JPS62277621A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPS62277621A
JPS62277621A JP12087986A JP12087986A JPS62277621A JP S62277621 A JPS62277621 A JP S62277621A JP 12087986 A JP12087986 A JP 12087986A JP 12087986 A JP12087986 A JP 12087986A JP S62277621 A JPS62277621 A JP S62277621A
Authority
JP
Japan
Prior art keywords
film
layer
magnetic
magnetic recording
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12087986A
Other languages
Japanese (ja)
Inventor
Hiroshi Matsuda
宏 松田
Yoshinori Tomita
佳紀 富田
Harunori Kawada
河田 春紀
Nobuyuki Saito
信之 斉藤
Kunihiro Sakai
酒井 邦裕
Takeshi Eguchi
健 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP12087986A priority Critical patent/JPS62277621A/en
Publication of JPS62277621A publication Critical patent/JPS62277621A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To improve recording and reproducing characteristics, corrosion resistance and durability by using a protective layer which contains mixed monomolecular film of a fluorine-contg. org. compd. and org. compd. without contg. fluorine or the cumulative film thereof. CONSTITUTION:A magnetic material layer and the org. protective layer are provided on a substrate. The mixed monomolecular film of the fluorine-contg. org. compd. and the org. compd. without contg. fluorine or the cumulative film thereof is incorporated into the protective layer. Fe, alloy essentially consisting of Co-Ni or the oxide, nitride thereof, etc., are usable for the material of the magnetic material layer 2; the Co-Cr alloy which has a high-density recording characteristic and excellent corrosion resistance or the ferromagnetic film essentially consisting of the Co-Cr alloy is more preferable. The high formation temp. of the Co-Cr alloy film is preferable to improve the coercive force of the Co-Cr alloy film which is the magnetic layer. A polyamide, polyimide resin and more particularly arom. polyimide resin having heat resistance are preferred for the high-polymer substrate. The recording medium having the excellent runnability, durability and environmental resistance is thus obtd.

Description

【発明の詳細な説明】 3、発明の詳細な説明 (産業上の利用分野〕 本発明は耐久性、耐環境性に優れた高密度記録用薄膜堆
積型磁気記録媒体に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a thin film deposition type magnetic recording medium for high-density recording that has excellent durability and environmental resistance.

〔従来の技術〕[Conventional technology]

従来より1通常はポリエステル等のプラスチックフィル
ムからなる非磁性支持体の上に、強磁性微粒子を高分子
結合剤中に均一に分散せしめた磁性層を有する塗布型磁
気記録媒体が広く用いられ、また近年は金属等の薄膜を
基若ψスパッタリング、等の方法で非磁性支持体上に形
成せしめた、強磁性薄膜型磁気記録媒体の開発が進めら
れており、一部実用化しているものもある。
Conventionally, coated magnetic recording media have been widely used, which have a magnetic layer in which fine ferromagnetic particles are uniformly dispersed in a polymeric binder on a non-magnetic support, usually made of a plastic film such as polyester. In recent years, the development of ferromagnetic thin-film magnetic recording media in which a thin film of metal or the like is formed on a non-magnetic support using methods such as base sputtering has been progressing, and some of them have been put into practical use. .

磁気記録媒体において、その性能を左右する錬 要素として、磁性層の磁気特性、耐鰭性、耐彦耗性、摩
擦係数、形状(カール、変形)が重要である。前記性能
要素は磁性層の材料や製法。
In a magnetic recording medium, the magnetic properties, fin resistance, wear resistance, friction coefficient, and shape (curl, deformation) of the magnetic layer are important factors that influence its performance. The performance factors mentioned above are the material and manufacturing method of the magnetic layer.

ベースフィルム、保護潤滑剤(あるいは層)に依存する
ものである。
It depends on the base film and protective lubricant (or layer).

磁性層材料については、磁束密度が大きく、薄型化可能
な強磁性薄膜型磁気記録媒体が従来の塗布型磁気記録媒
体より優れている。
Regarding magnetic layer materials, ferromagnetic thin film magnetic recording media, which have a high magnetic flux density and can be made thinner, are superior to conventional coated magnetic recording media.

性が実用上の問題である。すなわち、Co−Ni合金自
体が#蝕合金でなく、かつ特性向上の目的で斜め蒸着で
形成するために密度の小さいことがあり、酸化しやすい
状態となっている。Co−Ni合金膜では膜表面を酸化
処理する(特開昭53−85403号公報他号公報化物
、窒下物の保yI層を設ける(特開昭57−16713
4号公報他)、防錆剤を塗布する(特開昭57−152
518号公報他)等の#独力法が検討されているが、C
o−Ni膜の膜厚そのものが薄くかつ密度が低いため、
十分な耐蝕性が保証されない。
nature is a practical issue. That is, since the Co--Ni alloy itself is not a corrosion alloy and is formed by oblique vapor deposition for the purpose of improving properties, it may have a low density and is easily oxidized. In the case of a Co-Ni alloy film, the surface of the film is oxidized (Japanese Unexamined Patent Publication No. 53-85403 and other publications. A protective layer of compounds and nitrides is provided (Japanese Unexamined Patent Publication No. 57-16713).
4, etc.), applying a rust preventive agent (Japanese Patent Application Laid-Open No. 57-152)
518 Publication etc.) are being considered, but C
Because the o-Ni film itself is thin and has low density,
Sufficient corrosion resistance is not guaranteed.

又、脂肪酸金属塩の単分子膜から成る保護層をラングミ
ュア・プロジェット法で形成する提案(特開昭61−4
811.9号公報)もあり。
In addition, a proposal was made to form a protective layer consisting of a monomolecular film of a fatty acid metal salt by the Langmuir-Prodgett method (Japanese Patent Laid-Open No. 61-4
811.9) is also available.

係る提案に因り、耐候性、耐久性、−走行性の改善が得
られる。
With such a proposal, improvements in weather resistance, durability, and runnability can be obtained.

然し乍ら、高度の電磁変換特性を保とうとすれば、その
耐久性、走行性は十分であるとはいい難く、特に短波長
を用いた高密度磁気記録媒体の実用化に際して更なる改
善が望まれる。
However, in order to maintain high electromagnetic conversion characteristics, it cannot be said that the durability and runnability are sufficient, and further improvements are desired, especially when putting high-density magnetic recording media using short wavelengths into practical use.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

そこで本発明の目的は、優れた記録再生特性を有し、且
つ耐蝕性、耐久性においても実用的に十分な性能を有す
る磁気記録媒体を提供することにある。 。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a magnetic recording medium that has excellent recording and reproducing characteristics and has practically sufficient performance in terms of corrosion resistance and durability. .

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的は、以下の本発明によって達成される。 The above object is achieved by the present invention as follows.

すなわち本発明の斡中中構成は、基体上に硼素を驚まな
い有機化合物の混合単分子膜又はその累積膜を含むこと
保護層とを有する磁気記録雄体である。
That is, the structure of the present invention is a magnetic recording male body having a protective layer including a mixed monomolecular film of an organic compound that does not contain boron or a cumulative film thereof on a substrate.

〔作用〕[Effect]

第1図は本発明の磁気記録媒体の好適な態様を示す図で
、1は基体、2は磁性体層、3は中間層、4は有機保護
層である。
FIG. 1 is a diagram showing a preferred embodiment of the magnetic recording medium of the present invention, in which 1 is a substrate, 2 is a magnetic layer, 3 is an intermediate layer, and 4 is an organic protective layer.

本発明の磁気記録媒体の基体1としては。The substrate 1 of the magnetic recording medium of the present invention is as follows.

ガラス、アルミニウム、表面酸化処理アルミニウム等の
外に、高分子支持基材としてポリエステル、セルロース
、アクリル、ポリアミド、ポリイミド、ポリアミドイミ
ド、ポリオレフィン、ポリフロロオレフィン、ポリ塩化
ビニル、ポリ酢酸ビニル、塩化ビニル/酢酸ビニルコポ
リマー、ポリ塩化ビニリデン、ポリカーボネート、フェ
ノール樹脂、ポリエーテルケトンオン、ポリエーテルケ
トン、ポリアセタール。
In addition to glass, aluminum, surface oxidized aluminum, etc., polyester, cellulose, acrylic, polyamide, polyimide, polyamideimide, polyolefin, polyfluoroolefin, polyvinyl chloride, polyvinyl acetate, vinyl chloride/acetic acid are used as polymer support base materials. Vinyl copolymers, polyvinylidene chloride, polycarbonates, phenolic resins, polyetherketones, polyetherketones, polyacetals.

ポリフェニレンオキサイド、ポリフェニレンサルファイ
ド等が挙げられる。
Examples include polyphenylene oxide and polyphenylene sulfide.

磁性体層2の材料としては、Fe、Co−Niを主体と
する合金、あるいはその酸化物。
The material of the magnetic layer 2 is Fe, an alloy mainly composed of Co-Ni, or an oxide thereof.

窒化物等が使用可能であるが、高密度記°録特性前 に優れまた環数性にも優れるCo7Cr合金あるいはC
o−Cr合金を主成分とする強磁性膜が好ましい。
Nitride etc. can be used, but Co7Cr alloy or C
A ferromagnetic film containing an o-Cr alloy as a main component is preferred.

電磁変換特性の優れた磁気記録媒体を得るためには、保
持力の大きいことが望ましい。磁性層であるCo−Cr
合金膜の保持力向上のためにはCo−Cr合金膜の形成
温度が高いことが好ましく(100℃〜300℃)、高
分子基体としては耐熱性を有するポリアミド、ポリイミ
ド樹脂、特に芳香族ポリイミド樹脂が良い。
In order to obtain a magnetic recording medium with excellent electromagnetic conversion characteristics, it is desirable that the coercive force be large. Co-Cr magnetic layer
In order to improve the holding power of the alloy film, it is preferable that the formation temperature of the Co-Cr alloy film is high (100°C to 300°C), and the polymer base is a heat-resistant polyamide or polyimide resin, especially an aromatic polyimide resin. is good.

これらの高分子基体を用いたフロッピーディスク、磁気
テープ、では媒体のカールのないことが走行性、ヘッド
タッチの点から重要である。
In floppy disks and magnetic tapes using these polymeric substrates, it is important from the viewpoint of runnability and head touch that the medium be free from curl.

カールのない記録媒体を作成するためには、Co−Cr
合金膜との熱応力、成膜時に発生する応力を打ち消す様
に高分子基体の熱膨張の値を最適に選ぶ必要がある。
In order to create a curl-free recording medium, Co-Cr
It is necessary to optimally select the thermal expansion value of the polymer substrate so as to cancel out the thermal stress with the alloy film and the stress generated during film formation.

芳香族ポリイミド膜(フィルム)としてはジアミン成分
としてパラフェニレンジアミ/(PPD)単独で使用す
るか、或いはPPDとジアミノジフェニルエーテル(D
ADE)とを共に使用し、また、テトラカルボン酸成分
として、ビフェニルテトラカルボン酸二無水物(BPD
A)とピロメリット酸二無水物(PMDA)とを共に使
用して、共重合で得られた芳香族ポリアミック酸の溶液
から、製膜およびイミド化によって得られた芳香族ポリ
イミド膜(フィルム)が好ましくその厚みは4g、〜1
00gが記録媒体用として有用である。
As the aromatic polyimide membrane (film), paraphenylenediamine/(PPD) is used alone as the diamine component, or PPD and diaminodiphenyl ether (D
ADE), and biphenyltetracarboxylic dianhydride (BPD) as the tetracarboxylic acid component.
An aromatic polyimide membrane (film) obtained by film formation and imidization from a solution of aromatic polyamic acid obtained by copolymerization using A) and pyromellitic dianhydride (PMDA) together. Preferably the thickness is 4g, ~1
00g is useful for recording media.

このベースフィルムは、前述のようにPPD 。This base film is PPD as mentioned above.

BPDAおよびPMDAの3成分あるいはPPD、DA
DE、BPDAおよびPMDAの4成分から共重合で形
成されたものであるので、耐熱性、引張弾性に侵れてい
るばかりでなく。
Three components of BPDA and PMDA or PPD, DA
Since it is formed by copolymerization of four components: DE, BPDA, and PMDA, it not only has excellent heat resistance and tensile elasticity.

両成分を構成する各成分の使用量比率を色々と調整する
ことによって、得られた芳香族ポリイミド膜の熱膨張係
数を強磁性材料の熱膨張係数に大略一致するような値に
することができ、また、芳香族ポリイミド膜の引張弾性
定数を用途に応じて腰の強さ等の性能を好適にするよう
に変えることができる。
By variously adjusting the usage ratio of each component constituting both components, the coefficient of thermal expansion of the obtained aromatic polyimide film can be set to a value that roughly matches the coefficient of thermal expansion of the ferromagnetic material. Furthermore, the tensile elastic constant of the aromatic polyimide membrane can be changed to suit the performance such as stiffness depending on the application.

ベースフィルムを形成しているポリイミド膜は、その熱
膨張係数が約1.0XIO−5〜3.0×10−5 c
 m / c m / ”Cの範囲であり、引張弾性定
数が約300〜1200Kg/mrrf、特に325〜
700Kg/mm’の範囲であって、更に二次転移温度
が約300°C以上、特に310℃以上であることが好
ましく、さらに上述の性能に加えて、熱分解開始温度が
約400 ’O以上、特に450℃以上であって、約2
50℃の温度付近での連続使用に耐えうるちのであり、
また、引張試験唄おける引張強度が約20Kg/ m 
m″以上特に約25Kg/mrrf以上であり、しかも
破断点の伸び率が約30%以上、特に40%以上である
ものが、磁気記録媒体の製造の際に優れた耐熱性を示し
、高温での磁性層の形成が可能であると共に、カールの
発生を防止でき、さらに巻きムラ、走行性、およびヘッ
ドタッチの優れた磁気記録媒体となるので最適である。
The polyimide film forming the base film has a coefficient of thermal expansion of approximately 1.0XIO-5 to 3.0x10-5 c
m / cm m / "C, and the tensile elastic constant is about 300 to 1200 Kg/mrrf, especially 325 to
700 Kg/mm', preferably has a secondary transition temperature of about 300°C or higher, particularly 310°C or higher, and, in addition to the above-mentioned performance, has a thermal decomposition onset temperature of about 400'O or higher. , especially above 450°C, and about 2
It can withstand continuous use at temperatures around 50℃.
In addition, the tensile strength in a tensile test is approximately 20 kg/m.
m'' or more, especially about 25 Kg/mrrf or more, and whose elongation at break is about 30% or more, especially 40% or more, exhibits excellent heat resistance when manufacturing magnetic recording media, and can be used at high temperatures. This method is ideal because it allows the formation of a magnetic layer of 100%, prevents curling, and provides a magnetic recording medium with excellent winding unevenness, runnability, and head touch.

機械的及び熱的性質などを上述の様に磁気記録媒体にと
って好適にするためには、芳香族ポリアミック酸を生成
するために使用されているジアミン成分は、全ジアミン
成分に対して約40〜95モル%、特に45〜90モル
%範囲の使用量割合のPPDと、全ジアミン成分に対し
て約5〜60モル%、特に10〜55モル%の使用量割
合のDADEとの2成分からなることが好ましい、また
、芳香族ポリアミック酸を生成するためのテトラカルボ
ン酸成分は、全テトラカルボン酸成分に対して約10〜
90モル%、特に15〜85モル%の使用量割合のBP
DAと、全テトラカルボン酸成分に対して約10〜90
モル%、特に15〜85モル%の使用量割合のPMDA
とからなることが好ましいのである。
In order to make the mechanical and thermal properties suitable for the magnetic recording medium as described above, the diamine component used to produce the aromatic polyamic acid should be about 40 to 95% of the total diamine component. Consisting of two components: PPD in a usage proportion of mol%, especially in the range of 45 to 90 mol%, and DADE in a usage proportion of about 5 to 60 mol%, especially 10 to 55 mol%, based on the total diamine components. is preferable, and the tetracarboxylic acid component for producing the aromatic polyamic acid is preferably about 10 to 10% of the total tetracarboxylic acid component.
BP at a usage rate of 90 mol%, especially 15-85 mol%
DA and about 10 to 90 relative to the total tetracarboxylic acid component
PMDA in a usage proportion of mol %, especially 15 to 85 mol %
It is preferable that it consists of the following.

さらにこの様な構成成分より成るポリイミドフィルムは
、フィルム表面の凹凸を制御するために、必要に応じて
カーボンブラック、グラファイト、シリカ微粉末、マグ
ネシア微粉末、酸化チタン、炭酸カルシウム、その他の
充填剤を混線せしめることも可能で、この様なポリイミ
ドフィルムを本発明の基体に用いても良い。
Furthermore, polyimide films made of these components may contain carbon black, graphite, fine silica powder, fine magnesia powder, titanium oxide, calcium carbonate, and other fillers as necessary to control unevenness on the film surface. It is also possible to cross-wire, and such a polyimide film may be used as the substrate of the present invention.

しかし本発明磁気記録媒体の優れた高密度記録特性を生
かすためには、基体のJISBO601による表面粗さ
が最大0.05Bm以下(Rmaxが0.05g、m)
であることが望ましい。
However, in order to take advantage of the excellent high-density recording properties of the magnetic recording medium of the present invention, the surface roughness of the base according to JISBO601 must be at most 0.05 Bm (Rmax is 0.05 g, m).
It is desirable that

前述の芳香族ポリイミド膜の上にCo−Cr合金からな
る磁性層を形成するには1例えばスパッタリング法、電
子ビーム連続蒸着法などの公知の方法を挙げることがで
きるが、それらの方法で前記芳香、族ポリイミド膜の表
面に磁性層を形成する際、膜の温度(成膜温度)を約2
50℃にまですることができるので、優れた性能の磁性
層が容易に形成されうるのである。
To form a magnetic layer made of a Co-Cr alloy on the aromatic polyimide film described above, known methods such as sputtering and continuous electron beam evaporation can be used. When forming a magnetic layer on the surface of a group polyimide film, the temperature of the film (film formation temperature) is set to about 2
Since the temperature can be raised up to 50° C., a magnetic layer with excellent performance can be easily formed.

Co−Cr合金が磁気記録層として優れる点はまず膜面
に垂直に磁気異方性を有することにより垂直磁化膜とな
り、短波長記録で反磁界の影響を受けないことである。
The advantage of the Co--Cr alloy as a magnetic recording layer is that it has magnetic anisotropy perpendicular to the film surface, resulting in a perpendicularly magnetized film, and is not affected by demagnetizing fields during short wavelength recording.

すなわち磁性層を極端に薄くする必要がないため、高出
力を得るために十分な膜厚を持たすことができる。また
斜め蒸着法で形成しないために膜密度が高く、薄膜化に
よる磁束密度の減少が小さい、さらにCo−Cr合金膜
が磁気記録層として優れる点は極めて耐蝕性が良いこと
である。
In other words, since it is not necessary to make the magnetic layer extremely thin, it is possible to have a film thickness sufficient to obtain high output. Furthermore, since it is not formed by oblique evaporation, the film density is high, and the decrease in magnetic flux density due to thinning of the film is small.Furthermore, the Co--Cr alloy film is excellent as a magnetic recording layer in that it has extremely good corrosion resistance.

このCo−Cr合金からなる磁性体層2の厚みはO,1
gm〜2.0JLmの範囲が好ましく、基体lに直接形
成させる以外にも、磁性体層を形成するに先立ち、接着
性向上、磁気特性向上、その他の目的で必要に応じてコ
ロナ放電処理その他の前処理を施したり、Ai、Ti。
The thickness of the magnetic layer 2 made of this Co-Cr alloy is O,1
gm to 2.0 JLm, and in addition to directly forming the magnetic layer on the substrate 1, prior to forming the magnetic layer, corona discharge treatment or other treatment may be applied as necessary to improve adhesion, improve magnetic properties, or for other purposes. Pre-treatment, Ai, Ti.

Cr 、Ge 、S i 02 、、A!L203等の
非磁性膜、あるいはFe−Ni合金膜、またはCo−Z
r、Fe−p−(、Fe−Co−5i−B等の非晶質膜
で代表される高透磁率膜を介して設けてもかまわない。
Cr, Ge, S i 02,,A! Non-magnetic film such as L203, Fe-Ni alloy film, or Co-Z
r, Fe-p-(, Fe-Co-5i-B, etc.) may be provided via a high magnetic permeability film typified by an amorphous film such as Fe-Co-5i-B.

これらCo−Cr合金強磁性薄膜は、必要に応じて基体
lの両面に形成することもできる。
These Co--Cr alloy ferromagnetic thin films can also be formed on both sides of the base 1, if necessary.

中間層3としては酸化コバルトが好適に用いられ、所定
圧の酸素を含む不活性ガス中でのスパッタリング法、希
薄酸素下での真空蒸着法、もしくはイオンブレーティン
グ法等の物理蒸着法、あるいはプラズマ酸化処理によっ
て、C。
Cobalt oxide is preferably used as the intermediate layer 3, and can be formed by sputtering in an inert gas containing oxygen at a predetermined pressure, by vacuum evaporation under diluted oxygen, by physical vapor deposition such as ion blating, or by plasma. By oxidation treatment, C.

−Cr合金強磁性体層2の表面に直接堆積形成あるいは
酸化層形成をしている。
A direct deposition or oxide layer is formed on the surface of the -Cr alloy ferromagnetic layer 2.

中間層3は磁気記録層とヘッドとの凝着を防ぎ、耐摩耗
性の向上に極めて有効である。中間層である酸化コバル
トR3の厚みは耐摩耗性を保障するに十分な厚みが必要
であるが一方、Co−Cr系合金磁性層の持つ高密度記
録特性を有効に利用するためにはスペーシングロス減少
のため薄い車が望ましい、それ故酸化コバルト層3の厚
みは30〜300大が望ましく、5ON150人が特に
好ましい。
The intermediate layer 3 prevents adhesion between the magnetic recording layer and the head and is extremely effective in improving wear resistance. The thickness of cobalt oxide R3, which is the intermediate layer, needs to be thick enough to ensure wear resistance, but on the other hand, in order to effectively utilize the high-density recording characteristics of the Co-Cr alloy magnetic layer, spacing is required. A thin car is desirable to reduce loss. Therefore, the thickness of the cobalt oxide layer 3 is desirably 30 to 300 mm, and 5ON150 mm is particularly preferable.

酸化コバルト層3は、磁気記録層2の保護に大きな役割
を果たすものであり、さらに、金属ヘッド、フェライト
ヘッド等とのなじみも良く、表面の摩擦係数も低下する
。殊に酸化コバル、ト層の最表部がCo3O4である時
、その効果が著しい。
The cobalt oxide layer 3 plays a major role in protecting the magnetic recording layer 2, and is also compatible with metal heads, ferrite heads, etc., and reduces the coefficient of friction of the surface. This effect is particularly remarkable when the outermost part of the cobalt oxide layer is Co3O4.

更に本発明磁気記録媒体の高密度記録特性を損なわず且
つ摩擦を低減し、走行安定性を向上させる為には、有機
化合物による保護層4を酸化コバルトR3の表面に積層
することが大変有効である。
Furthermore, in order to reduce friction and improve running stability without impairing the high-density recording characteristics of the magnetic recording medium of the present invention, it is very effective to deposit a protective layer 4 made of an organic compound on the surface of cobalt oxide R3. be.

本発明に於いては、有機保護層として1分子内に親水性
部位と、1Bli水性部位とを有する有機化合物、とり
わけ、芳香族ポリイミドフィルムの内、含フツ素有機化
合物(以下、両親媒性含フツ素有機化合物)とフッ素を
含まない化合物(以下、両親媒性脂肪酸誘導体)とを混
合して得られる混合単分子膜、又はその累積膜を含む保
護層を形成し、薄膜堆積型磁気記録媒体を得た。
In the present invention, an organic compound having a hydrophilic site and a 1Bli aqueous site in one molecule as an organic protective layer, especially a fluorine-containing organic compound (hereinafter referred to as an amphipathic compound) of an aromatic polyimide film. A protective layer containing a mixed monomolecular film obtained by mixing a fluorine-free organic compound) and a fluorine-free compound (hereinafter referred to as an amphipathic fatty acid derivative) or a cumulative film thereof is formed, and a thin film deposition type magnetic recording medium is produced. I got it.

係る両親媒性含フツ素有機化合物の一例としては以下に
示す構造を有する化合物を挙げることかできる。
Examples of such amphipathic fluorine-containing organic compounds include compounds having the structure shown below.

1つCF3 (CF2) <−R (@ CF3(CF2) m−C=C−C=C−(CH
2) n−Rl■CF3 (CF2)<C00C¥CH
2上記化合物に関して、kは6〜28の整数であり、好
ましくは8〜20である。又、m。
One CF3 (CF2) <-R (@CF3(CF2) m-C=C-C=C-(CH
2) n-Rl■CF3 (CF2)<C00C\CH
2 Regarding the above compounds, k is an integer from 6 to 28, preferably from 8 to 20. Also, m.

nは各々0〜28の整数であり、かつmとnとの和が7
〜35の整数である。又■〜■に示した化合物の内、フ
ッ素原子の一部を水素原子に置換してもよくそのに4例
を■〜■に示す。
Each n is an integer from 0 to 28, and the sum of m and n is 7
~35 integer. Furthermore, among the compounds shown in (1) to (2), some of the fluorine atoms may be replaced with hydrogen atoms, and four examples are shown in (1) to (2).

■CF3 (CH2) 16−R 1ゆCF3 (CH2) 7−C=C−C=C−(CH
2) a−Rこれらの両親媒性含フツ素化合物に組み合
わされる、両親媒性脂肪酸誘導体の一例としては、以下
に示す構造を有する化合物を挙げることができる。
■CF3 (CH2) 16-R 1YCF3 (CH2) 7-C=C-C=C-(CH
2) aR Examples of amphipathic fatty acid derivatives to be combined with these amphipathic fluorine-containing compounds include compounds having the structures shown below.

■CH3(CH2) K’−R’ ■CH3(CH2) m’ −C=C−C=C−(CH
2) n ’ −R’lΦCH3(CH2) < ’ 
Coo−C)(=CH2上記化合物に関して、k′は1
4〜28の整数であり、好ましくは14〜20である。
■CH3(CH2) K'-R' ■CH3(CH2) m' -C=C-C=C-(CH
2) n'-R'lΦCH3(CH2) <'
Coo-C) (=CH2 For the above compound, k' is 1
It is an integer of 4 to 28, preferably 14 to 20.

又、m’、n’は各々O〜28の整数であり、かつm′
とn′との和が11〜35の整数である0以上示した■
、■、■〜■の化合物について、R部及びR′は親水性
部位であり、−COOH,−CH20H,−5O3H,
−COOCH3゜−CH2SH,−”N  ・X−CX
−=C1−、Br−。
Further, m' and n' are each integers of O to 28, and m'
The sum of and n' is an integer from 11 to 35 and is 0 or more ■
, ■, ■~■, R moiety and R' are hydrophilic moieties, -COOH, -CH20H, -5O3H,
-COOCH3゜-CH2SH,-”N ・X-CX
-=C1-, Br-.

I−、BF4″″、  PF6−、  TCNQ−、T
CNQ2  など)などの親木性置換基を用いることが
できる。
I-, BF4″″, PF6-, TCNQ-, T
CNQ2, etc.) can be used.

又、■〜■の両親媒性含フツ素化合物と■〜■の両親媒
性脂肪酸誘導体を組み合わせるに際し、好ましくは類似
の骨格のもの、即ち■若しくは■と■、■若しくは■と
■、■と■の組み合わせが選ばれる。更に好ましくは。
Furthermore, when combining the amphipathic fluorine-containing compounds of ■ to ■ and the amphipathic fatty acid derivatives of ■ to ■The combination is selected. More preferably.

これらの組み合わせに於いて、未満親木性置換基が等し
いこと(R=R’)及び炭素数の総和が等しいこと(k
=に’ 、m=m’ 、n=R′)が望ましい。
In these combinations, the less tree-philic substituents are equal (R=R') and the total number of carbon atoms is equal (k
=ni', m=m', n=R') are desirable.

上記示した両親媒性含フツ素化合物及び両親媒性脂肪酸
誘導体の混合単分子膜又は混合単分子累積膜を作成する
方法としては、例えば、1、Langmuirらの開発
したラングミュア・ブロジェット法(以下、LB法)を
挙げることができる。
As a method for creating a mixed monomolecular film or a mixed monomolecular cumulative film of the amphiphilic fluorine-containing compound and amphipathic fatty acid derivative shown above, for example, 1. Langmuir-Blodgett method developed by Langmuir et al. , LB method).

目的とする両親媒性含フツ素化合物及び両親媒性脂肪酸
誘導体(以下、総−称して両親媒性混合物)をクロロホ
ルム等の溶剤に溶解させる。この際、混合比は任意の割
合がとられる。
The desired amphipathic fluorine-containing compound and amphipathic fatty acid derivative (hereinafter collectively referred to as an amphipathic mixture) are dissolved in a solvent such as chloroform. At this time, an arbitrary mixing ratio can be used.

次に、第2図(a)(b)に示す装置を用いて、両親媒
性混合物の溶液を水相上14に展開させて両親媒性混合
物を膜状に形成させる。
Next, using the apparatus shown in FIGS. 2(a) and 2(b), a solution of the amphiphilic mixture is spread on the aqueous phase 14 to form the amphiphilic mixture into a film shape.

この際、両親媒性含フツ素化合物及び両親媒性脂肪酸誘
導体の白河れか一方若しくは両方の化合物に関し末端に
カルボキシ基を宥する化合物を用いる場合には、水相1
4中に予め所望の金属イオン、例えば、 Ag”、  Li+、  Cu十、  Na”、  K
”、  Ba2”。
At this time, when using a compound that accommodates a carboxy group at the terminal of either or both of the amphipathic fluorine-containing compound and the amphipathic fatty acid derivative Shirakawa, the aqueous phase 1
4, a desired metal ion is added in advance, for example, Ag'', Li+, Cu, Na'', K
", Ba2".

Ca2”、Co2”、Cr2”、Cd2”、Mg2”。Ca2”, Co2”, Cr2”, Cd2”, Mg2”.

Mn2”、  Pb2”、  Cu2”、  Fe2+
、  Ni2”。
Mn2”, Pb2”, Cu2”, Fe2+
, Ni2”.

Zn2”、Co3”、Cr3”、Fe3”、AjL3”
Zn2”, Co3”, Cr3”, Fe3”, AjL3”
.

Ru3”、 La3+等やアンモニウムイオンを溶解さ
せておけば、これらの塩として両親媒性混合物を膜状に
形成させることができる。カルボキシル基の水素原子が
これらの金属イオン若しくはアンモニウムイオンと置換
される割合は、水相14のPH及びイオン濃度に因って
決り、係るpHやイオン濃度を調節する殊によって任意
の割合のものを得ることができる。
By dissolving Ru3'', La3+, etc. and ammonium ions, an amphipathic mixture can be formed as a salt of these in the form of a film.The hydrogen atoms of the carboxyl groups are replaced with these metal ions or ammonium ions. The ratio depends on the pH and ion concentration of the aqueous phase 14, and any ratio can be obtained by adjusting the pH and ion concentration.

次にこの展開層が水相上を自由に拡散して広がりすぎな
いように仕切板(または浮子)7を設けて展開面積を制
限して膜物質の集合状態を制御し、その集合状態に比例
した表面圧を得る。
Next, to prevent this spread layer from spreading freely on the water phase and spreading too much, a partition plate (or float) 7 is provided to limit the spread area and control the state of aggregation of the membrane material, and to control the aggregation state of the membrane substance, it is Obtain a surface pressure of

この仕切板7を動かし展開面積を縮小して膜物質の集合
状態を制御し、表面圧を徐々に上昇させ、累積膜の製造
に適する表面圧を設定することが出来る。この表面圧を
維持しながら静かに清浄な担体15を垂直に上下させる
ことにより両親媒性混合物の単分子膜が担体15上に移
しとられる。ここでいう担体とは[Kmの磁性体薄膜を
指す。この様にして両親媒性混合物の単分子膜を強磁性
体薄膜の表面酸化層上に形成することができる0両親媒
性混合物の単分子膜は以上で製造されるが、前記の操作
を繰り返す事により所望の累積数の両親媒性混合物の単
分子累積膜を形成すること岬できる。
By moving the partition plate 7 and reducing the developed area, it is possible to control the aggregation state of the membrane material, gradually increase the surface pressure, and set the surface pressure suitable for producing a cumulative membrane. By gently moving the clean carrier 15 vertically up and down while maintaining this surface pressure, a monomolecular film of the amphipathic mixture is transferred onto the carrier 15. The carrier here refers to a magnetic thin film of Km. In this way, a monomolecular film of the amphiphilic mixture can be formed on the surface oxide layer of the ferromagnetic thin film.A monomolecular film of the amphiphilic mixture is manufactured as described above, and the above operations are repeated. This makes it possible to form a monomolecular cumulative film of the desired cumulative number of amphiphilic mixtures.

両親媒性混合物の単分子膜を担体上に移すのには上述し
た垂直浸漬法の他、水平付着法1回転円筒法などの方法
による。水平付着法は担体を水面に水平に接触させて移
しとる方法で、回転円筒法は円筒形の担体を水面上を回
転させて担体表面に移しとる方法である。前述した垂直
浸漬法では、表面が親木性である担体を水面を横切る方
向に水中から引き上げると両親媒性混合物の親木基が担
体側に向−いた単分子膜が担体上に形成される。前述の
ように担体を上下させると、各行程ごとに一枚ずつ両親
媒性混合物の単分子膜が積み重なっていく。製膜分子の
向きが引上工程と浸漬工程で逆になるので、この方法に
よると各層間は1両親媒性混合物の親木基と疎水基が向
かい合うY型膜が形成される。
In addition to the above-mentioned vertical dipping method, methods such as horizontal deposition method, single rotation cylinder method, etc. can be used to transfer the monomolecular film of the amphipathic mixture onto the carrier. The horizontal adhesion method is a method in which the carrier is brought into horizontal contact with the water surface and transferred, and the rotating cylinder method is a method in which a cylindrical carrier is rotated on the water surface and transferred onto the carrier surface. In the vertical immersion method described above, when a carrier with a woody surface is lifted out of water in a direction across the water surface, a monomolecular film is formed on the carrier with the woody groups of the amphipathic mixture facing toward the carrier. . When the carrier is moved up and down as described above, one monomolecular film of the amphipathic mixture is piled up with each step. Since the direction of the film-forming molecules is reversed between the pulling process and the dipping process, according to this method, a Y-shaped film is formed in which the parent wood group and the hydrophobic group of one amphiphilic mixture face each other between each layer.

それに対し、水平付着法は、両親媒性混合物の疎水基が
担体側に向いた単分子膜が担体上に形成される。この方
法では累積しても、製膜分子の向きの交代はなく全ての
暦において。
In contrast, in the horizontal deposition method, a monomolecular film is formed on the carrier with the hydrophobic groups of the amphipathic mixture facing the carrier side. In this method, there is no change in the orientation of the film-forming molecules even if they are accumulated in all calendars.

疎水基が担体側に向いたX型膜が形成される。An X-shaped film is formed with the hydrophobic groups facing the carrier side.

反対に全ての層において親木基が担体側に向いた累積膜
はZ型膜と呼ばれる。
On the other hand, a cumulative film in which parent wood groups in all layers face the carrier side is called a Z-type film.

単分子層を担体上に移す方法は、これらに限定されるわ
けではなく、大面積担体を用いる時には担体ロールから
水相中に担体を押し出していく方法などもとり得る。ま
た、前述した親木基、@水基の担体への向きは原則であ
り、担体の表面処理等によって変えることもできる。
The method of transferring the monomolecular layer onto the carrier is not limited to these methods, and when a large-area carrier is used, a method of extruding the carrier from a carrier roll into an aqueous phase may also be used. Furthermore, the orientation of the above-mentioned parent wood groups and @water groups toward the carrier is a general rule, and can be changed by surface treatment of the carrier.

上述の方法に因って酸化コバルト層3上に形成される両
親媒性混合物の混合単分子膜、及び混合単分子累積膜は
高度の秩序性を有する超薄膜(単分子層当りの厚さ、1
5〜35人)であり。
The mixed monomolecular film of the amphiphilic mixture and the mixed monomolecular cumulative film formed on the cobalt oxide layer 3 by the above method are ultra-thin films with a high degree of order (thickness per monomolecular layer, 1
5 to 35 people).

これらの膜で保護層を形成した場合には、電磁変換特性
に与える影響を著しく小さなものにすることが可能とな
る。この際、係る有機保護層の下地たる酸化コバルト層
3はCo−Cr磁性体層2に比べて親水性が高く、従っ
て有機保護層を’Co−Cr磁性層上に形成する場合と
比較して、より強固な密着性を保つことができる。
When a protective layer is formed using these films, the influence on electromagnetic conversion characteristics can be significantly reduced. At this time, the cobalt oxide layer 3 which is the base of the organic protective layer has higher hydrophilicity than the Co-Cr magnetic layer 2, and therefore, compared to the case where the organic protective layer is formed on the 'Co-Cr magnetic layer, , it is possible to maintain stronger adhesion.

更に係る保護層形成を行なった磁性薄膜を必要に応じて
、熱処理或いは真空処理或いは光照射処理することによ
り、酸化コバルト層3と有機保護層4との密着性の更な
る向上や、有機保護層の更なる安定化等を図る車もでき
る。何れにせよ、上述の保護層形成に因り、電磁変換特
性を本質的に低下させることなく、特に耐久性。
Furthermore, by subjecting the magnetic thin film on which the protective layer has been formed to heat treatment, vacuum treatment, or light irradiation treatment as necessary, the adhesion between the cobalt oxide layer 3 and the organic protective layer 4 can be further improved, and the organic protective layer can be further improved. It is also possible to create a car with further stabilization. In any case, due to the formation of the above-mentioned protective layer, the electromagnetic conversion characteristics are not essentially degraded and the durability is particularly high.

並びに走行性の優れた薄膜堆積型磁気記録媒体が得られ
る。
In addition, a thin film deposition type magnetic recording medium with excellent running properties can be obtained.

本発明に係る保護層の厚さは、特に15〜100人の範
囲が好適である。
The thickness of the protective layer according to the present invention is particularly preferably in the range of 15 to 100 people.

本発明におけるCo−Cr合金強磁性体薄膜堆積型磁気
記録媒体において、当該磁気記録媒体の基体の少なくと
も片側表面には磁気記録層を形成し、これと反対側の一
方の面には、必要に応じて表面と対称型の薄膜をa層形
成しても良く、あるいはち該基体の保護、滑性、補強、
その他の有効な効果を補足する目的で各種のバックコー
ト層を形成しても良い、バックコート層としては、An
、  Ti、  V、  Zr。
In the Co-Cr alloy ferromagnetic thin film deposited magnetic recording medium of the present invention, a magnetic recording layer is formed on at least one surface of the substrate of the magnetic recording medium, and a magnetic recording layer is formed on the opposite surface as necessary. Depending on the situation, a thin film symmetrical to the surface may be formed as a layer, or it may provide protection, lubricity, reinforcement,
Various back coat layers may be formed for the purpose of supplementing other effective effects.
, Ti, V, Zr.

Co、   Nb、   Ta、   W、   Cr
、   Si。
Co, Nb, Ta, W, Cr
, Si.

Ge等の金属、半金属あるいはその酸化物、窒化物、炭
化物の薄膜、あるいは酸化物微粒子炭酸カルシウム等の
易滑性微粒子と、カーボン、金属粉末等の導電性粒子と
、脂肪酸、脂肪酸エステル等の潤滑剤を少なくとも一種
類含む熱可塑性または熱硬化性樹脂等の高分子バインダ
ーに混練して塗布したものが挙げられる。
Thin films of metals such as Ge, semimetals, or their oxides, nitrides, and carbides, or oxide fine particles, easily slippery fine particles such as calcium carbonate, conductive particles such as carbon and metal powder, and fatty acids, fatty acid esters, etc. Examples include those obtained by kneading and applying a polymer binder such as a thermoplastic or thermosetting resin containing at least one type of lubricant.

以上述べた様に、表面平担性に優れかつ熱膨張率をyA
整した高弾性率、高耐熱性共重合ポリイミドフィルム上
に高温でCo−Cr合金膜を形成し、さらにその上に酸
化コバルト層を形成し、さらに有機化合物保護層を形成
した磁気記録媒体はカールが小さく、かつ高密度記録特
性が優れ耐摩耗性、耐久性、耐環境性がいずれも実用上
十分な性能を有しており、極めて優れた磁気記録媒体で
ある。
As mentioned above, it has excellent surface flatness and a coefficient of thermal expansion of yA.
A magnetic recording medium in which a Co-Cr alloy film is formed at high temperature on a well-defined high-modulus, high-heat-resistant copolymerized polyimide film, a cobalt oxide layer is formed on top of the Co-Cr alloy film, and an organic compound protective layer is further formed on the magnetic recording medium is curled. It is an extremely excellent magnetic recording medium because it has a small magnetic field, excellent high-density recording characteristics, and has practically sufficient performance in terms of abrasion resistance, durability, and environmental resistance.

[実施例] 以下実施例により本発明を説明する。[Example] The present invention will be explained below with reference to Examples.

くテープの評価方法〉 出力の周波数特性: 0.75MHz 、 4.5MHz 、 7.5MHz
 (1)単一信号を記録し、再生出力を測定。
Evaluation method of tape> Output frequency characteristics: 0.75MHz, 4.5MHz, 7.5MHz
(1) Record a single signal and measure the playback output.

スチル耐久性テスト: 20℃、65%および0℃の環境下でスチル再生出力の
時間変化を測定、20分経過後出力低下が3dB以内を
Oとする。
Still durability test: Measure the change in still playback output over time in environments of 20°C, 65% and 0°C, and define O if the output decreases within 3dB after 20 minutes.

耐蝕テスト: 50℃、80%テ1000時間数@*飽和81束密度の
低下が10%以内をOとする。
Corrosion resistance test: 50°C, 80% temperature for 1000 hours @*Saturation 81 Decrease in bundle density within 10% is defined as O.

実施例1 内容積300文、の重合釜に3.3’、4.4’−ビフ
ェニルテトラカルボン酸二無水物;20モル、ピロメリ
ット酸二無水物280モル、パラフェニレンジアミン、
70モル及び4.4′−ジアミノジフェニルエーテル:
30モルを原料として厚さ10gmの芳香族ポリイミド
’sのベ一   ′スフイルムを製造した。
Example 1 In a polymerization pot with an internal volume of 300 tons, 20 moles of 3.3',4.4'-biphenyltetracarboxylic dianhydride, 280 moles of pyromellitic dianhydride, paraphenylenediamine,
70 moles and 4,4'-diaminodiphenyl ether:
A 10 gm thick aromatic polyimide base film was prepared using 30 mol of the raw material.

この芳香族ポリイミドフィルムについて種々の物性を測
定したが、その結果、引張弾性定数が490Kg/mm
2、熱膨張係数α100〜300℃が1.6X10−5
cm/cm/”0、RZは80人であった。
Various physical properties of this aromatic polyimide film were measured, and as a result, the tensile elastic constant was 490 Kg/mm.
2.Thermal expansion coefficient α100~300℃ is 1.6X10-5
cm/cm/”0, RZ was 80 people.

この芳香族ポリイミドフィルムをベースフィルムとして
使用し、電子ビーム加熱装置を有した磁気テープの連続
成膜装置により、当該ベースフィルムの表面にCo 7
8wt%−Cr22wt%の垂直磁化蒸着膜をベースフ
ィルムの温度を200℃として、O,14m/secの
成膜速度で約0.44 m厚形成した後、その上部に酸
素10%を含むアルゴンガス中でCoをスパッタし、酸
化コバルト薄膜を80人厚形成した0次に、(2)式に
示した両親媒性含フツ素化合物;酸とをi:fの CF3 (CF2)2 (CH2) zscOOH(1
)CH3(CH2) tscOOH(2)の混合比(m
ofL比)で混合し、クロロホーレムに溶解させた(a
度1mg/mu)、この後、塩化カドミs7ム4X10
−4Mを含U p H6,5、水温20℃の水相14(
図2)上に係る混合溶液を展開し膜状に析出させた。溶
媒蒸発除去後1表面圧を30mN/mに迄高めた。この
表面圧を一定に保ち乍ら、上述磁性体薄膜を担体とし、
l Oam/mi nの速度で係る担体を水面を横切る
方向に水中より引き上げ、z8−パーフルオロプロパン
ヘプタテカン酸とアラギン酸の1層1混合単分子膜を係
る担体上に形成した。こうして得た磁気シートを70℃
の恒温炉にて15分間熱処理を行なった後、8.0層幅
にスリットした。このテープのカールは、+< 0.1
mm−1、と小さく、実用上問題のない量であった。こ
のテープを8ミリVTRテープ用カセツトに装着し、8
ミリビデオデツキにて出力の周波数特性、スチル耐久性
、50’C!80%RHでの耐蝕性テスト等を行なった
This aromatic polyimide film is used as a base film, and Co 7 is deposited on the surface of the base film using a continuous magnetic tape film forming device equipped with an electron beam heating device.
After forming a perpendicularly magnetized vapor-deposited film of 8 wt%-Cr22 wt% to a thickness of about 0.44 m at a film-forming rate of 14 m/sec at a base film temperature of 200°C, an argon gas containing 10% oxygen was applied on top of the film. Next, an amphiphilic fluorine-containing compound shown in formula (2); acid was mixed with CF3 (CF2)2 (CH2) in an i:f ratio. zscOOH(1
) CH3 (CH2) tscOOH (2) mixing ratio (m
of L ratio) and dissolved in chlorophorem (a
degree 1mg/mu), then cadmium chloride s7mu 4X10
Aqueous phase 14 containing -4M at pH 6.5 and water temperature 20°C (
Figure 2) The above mixed solution was developed and deposited in the form of a film. After evaporating the solvent, the surface pressure was increased to 30 mN/m. While keeping this surface pressure constant, using the above-mentioned magnetic thin film as a carrier,
The carrier was pulled out of the water in a direction across the water surface at a rate of 1 Oam/min, and a layer-by-layer mixed monolayer of z8-perfluoropropane heptatecanic acid and araginic acid was formed on the carrier. The thus obtained magnetic sheet was heated at 70°C.
After heat treatment was performed for 15 minutes in a constant temperature oven, the film was slit into a layer width of 8.0. The curl of this tape is +<0.1
The amount was as small as mm-1, which caused no practical problems. Attach this tape to an 8mm VTR tape cassette, and
Output frequency characteristics, still durability, 50'C with millimeter video deck! Corrosion resistance tests were conducted at 80% RH.

結果は第1表に示す如く、大変良好であった。The results were very good as shown in Table 1.

実施例2 実施例1に於ける16−パーフルオロプロパンヘプタン
デカン酸とアラギン酸との1:1混合単分子膜を3層累
積した他は実施例1と全く同様にしてテープを作成し、
性能評価を行なった結果を第1表に示す、その結果、単
分子膜(1層)のものと同等に良好であった。
Example 2 A tape was prepared in the same manner as in Example 1, except that three layers of a 1:1 mixed monomolecular film of 16-perfluoropropane heptanedecanoic acid and arginic acid were accumulated.
The results of performance evaluation are shown in Table 1. As a result, the performance was as good as that of a monomolecular film (single layer).

実施例3 (3)式に示した両親媒性含フツ素化合物;パーフルオ
ロデカン酸と(2)式に示した両ス 親媒性脂肪酸;tテアリン酸とを1:lの混合比(mo
文比)で混合し、 CF3 (CF2) acOOH(3)C)(3(CH
2) 16COOH(4)クロロホルムに溶解させた(
i1度1mg/mJl)。
Example 3 An amphipathic fluorine-containing compound represented by formula (3); perfluorodecanoic acid; and an amphiphilic fatty acid represented by formula (2); t-stearic acid were mixed at a mixing ratio of 1:l (mo
CF3 (CF2) acOOH(3)C) (3(CH
2) 16COOH (4) dissolved in chloroform (
i1 degree 1 mg/mJl).

この後、塩化マンガン4XIO−4Mを含むPH7,水
温20℃の水相14(図2)上に係る混合溶液を展開し
、膜状に析出させた。溶媒蒸発除去後、表面圧を30 
m N / mに迄高めた。
Thereafter, the mixed solution containing 4XIO-4M manganese chloride at a pH of 7 and a water temperature of 20° C. was spread on the aqueous phase 14 (FIG. 2) to precipitate into a film. After removing the solvent by evaporation, the surface pressure was reduced to 30
mN/m.

この表面圧を一定に保ち乍実施例1と同様にして作成し
た膜厚80人の酸化コバルト膜を含むCo−Cr磁性体
薄膜を担体とし、20mm/mi nの速度で係る担体
を、水面を横切る方向に水中より引き上げパーフルオロ
デカン酸と、ステアリン酸との1層2混合単分子膜を係
る担体上に形成した。
A Co--Cr magnetic thin film containing a cobalt oxide film with a thickness of 80 mm was prepared in the same manner as in Example 1 while keeping the surface pressure constant. A one-layer, two-layer mixed monomolecular film of perfluorodecanoic acid and stearic acid was formed on the carrier by pulling it up from water in the transverse direction.

こうして得た磁気シートを50℃の真空恒温炉にて5分
間、真空熱処理を行なった後、8.0 mdgrにスリ
ットした。このテープを実施例1と同様にして性能評価
をなった。結果を第1表に示す。
The magnetic sheet thus obtained was subjected to vacuum heat treatment for 5 minutes in a vacuum constant temperature oven at 50°C, and then slit to 8.0 mdgr. The performance of this tape was evaluated in the same manner as in Example 1. The results are shown in Table 1.

実施例4 (5)式に示し113−パーフルオロデカン酸10.1
2−1リゾカシイノイン酸及び(6)式に示したt o
 、 1.2−オクタデカシイツイン酸とを1:1の混
合比(moil比)で混合し、CF3 (CF2) 4
・C=C−C=C−(CH2) a−COOH(5) 
    CH3(CH2) 4・c=c−C=C−(C
H2)a−COOH(8)クロロホルムに溶解させた(
a度1mg/mu)。
Example 4 113-perfluorodecanoic acid 10.1 shown in formula (5)
2-1 lysocacyinoic acid and to shown in formula (6)
, CF3 (CF2) 4 by mixing with 1.2-octadecacyuic acid at a mixing ratio (moil ratio) of 1:1.
・C=C-C=C-(CH2) a-COOH(5)
CH3(CH2) 4・c=c-C=C-(C
H2) a-COOH (8) dissolved in chloroform (
a degree 1 mg/mu).

この後、塩化カドミウム4XIO−4Mを含むp H6
,5、水温5°0(7)水相14(図2)上に係る混合
溶液を展開し、膜状に析出させた。溶媒蒸発除去後1表
面圧を20 m N / mに迄高めた。
This is followed by pH6 containing cadmium chloride 4XIO-4M.
, 5. The mixed solution was spread on the aqueous phase 14 (FIG. 2) at a water temperature of 5° 0 (7) and precipitated into a film. After evaporating the solvent, the surface pressure was increased to 20 mN/m.

この表面圧を一定に保ち乍実施例1と同様にして作成し
た膜厚80人の酸化コバルト膜を含むCo−Cr磁性体
薄膜を担体とし、l Omm/mi nの速度で係る担
体を、水面を横切る方向に水中より引き上げ13−パー
フルオロペンタ−10,12−トリデカンシイツイン醸
と10.12−オクタデカシイツイン酸との1:1混合
単分子膜をn lIC5F11C=C=C*C−(CH
2) a−Coo)((CH2) 5cOOH 係る処理を施して得られた試料を8. Om m幅にス
リットした。このテープを実施例1と同様にして性能評
価を行なった。
A Co--Cr magnetic thin film containing a cobalt oxide film with a thickness of 80 mm was prepared in the same manner as in Example 1 while keeping the surface pressure constant. A 1:1 mixed monomolecular film of 13-perfluoropenta-10,12-tridecaneitic acid and 10.12-octadecaceitic acid was pulled up from the water in a direction transverse to nlIC5F11C=C=C*C. -(CH
2) a-Coo)((CH2) 5cOOH The sample obtained by the above treatment was slit into a width of 8.0 mm. The performance of this tape was evaluated in the same manner as in Example 1.

くディスクの評価方法〉 スチルビデオデツキ(試作機)を用いて、再生出力、耐
久性1円周方向の出力変動(出力ムラ)を測定した。
Disc Evaluation Method Using a still video deck (prototype), playback output and durability were measured for output fluctuations (output unevenness) in the circumferential direction.

出力の周波数特性: 1.3MHz 、 7.0MHz+7)単一信号を記録
し、再生出力を測定。
Output frequency characteristics: 1.3MHz, 7.0MHz+7) Record a single signal and measure the playback output.

耐久性: 20℃、65%の4境下で連続50時間再生し、出力の
低下が6dB以下のものをOとした。
Durability: Reproduction was performed continuously for 50 hours under four conditions at 20° C. and 65%, and the output was rated O if the decrease in output was 6 dB or less.

出力ムラ: 1トラツク中での出力の最大値と最小値との差を示す。Output unevenness: Indicates the difference between the maximum and minimum output values in one track.

実施例5 3 、3′、 4 、4′−ビフェニルテトラカルボン
酸二無水物;40モル、ピロメリット酸二無水物;60
モル、パラフェニレンジアミン;50モル及び4.4′
−ジアミノジフェニルエーテル;50モルより成るモノ
マー成分及び成分比で実施例1と同一方法にて芳香族ポ
リアミック酸の溶液組成物を製造した。そのようにして
得られた溶液組成物を使用し実施例1と同一方法にて厚
さ404mの芳香族ポリイミドフィルムを製造した。
Example 5 3,3',4,4'-biphenyltetracarboxylic dianhydride; 40 mol, pyromellitic dianhydride; 60
moles, paraphenylenediamine; 50 moles and 4.4'
- Diaminodiphenyl ether: A solution composition of an aromatic polyamic acid was produced in the same manner as in Example 1 using a monomer component consisting of 50 moles and a component ratio. Using the solution composition thus obtained, an aromatic polyimide film having a thickness of 404 m was produced in the same manner as in Example 1.

この芳香族ポリイミドフィルムは引張弾性定数が400
Kg/mm2.熱膨張係数(X100〜300℃が2.
6X10−5cm/cm/’01Rzは30人であった
This aromatic polyimide film has a tensile elastic constant of 400.
Kg/mm2. Thermal expansion coefficient (X100-300℃ is 2.
6X10-5cm/cm/'01Rz was 30 people.

この芳香族ポリイミドフィルムをベースフィルムとして
使用し、スパッタリング装置にて当該ベースフィルム上
にCo 80wt%−Cr20wt%の垂直磁化膜をベ
ースフィルムの温度を150″Cとして、約0.5 鉢
m形成した後、その上部に酸素12%を含むアルゴンガ
ス中でCoをスパッタし、酸化コバルト薄膜を100久
厚形成した0次いで実施例1と同一の有機保護層を同一
方法で形成し、70℃の恒温炉で1.5分間熱処理を施
した後、直径47mmφのディスクに打ち抜き加工し、
ビデオディスク再生機を用いて評価した。その結果は第
2表に示す様に大変良好であった。
This aromatic polyimide film was used as a base film, and a perpendicularly magnetized film of 80 wt% Co-20 wt% Cr was formed on the base film using a sputtering device in a thickness of about 0.5 m at a temperature of the base film of 150″C. After that, Co was sputtered on top of it in argon gas containing 12% oxygen to form a 100% thick cobalt oxide thin film.Next, the same organic protective layer as in Example 1 was formed by the same method and kept at a constant temperature of 70°C. After heat treatment in a furnace for 1.5 minutes, it was punched into a disc with a diameter of 47mmφ.
Evaluation was performed using a video disc player. The results were very good as shown in Table 2.

実施例6 実施例5に於ける有機保護層を、実施例4と同一の有機
保護層を同一方法で形成し、200w高圧水銀灯を照射
して、重合処理を行なった。この後、直径47mmφの
ディスクに打ち抜き加工し、ビデオディスク再生機を用
いて評価した。その結果は第2表に示す。
Example 6 The organic protective layer in Example 5 was formed by the same method as in Example 4, and was subjected to polymerization treatment by irradiation with a 200W high-pressure mercury lamp. Thereafter, a disk with a diameter of 47 mm was punched out and evaluated using a video disk player. The results are shown in Table 2.

比較例1 メタル塗布型の磁気シートを直径47mmφのディスク
に打ち抜き加工し、ビデオディスク再生機を用いて評価
した。その結果を第2表に示す。
Comparative Example 1 A metal-coated magnetic sheet was punched into a disk with a diameter of 47 mm, and evaluated using a video disk player. The results are shown in Table 2.

第  1  表 第  2  表 [発明の効果] 膜堆積法にてCo−Cr合金強磁性体薄膜を形成し、そ
の表面に酸化コバルト層を形成した膜面上に更に両親媒
性含フツ素化合物と両親媒性脂肪酸誘導体を含む保護層
を積層形成することにより、走行性、
Table 1 Table 2 [Effects of the invention] A Co-Cr alloy ferromagnetic thin film is formed by a film deposition method, and an amphiphilic fluorine-containing compound is further applied on the film surface on which a cobalt oxide layer is formed. By laminating protective layers containing amphiphilic fatty acid derivatives, running properties and

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の磁気記録媒体の構成図、1・・・基体
、 2・・・磁性体層、 3・・・中間層、 4・・・
有機保護層、5・・・水槽、  6・・・枠、  7・
・・仕切板、  8・・・おもり、 9・・・滑車、1
0・・・磁石、  11・・・対磁石、  12・・豊
川パイプ、13・・畷引ノズル、 、14・・・水相、
  15・・相体(m。 16・・・担体上下腕
FIG. 1 is a block diagram of a magnetic recording medium of the present invention, 1...substrate, 2...magnetic layer, 3...intermediate layer, 4...
organic protective layer, 5... aquarium, 6... frame, 7.
...Partition plate, 8...Weight, 9...Pulley, 1
0... Magnet, 11... Pair magnet, 12... Toyokawa pipe, 13... Folding nozzle, , 14... Water phase,
15... Partner (m. 16... Carrier upper and lower arms

Claims (7)

【特許請求の範囲】[Claims] (1)基体上に磁性体層と保護層とを有する磁気記録媒
体に於いて、該保護層が、フッ素含有有機化合物とフッ
素を含まない有機化合物の混合単分子膜又はその累積膜
を含むことを特徴とする磁気記録媒体。
(1) In a magnetic recording medium having a magnetic layer and a protective layer on a substrate, the protective layer includes a mixed monomolecular film of a fluorine-containing organic compound and a fluorine-free organic compound, or a cumulative film thereof. A magnetic recording medium characterized by:
(2)該保護層の厚さが、15〜100Åの範囲にある
特許請求の範囲第1項記載の磁気記録媒体。
(2) The magnetic recording medium according to claim 1, wherein the thickness of the protective layer is in the range of 15 to 100 Å.
(3)該基体が、芳香族ポリイミドフィルムである特許
請求の範囲第1項記載の磁気記録媒体。
(3) The magnetic recording medium according to claim 1, wherein the substrate is an aromatic polyimide film.
(4)該有機化合物が脂肪酸又はその誘導体である特許
請求の範囲第1項記載の磁気記録媒体。
(4) The magnetic recording medium according to claim 1, wherein the organic compound is a fatty acid or a derivative thereof.
(5)磁性体層と保護層との間に中間層を有する特許請
求の範囲第1項記載の磁気記録媒体。
(5) The magnetic recording medium according to claim 1, which has an intermediate layer between the magnetic layer and the protective layer.
(6)該中間層が酸化コバルトを含む特許請求の範囲第
5項記載の磁気記録媒体。
(6) The magnetic recording medium according to claim 5, wherein the intermediate layer contains cobalt oxide.
(7)該磁性体層が、Co−Cr合金強磁性体を含む特
許請求の範囲第1項記載の磁気記録媒体。
(7) The magnetic recording medium according to claim 1, wherein the magnetic layer includes a Co-Cr alloy ferromagnetic material.
JP12087986A 1986-05-26 1986-05-26 Magnetic recording medium Pending JPS62277621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12087986A JPS62277621A (en) 1986-05-26 1986-05-26 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12087986A JPS62277621A (en) 1986-05-26 1986-05-26 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS62277621A true JPS62277621A (en) 1987-12-02

Family

ID=14797224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12087986A Pending JPS62277621A (en) 1986-05-26 1986-05-26 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS62277621A (en)

Similar Documents

Publication Publication Date Title
US5139849A (en) Magnetic recording medium
JPH05342553A (en) Magnetic recording medium and its production
JPS62277621A (en) Magnetic recording medium
JPH0546013B2 (en)
JPS62229519A (en) Magnetic recording medium
JPS62271220A (en) Production of magnetic recording medium
JPS62277622A (en) Magnetic recording medium
JPS62271219A (en) Production of magnetic recording medium
JPS62271222A (en) Production of magnetic recording medium
JPS62271221A (en) Production of magnetic recording medium
JPS62229516A (en) Magnetic recording medium
JPS62229517A (en) Magnetic recording medium
JPS62232721A (en) Magnetic recording medium
JP2959110B2 (en) Manufacturing method of magnetic tape
JPS63206912A (en) Production of magnetic recording medium
JPS62277625A (en) Magnetic recording medium
JPS62277623A (en) Magnetic recording medium
JPS61284829A (en) Magnetic recording medium
JP2605380B2 (en) Magnetic recording media
JPS61196426A (en) Magnetic recording medium and magnetic recording method
JP2003160676A (en) Aromatic polyamide film and magnetic recording medium
JPS62229518A (en) Magnetic recording medium
JPS61294635A (en) Magnetic recording medium
JPS63188823A (en) Magnetic recording medium
JPH0434715A (en) Magnetic tape