tape showed almost no deformation even after high-temperature treatment, and as in Examples 1 and 2, it was confirmed that the magnetic layer had sufficient durability for practical use. Example 4 In the same manner as in Example 1, 10 kg of lithium chloride, 2.00 kg of 2-chlorop-phenylenediamine, and 1.19 kg of 4,4-diaminodiphenylmethane were dissolved in 100 ml of dried N,N' dimethylacetamide and heated at 0°C. I kept it. Next, 4.08 kg of terephthalic acid chloride was added to obtain a solid polymer in the same manner as in Example 1. The intrinsic viscosity of this polymer was 2.89. Polymer 2Kg,
Calcium chloride 1Kg, N-methylpyrrolidone 25
A transparent film with a thickness of 16 μm and a smooth surface was obtained in the same manner as in Example 1. This film has a strength of 32Kg/mm 2 and a tensile modulus
It showed a heat shrinkage rate of 950Kg/mm 2 and a heat shrinkage rate of 1.2% at 250°C, indicating that it is a high-strength, heat-resistant film. The temperature expansion coefficient was 6 x 10 -6 mm/mm/°C, and the humidity expansion coefficient was 11 x 10 -6 mm/mm/RH%. A magnetic tape was prepared from the base film of this example in the same manner as shown in Examples 1 to 3, and although it was somewhat inferior to the film of Example 1, it was confirmed that it exhibited sufficient practical performance. Comparative Example 2 1.14 kg of 2-chloro-p-phenylenediamine and 4,4' diaminodiphenylmethane in 100 kg of N,N' dimethylacetamide dried as in the previous example.
2.38Kg was dissolved and kept at 0°C. Next, 4.07 kg of terephthalic acid chloride was added to obtain a solid polymer having an intrinsic viscosity of 2.52 in the same manner as in Example 1. Polymer 2Kg,
N-methylpyrrolidone 25, calcium chloride 0.5
Kg was mixed and a smooth film with a thickness of 15μ was obtained using the same process as in the previous example. This film had a high moisture absorption rate of 6.8% and a humidity expansion coefficient of 20×10 -6 mm/mm/RH%, making it unsuitable as a base film for magnetic tape. It also had poor heat resistance, exhibiting a heat shrinkage of approximately 5.3% at 200°C, resulting in frequent troubles due to heat loss during vapor deposition. Furthermore, the durability of the resulting magnetic tape was tested many times, and as a result, the magnetic layer often fell off, similar to the case with polyethylene terephthalate-based tapes.

Claims (1)

【特許請求の範囲】 1 高分子成形物に金属または金属化合物からな
る強磁性層を少なくとも一層以上設けた磁気記録
媒体において、面内の少なくとも一方向の引張り
弾性率が500Kg/mm2以上であり、該高分子成形物
が一般式 (ここでm、nは0〜3の整数)で示される基本
構成単位を50モル%以上含む全芳香族ポリアミド
からなることを特徴とする磁気記録媒体。
[Claims] 1. A magnetic recording medium in which at least one ferromagnetic layer made of a metal or a metal compound is provided on a polymer molding, which has a tensile modulus of elasticity in at least one in-plane direction of 500 Kg/mm 2 or more. , the polymer molded product has the general formula 1. A magnetic recording medium comprising a wholly aromatic polyamide containing 50 mol% or more of basic structural units represented by (where m and n are integers of 0 to 3).
JP5189582A 1982-03-30 1982-03-30 Magnetic recording medium Granted JPS58168655A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP5189582A JPS58168655A (en) 1982-03-30 1982-03-30 Magnetic recording medium
DE8383301031T DE3379923D1 (en) 1982-03-30 1983-02-25 Magnetic recording medium
EP83301031A EP0090499B1 (en) 1982-03-30 1983-02-25 Magnetic recording medium
US06/685,965 US4645702A (en) 1982-03-30 1984-12-27 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5189582A JPS58168655A (en) 1982-03-30 1982-03-30 Magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS58168655A JPS58168655A (en) 1983-10-05
JPH0251463B2 true JPH0251463B2 (en) 1990-11-07

Family

ID=12899607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5189582A Granted JPS58168655A (en) 1982-03-30 1982-03-30 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS58168655A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59107424A (en) * 1982-12-08 1984-06-21 Fuji Photo Film Co Ltd Manufacture of magnetic recording medium
JPS6085419A (en) * 1983-10-14 1985-05-14 Matsushita Electric Ind Co Ltd Magnetic recording medium
JPS60111322A (en) * 1983-11-21 1985-06-17 Matsushita Electric Ind Co Ltd Thin metallic film type magnetic recording medium
JPS60151830A (en) * 1984-01-20 1985-08-09 Fuji Photo Film Co Ltd Magnetic recording medium
JPS62112218A (en) * 1985-11-11 1987-05-23 Asahi Chem Ind Co Ltd Magnetic tape
JPH07101500B2 (en) * 1986-02-28 1995-11-01 株式会社東芝 Perpendicular magnetic recording medium
JPH0668822B2 (en) * 1986-09-03 1994-08-31 旭化成工業株式会社 Perpendicular magnetic recording medium
JP2616711B2 (en) 1994-09-14 1997-06-04 東レ株式会社 Magnetic recording media

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5394397A (en) * 1977-01-21 1978-08-18 Upjohn Co Copoly amide
JPS5584417A (en) * 1978-12-20 1980-06-25 Asahi Chem Ind Co Ltd Copolyamide fiber
JPS5584323A (en) * 1978-12-20 1980-06-25 Asahi Chem Ind Co Ltd Copolyamide containing aromatic oligoamide unit and preparation thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5394397A (en) * 1977-01-21 1978-08-18 Upjohn Co Copoly amide
JPS5584417A (en) * 1978-12-20 1980-06-25 Asahi Chem Ind Co Ltd Copolyamide fiber
JPS5584323A (en) * 1978-12-20 1980-06-25 Asahi Chem Ind Co Ltd Copolyamide containing aromatic oligoamide unit and preparation thereof

Also Published As

Publication number Publication date
JPS58168655A (en) 1983-10-05

Similar Documents

Publication Publication Date Title
EP0090499B1 (en) Magnetic recording medium
JPS60127523A (en) Base film for magnetic recording medium in high density
JPH0251463B2 (en)
JP2615542B2 (en) Base film for high density recording media
JP3575190B2 (en) Aromatic polyamide film and magnetic recording medium
CA2227576A1 (en) A film made of an aromatic polyamide and/or aromatic polyimide, and a magnetic recording medium using it
JPH0576696B2 (en)
KR100561133B1 (en) Aromatic Polyamide Film and Magnetic Recording Media Made by Using the Same
US5645918A (en) Magnetic recording medium having an aromatic polyamide substrate
JPH0564594B2 (en)
JPH0812773A (en) Production of rough-surface polyimide film
JPH0971670A (en) Aromatic polyamide film or aromatic polyimide film
JPH09169860A (en) Aromatic polyamide film
JPH08169951A (en) Aromatic polyamide film and magnetic recording medium produced therefrom
JP3511643B2 (en) Base film for high density recording medium and method for producing the same
JP2643171B2 (en) Magnetic recording media
JPS61248218A (en) Vertical magnetic recording medium
JPS5945327A (en) Polyethylene terephthalate film for metallic thin film magnetic recording medium
JPH0687298B2 (en) Base film for high density recording medium
JP2001031779A (en) Aromatic polyamide film and magnetic recording medium
JP2844505B2 (en) Magnetic recording media
JPS6363124A (en) Perpendicular magnetic recording medium
JPH03119512A (en) Metal thin film type magnetic recording medium
JPS60129920A (en) Magnetic recording medium
JP2001009852A (en) Manufacture of film