JPS62271221A - Production of magnetic recording medium - Google Patents

Production of magnetic recording medium

Info

Publication number
JPS62271221A
JPS62271221A JP11358086A JP11358086A JPS62271221A JP S62271221 A JPS62271221 A JP S62271221A JP 11358086 A JP11358086 A JP 11358086A JP 11358086 A JP11358086 A JP 11358086A JP S62271221 A JPS62271221 A JP S62271221A
Authority
JP
Japan
Prior art keywords
film
layer
magnetic
protective layer
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11358086A
Other languages
Japanese (ja)
Inventor
Hiroshi Matsuda
宏 松田
Kiyoshi Takimoto
瀧本 清
Kenji Saito
謙治 斉藤
Nobuyuki Saito
信之 斉藤
Toshihiko Miyazaki
俊彦 宮崎
Takeshi Eguchi
健 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP11358086A priority Critical patent/JPS62271221A/en
Publication of JPS62271221A publication Critical patent/JPS62271221A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To improve recording and reproducing characteristics, corrosion resistance and durability by laminating a magnetic material layer on a substrate, then forming an org. protective layer contg. a polymerized monomolecular film of a polymerizable compd. or the cumulative film thereof on said layer and further subjecting the resulted laminated to a heat treatment and/or vacuum treatment. CONSTITUTION:The ferromagnetic material layer 2 is laminated on the substrate 1 and an intermediate layer 3 to play the role of a subsurface treatment is provided thereon, then the org. protective layer 4 contg. the polymerized monomolecular film of the polymerizable compd. or the cumulative film thereof is formed thereon. The resulted laminate is subjected to the heat treatment and/or vacuum treatment. The adhesiveness of the intermediate layer 3 and the protective layer 4 is improved and the protective layer 4 itself is stabilized by subjecting the thin magnetic film formed with such protective layer to the treatment and/or vacuum treatment. A thin film deposition type magnetic recording medium having the particularly excellent durability and runnability is thus obtd. without the substantial deterioration of the electromagnetic conversion characteristic.

Description

【発明の詳細な説明】 3、発明の詳細な説明 (産業上の利用分野) 本発明は、耐久性、耐環境性に優れた高密度記録用の薄
膜堆積型磁気記録媒体の製造方法に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method of manufacturing a thin film deposition type magnetic recording medium for high-density recording that has excellent durability and environmental resistance.

〔従来の技術) 従来より、ポリエステル等のプラスチックフィルムから
なる非磁性基体のFに、強磁性微粒子を高分子結合剤中
に均一に分散せしめた磁性層を仔する塗IF′i型磁気
記録媒体が広く用いられている。
[Prior art] Conventionally, coated IF'i type magnetic recording media have a magnetic layer in which fine ferromagnetic particles are uniformly dispersed in a polymer binder on a non-magnetic substrate F made of a plastic film such as polyester. is widely used.

また近年では金属等の薄膜を芸者、スパッタリング等の
方法で磁性層として非磁性基体Fに形成せしめた強磁性
薄膜(W磁気記録媒体の開発が進められており、一部実
用化しているものもある。
In addition, in recent years, the development of ferromagnetic thin films (W magnetic recording media), in which a thin film of metal is formed as a magnetic layer on a non-magnetic substrate F by methods such as sputtering, has been progressing, and some have been put into practical use. be.

磁性層の磁気特性、耐食性、耐摩耗性、摩1察係数1形
状(カール、変形)は磁気記録媒体の性能を左むする要
素であり、これらの前記性能要素は磁性層の材料や製法
、基体、保護fi+71滑削ぐあるいは層)に依存する
ものである。磁性層材料については磁束密度が大きく、
薄型化可能な強磁性薄膜型磁気記!!媒体か従来の塗I
ji型磁気記録媒体に勝っている。
The magnetic properties, corrosion resistance, abrasion resistance, and friction coefficient 1 shape (curl, deformation) of the magnetic layer are factors that affect the performance of a magnetic recording medium, and these performance factors are dependent on the material and manufacturing method of the magnetic layer, It depends on the substrate, the protective fi+71 lubrication or layer). The magnetic layer material has a large magnetic flux density,
Ferromagnetic thin film magnetic recorder that can be made thinner! ! Media or traditional coating I
It is superior to JI type magnetic recording media.

しかしなから磁性層をなす強班性薄11Q +%’4の
渾71−テープの代表であるGo−Ni合金膜は、耐食
性と耐久性か実用り十分ではない。すなわち、Co  
Ni合金自体が耐食合金でなく、かつ特性向上の目的で
斜め蒸着で形成するために密度か小さく、酸化しやすい
状態となっている。そのためCo−Ni合金膜の膜表面
を酸化処理する方法(特開昭53−8540:]号号他
、Co−Ni合金膜の北に酸化物や窒化物の保護層を設
ける方法(特開昭57−167134号他) 、Ga 
−Ni合金膜のトに防錆剤を塗布する方法(特開昭57
−1525.18号号他等の耐食方法が検討されている
が、Go−Ni合金膜の膜厚そのものが薄くかつ密度が
低いため、十分な耐食性が保証されないという問題点か
あった。又、Go−Ni合金膜の上に重合性化合物の屯
分子膜から成る保護層をラングミュア・プロジェット法
で形成する方法(特開昭61−48124号)が知られ
ており、係る方法によれば耐候性、耐久性、走行性か敗
退される。然し乍ら高度の電磁変換特性を保つために保
護層を薄くすれば、その耐久性、走行性は1分であると
はいい難く、また保護層を厚くすれば、短波長を用いた
高密度i気記録ができないという問題点があった。
However, the Go--Ni alloy film, which is typical of the strong flaky thin 11Q+%'4 71-tape, which forms the magnetic layer, does not have sufficient corrosion resistance and durability for practical use. That is, Co
The Ni alloy itself is not a corrosion-resistant alloy, and because it is formed by oblique vapor deposition for the purpose of improving properties, it has a low density and is easily oxidized. Therefore, there is a method of oxidizing the surface of the Co-Ni alloy film (JP-A No. 53-8540:), and a method of forming a protective layer of oxide or nitride on the north side of the Co-Ni alloy film (JP-A-Sho 53-8540). 57-167134 etc.), Ga
-Method of applying rust preventive to Ni alloy film (Japanese Patent Laid-Open No. 57
Corrosion resistance methods such as No. 1525.18 have been studied, but there was a problem in that sufficient corrosion resistance was not guaranteed because the thickness of the Go-Ni alloy film itself was thin and the density was low. Furthermore, a method is known in which a protective layer consisting of a molecular film of a polymerizable compound is formed on a Go-Ni alloy film by the Langmuir-Prodgett method (Japanese Patent Application Laid-Open No. 61-48124). The winner is weather resistance, durability, and running performance. However, if the protective layer is thinned to maintain high electromagnetic conversion characteristics, its durability and runnability will be less than 1 minute, and if the protective layer is made thicker, high-density i There was a problem that recording was not possible.

(発明の目的) 本発明は上記従来技t4iの問題点に鑑み成されたもの
でありその目的は、優れた記録再生特性を有するととも
に耐食性、耐久性においても実用的に十分な性能を有す
る磁気記録媒体を提供することにある。
(Object of the Invention) The present invention has been made in view of the problems of the conventional technology t4i, and its purpose is to provide a magnetic material that has excellent recording and reproducing characteristics and has practically sufficient performance in terms of corrosion resistance and durability. The goal is to provide recording media.

〔問題点を解決するためのト段〕[Steps to solve the problem]

本発明のE層目的は、基体上に、磁性体層を積層し、次
いでその上に重合性化合物のm合qt分子−膜又はその
累積膜を含む有機保護層を形成し、更に得られた積層物
に熱処理及び/又は真空処理を施す磁気記録媒体の製造
方法によって達成される。
The purpose of the E layer of the present invention is to laminate a magnetic material layer on a substrate, and then form an organic protective layer containing an m-combination qt molecule-film of a polymerizable compound or a cumulative film thereof on the magnetic material layer. This is achieved by a method for manufacturing a magnetic recording medium in which a laminate is subjected to heat treatment and/or vacuum treatment.

第1図は本発明の方法により製造される磁気記録媒体の
好ましい構成を示す模式図で、1はJ、1体、2は強磁
性体層、3は下地処理の役割を果たす中間層、4は有機
保護層である。
FIG. 1 is a schematic diagram showing a preferred structure of a magnetic recording medium manufactured by the method of the present invention, in which 1 is J, 1 body, 2 is a ferromagnetic layer, 3 is an intermediate layer that serves as a base treatment, and 4 is an organic protective layer.

基体1をなす材料としては、ガラス、アルミニウム、表
面酸化処理アルミニウム等の外に、高分子支持基材とし
てポリエステル、セルロース、アクリル、ポリアミド、
ポリイミド、ポリアミドイミド、ポリオレフィン、ポリ
ポリフロロオレフィン、ポリ塩化ビニル、ポリ酢酸ビニ
ル、塩化ビニル/酢酸ビニルコポリマー、ポリ塩化ビニ
リデン、ポリカーボネート、フェノール樹脂、ボソエー
テルサルフォン、ポリエーテルニーデルケトン、ポリア
セタール、ポリフェニレンオキサイド、ポリフェニレン
サルファイド等が挙げられる。
Materials for forming the base 1 include glass, aluminum, surface oxidized aluminum, etc., as well as polymer support materials such as polyester, cellulose, acrylic, polyamide,
Polyimide, polyamideimide, polyolefin, polyfluoroolefin, polyvinyl chloride, polyvinyl acetate, vinyl chloride/vinyl acetate copolymer, polyvinylidene chloride, polycarbonate, phenolic resin, bosoether sulfone, polyether needle ketone, polyacetal, polyphenylene oxide , polyphenylene sulfide, and the like.

強磁性体層2をなす材料としては、Fc、 Go、Ni
を主体とする合金、あるいはその酸化物、窒化物等か使
用可能であるか、高密度記録特性に優れ、また耐食性に
も優れるGo−Cr合金あるいはGo−にr金合金主成
分とする強磁性膜が好ましい。
The materials forming the ferromagnetic layer 2 include Fc, Go, and Ni.
It is possible to use alloys mainly composed of Go-Cr alloys, or their oxides, nitrides, etc., or Go-Cr alloys, which have excellent high-density recording characteristics and excellent corrosion resistance, or ferromagnetic alloys whose main components are Go-R gold alloys. Membranes are preferred.

電磁変換特性の優れた磁気記録媒体を得るためには、強
磁性体層2の保磁力の大きいことが望ましい。強磁性体
層2がGo−Cr合金膜の場合はその保磁力向トのため
にGo−Cr合金膜の形成温度を高くすることが好まし
く (1130°C−3[)0°C)、その場合、基体
1としては前述の材料のうち耐熱性を有するポリアミド
、ポリイミド樹脂、特に芳香族ポリイミド樹脂を使用す
ることが好ましい。
In order to obtain a magnetic recording medium with excellent electromagnetic conversion characteristics, it is desirable that the ferromagnetic layer 2 has a large coercive force. When the ferromagnetic layer 2 is a Go-Cr alloy film, it is preferable to set the formation temperature of the Go-Cr alloy film at a high temperature (1130°C-3[)0°C) due to its coercive force direction. In this case, it is preferable to use heat-resistant polyamide or polyimide resin, especially aromatic polyimide resin, among the above-mentioned materials, as the substrate 1.

また本発明によって得られる磁気記録媒体であるフロッ
ピーディスク、磁気テープ等はカールか発生しないこと
が走行性、ヘッドタッチの点から重要である。カールの
ない磁気記録媒体を作成するためには、基体1の材料と
してGo−Cr合金膜との熱応力、成膜時に発生する応
力を打ち消す様な熱膨張の値を有するものを選ぶ必要が
ある。
Furthermore, it is important from the viewpoint of runnability and head touch that the magnetic recording media obtained by the present invention, such as floppy disks and magnetic tapes, do not curl. In order to create a curl-free magnetic recording medium, it is necessary to select a material for the substrate 1 that has a thermal expansion value that cancels out the thermal stress with the Go-Cr alloy film and the stress that occurs during film formation. .

以下、基体1として芳香族ポリイミド膜を用いる場合に
つき説明する。
The case where an aromatic polyimide film is used as the substrate 1 will be described below.

芳香族ポリイミド膜(フィルム)としては、シアミン成
分としてバラフェニレンシアミン(PPD)を乍独で使
用するか、或いはPPDとジアミノジフェニルエーテル
(DへDE)とを併用し、また、テトラカルホン酸成分
として、ビフェニルテトラカルボン酸二無水物(BPD
八)とピロメリット酸二無水物(PMDへ)とを併用し
て、共重合させて得られた芳香族ポリアミック酸の溶液
を製nq L、次いでおよびイミド化して得られた芳香
族ポリイミドl15!(フィルム)が好ましく、その厚
みが4μ〜100μLのものが記録媒体用として有用で
ある。
As the aromatic polyimide membrane (film), paraphenylenecyamine (PPD) is used alone as the cyamine component, or PPD and diaminodiphenyl ether (DE to D) are used together, and as the tetracarphonic acid component, Biphenyltetracarboxylic dianhydride (BPD)
8) and pyromellitic dianhydride (to PMD), a solution of aromatic polyamic acid obtained by copolymerization was prepared, and then imidized to produce an aromatic polyimide L15! (film) is preferred, and those having a thickness of 4 μL to 100 μL are useful as recording media.

この芳香族ポリイミドフィルムは、前述のようにPPD
、BPDAおよびPMDAの3成分あるいはPPD、D
ADE。
This aromatic polyimide film is made of PPD as described above.
, BPDA and PMDA or PPD, D
ADE.

BPDAおよびPMDAの4成分を共重合させて、形成
されたものなので、耐熱性、引張弾性に優れているばか
りでなく、画成分を構成する各成分の使用量比率を調整
することによって、得られる芳香族ポリイミド膜の熱膨
張係数を強ftfi性材料の熱膨張係数に大略一致する
ような値にすることができ、また、芳香族ポリイミド膜
の引張弾性定数を用途に応じて腰の強さ等の性能を好適
にするように変えることかできる。
Since it is formed by copolymerizing the four components of BPDA and PMDA, it not only has excellent heat resistance and tensile elasticity, but also can be obtained by adjusting the usage ratio of each component that makes up the image component. The coefficient of thermal expansion of the aromatic polyimide film can be set to a value that roughly matches the coefficient of thermal expansion of the strong ftfi material, and the tensile elastic constant of the aromatic polyimide film can be adjusted depending on the application, such as stiffness, etc. can be modified to suit the performance of the

この芳香族ポリイミドフィルムは、その熱膨張係数が約
1.0X]0−S〜3.OX 10−’ cm/cの7
℃の範囲であり、引張弾性定数が約300〜1200k
g/mm2.特に325〜700kg/+nm2の範囲
であって、更に二次転移温度か約300℃以上、特に3
10℃以上であることか好ましく、さらに上述の性能に
加えて、熱分解開始温度が約400℃以上、特に450
℃以上であって、約250℃の温度付近での連続使用に
耐えつるものであり、また、引張試験における引張強度
が約20kg/mm’、以上、特に約25kg/+nm
2.以上であり、しかも破断点の伸び率が約30%以上
、特に40%以上であるものが、磁気記録媒体の製造の
際に優れた耐熱性を示し、高温での磁性層の形成が可能
であると共に、カールの発生を防止でき、さらに巻きム
ラ、走行性、およびヘッドタッチの優れた磁気記録媒体
となるので最適である。
This aromatic polyimide film has a thermal expansion coefficient of about 1.0X]0-S to 3. OX 10-' cm/c of 7
℃ range, and the tensile elastic constant is approximately 300 to 1200k
g/mm2. In particular, the range is from 325 to 700 kg/+nm2, and the second-order transition temperature is about 300°C or higher, especially 3
It is preferable that the temperature is 10°C or higher, and in addition to the above-mentioned performance, the temperature at which thermal decomposition starts is about 400°C or higher, particularly 450°C or higher.
℃ or higher and can withstand continuous use at temperatures around about 250℃, and has a tensile strength in a tensile test of about 20 kg/mm' or higher, especially about 25 kg/+nm.
2. Those with an elongation rate of about 30% or more, especially 40% or more at the break point, exhibit excellent heat resistance when manufacturing magnetic recording media, and can form magnetic layers at high temperatures. In addition, it is optimal because it can prevent the occurrence of curling, and also provides a magnetic recording medium with excellent winding unevenness, runnability, and head touch.

芳香族ポリイミドを得るための芳香族ポリアミック酸は
、磁気記録媒体の機械的及び熱的性質などを上述の様に
好適にするために、その生成に使用されるジアミン成分
として、全ジアミン成分に対して約40〜95モル%、
特に45〜90モル%範囲の使用量割合のPPDと、全
ジアミン成分に対して約5〜60モル%、特に10〜5
5モル%の使用量割合のDADEとの2成分からなるも
のが好ましい。また、芳香族ポリアミック酸を生成する
ためのテトラカルボン峻成分は、全テトラカルホン酸成
分に対して約10〜90モル%、特に15〜85モル%
の使用量割合のBPDAと、全テトラカルボン酸成分に
対して約10〜90モル%、特に15〜85モル%の使
用量割合のPMDAとからなることが好ましい。
The aromatic polyamic acid used to obtain the aromatic polyimide is used as a diamine component for the production of the magnetic recording medium in order to make the mechanical and thermal properties of the magnetic recording medium suitable as described above. about 40 to 95 mol%,
In particular, PPD with a usage proportion in the range of 45 to 90 mol % and about 5 to 60 mol %, especially 10 to 5 mol %, based on the total diamine component.
Preferably, it consists of two components with DADE in an amount of 5 mol %. Further, the tetracarboxylic acid component for producing the aromatic polyamic acid is about 10 to 90 mol%, particularly 15 to 85 mol%, based on the total tetracarphonic acid component.
It is preferable to use BPDA in an amount of about 10 to 90 mol %, particularly 15 to 85 mol % of PMDA, based on the total tetracarboxylic acid component.

さらにこの様な構成成分より成るポリイミドフィルムは
、フィルム表面の凹凸を制御するために、必要に応して
カーボンブラック、グラファイト、シリカ微粉末、マグ
ネシア微粉末、酸化チタン、炭酸カルシウム、その他の
充填剤を混練せしめることも可能である。しかし本発明
によって製造される磁気記録媒体に優れた高密度記録特
性を付午するためには1、月580601による基体の
表面粗さの最大高さくRmax)か0.05μj以下で
あることが望ましい。
Furthermore, in order to control the unevenness of the film surface, polyimide films made of such components may be filled with carbon black, graphite, fine silica powder, fine magnesia powder, titanium oxide, calcium carbonate, and other fillers as necessary. It is also possible to knead. However, in order to provide excellent high-density recording characteristics to the magnetic recording medium manufactured according to the present invention, it is desirable that the maximum height of the surface roughness of the substrate (Rmax) is 0.05 μj or less. .

以上に述べてきた、芳香族ポリイミド膜の上にGo−(
:r合金からなる磁性層を形成するには、例えばスパッ
タリング法、電子ビーム連続蒸着法などの公知の方法が
使用できるが、それらのJT法で11tc記芳香族ポリ
イミド膜の表面に磁性層を形成する際、膜の温度(成膜
温度)を約250℃にまで上げることかできるので、優
れた性能の磁性層が容易に形成されつるのである。
Go-(
: To form a magnetic layer made of r alloy, known methods such as sputtering and continuous electron beam evaporation can be used, but these JT methods can be used to form a magnetic layer on the surface of the aromatic polyimide film described in 11tc. When doing so, the film temperature (film forming temperature) can be raised to about 250° C., so a magnetic layer with excellent performance can be easily formed.

Go−Cr合金が磁気記録層として優れる点はまず膜面
に垂直に磁気異方性を存することにより垂直磁化膜とな
り、短波長記録で反磁界の影響を受けないことである。
The advantage of the Go-Cr alloy as a magnetic recording layer is that it has magnetic anisotropy perpendicular to the film surface, resulting in a perpendicularly magnetized film, and is not affected by demagnetizing fields during short wavelength recording.

すなわち磁性層を極端に薄くする必要かないため、高出
力を111るためにト分な膜厚を持たすことができる。
That is, since it is not necessary to make the magnetic layer extremely thin, it is possible to have a sufficient thickness to achieve high output.

このGo−Cr合金からなる磁性層2の厚みは0.1μ
m〜2.0ulの範囲か好ましく、基体1に直接形成さ
せる以外にも、磁性層を形成するに先立ち、接着性向上
、磁気特性向上、その他の[1的で必要に応じてコロナ
放電処理その他の前処理を施したり、 AM 、 Ti
、 Cr、 Ge、 5i02.へ2,03等の非6任
性膜、あるいはFe−Ni合金膜、またはCo−7,r
The thickness of the magnetic layer 2 made of this Go-Cr alloy is 0.1μ.
Preferably, the amount is in the range of m to 2.0 ul, and in addition to directly forming the magnetic layer on the substrate 1, prior to forming the magnetic layer, it may be subjected to other treatments such as improving adhesion, improving magnetic properties, and corona discharge treatment and other treatments as necessary. AM, Ti
, Cr, Ge, 5i02. Non-hexavalent film such as 2,03, or Fe-Ni alloy film, or Co-7,r
.

Fc−P−C,Fc−tl:o−5i−B等の非晶質膜
で代表される高透磁率膜を介して設けてもかまわない。
It may be provided through a high magnetic permeability film typified by an amorphous film such as Fc-P-C or Fc-tl:o-5i-B.

これらGo<r合金・基磁性薄膜は、必要に応して基体
1の両面に形成することもできる。
These Go<r alloy/base magnetic thin films can be formed on both sides of the substrate 1 if necessary.

上記のような強磁性体層2の表面には、後述の有機保護
層4との密着性をよくするために中間層が設けられる。
An intermediate layer is provided on the surface of the ferromagnetic layer 2 as described above in order to improve the adhesion with the organic protective layer 4 described later.

中間層3としては、特に酸化コバルトよりなる層が慴動
特性上からも好ましい。酸化コバルト層は、所定圧の酸
素を含む不活性カス中でのスパッタリング法、希薄酸素
下での真空蒸着法、もしくはイオンブレーティング法等
の物理蒸着法、あるいはプラズマ酸化処理によって、G
o−(:r合金強磁性体層2の表面に直接堆積形成ある
いは下地として酸化層形成をした上に形成している。中
間層3の厚みは、Go−(:r系合金磁性層の持つ高密
度記録特性を有効に利用するためにはスペーシングロス
減少のため薄い事が望ましく、中間層3の厚みは30〜
300人が好ましく、50〜150人が特に好ましい。
As the intermediate layer 3, a layer made of cobalt oxide is particularly preferable from the viewpoint of sliding properties. The cobalt oxide layer is formed by a sputtering method in an inert gas containing oxygen at a predetermined pressure, a vacuum evaporation method under diluted oxygen, a physical vapor deposition method such as an ion blasting method, or a plasma oxidation treatment.
The thickness of the intermediate layer 3 is the same as that of the Go-(:r alloy magnetic layer). In order to effectively utilize the high-density recording characteristics, it is desirable that the intermediate layer 3 be thin in order to reduce spacing loss, and the thickness of the intermediate layer 3 should be 30 to 30 mm.
300 people are preferred, and 50 to 150 people are particularly preferred.

ただし中間層3と有機保護層4を合わせた厚みを好まし
くは250Å以下、より好ましくは120Å以下におさ
えることが適当である。
However, it is appropriate to keep the combined thickness of the intermediate layer 3 and the organic protective layer 4 to preferably 250 Å or less, more preferably 120 Å or less.

有機保護層4は、分子内に親水性部位と疎水性部位とを
併有する重合性素化合物(以下、両親媒性重合性化合物
)の重合単分子膜又はその累積膜からなる層であり、そ
の形成にあたってはそのような単分子膜又はその累積膜
を50〜100℃で熱処理、或いは室温〜70℃下で真
空処理を施したものが用いられる。
The organic protective layer 4 is a layer consisting of a polymerized monomolecular film of a polymerizable elementary compound (hereinafter referred to as an amphipathic polymerizable compound) having both a hydrophilic site and a hydrophobic site in its molecule, or a cumulative film thereof. For formation, such a monomolecular film or a cumulative film thereof is subjected to heat treatment at 50 to 100°C or vacuum treatment at room temperature to 70°C.

有機保護層4を構成する両親媒性重合性化合物の一例と
しては以下に示す構造を有する化合物を挙げることがで
きる。
Examples of the amphiphilic polymerizable compound constituting the organic protective layer 4 include compounds having the structure shown below.

■ (:11.=(:H(CH2)k−R■ II((
:Hz)m  (jC−C=(ニー(1:Hz)n  
R■ CH3(CH2)k(:00(:H= el+2
上記化合物の内においてRは親水性部位であり具体的に
は、 −COOH,−CH20H、−5O3H,−COOC)
I3.−C:H2S1l−OX (X−C)、 [lr
、I 、 BF4. PF6. TCNQ 。
■ (:11.=(:H(CH2)k-R■ II((
:Hz)m (jC-C=(knee(1:Hz)n
R■ CH3(CH2)k(:00(:H=el+2
In the above compounds, R is a hydrophilic moiety, specifically, -COOH, -CH20H, -5O3H, -COOC)
I3. -C: H2S1l-OX (X-C), [lr
, I, BF4. PF6. TCNQ.

TCNQ2 など)。TCNQ2 etc.).

又■■■の化合物に関してkは8〜28の整数であり、
好ましくは16〜20である。又、■の化合物に関して
m、nは各々0〜2Bの整数でありかつ、mとnの和が
12〜35の整数である。
In addition, regarding the compound of ■■■, k is an integer of 8 to 28,
Preferably it is 16-20. Regarding the compound (2), m and n are each an integer of 0 to 2B, and the sum of m and n is an integer of 12 to 35.

上記の両親媒性重合性化合物の単分子膜又は単分子累積
膜を作成する方法としては、例えば以下に説明するよう
な1.Langmuirらの開発したラングミュア・プ
ロジェット法(以下LB法)が使用できる。
As a method for creating a monomolecular film or a monomolecular cumulative film of the above amphiphilic polymerizable compound, for example, 1. The Langmuir-Prodgett method (hereinafter referred to as LB method) developed by Langmuir et al. can be used.

すなわち、まず目的とする両親媒性重合性化合物をクロ
ロホルム等の溶剤に溶解させる。次に、第2図(a) 
、 (b)に示す装置を用いて、両親媒性重合性化合物
の溶液を水相14上に展開させて両親媒性重合性化合物
を膜状に形成させる。
That is, first, the target amphipathic polymerizable compound is dissolved in a solvent such as chloroform. Next, Figure 2(a)
, Using the apparatus shown in (b), a solution of the amphipathic polymerizable compound is spread on the aqueous phase 14 to form the amphipathic polymerizable compound into a film shape.

この際、末端にカルボキシル基を有する両親媒性重合性
化合物を用いる場合には水相I4中にあらかじめ所望の
金属イオン、例えばAg”、 (:u”、Li“。
At this time, when using an amphiphilic polymerizable compound having a carboxyl group at the end, a desired metal ion, such as Ag", (:u", Li") is added in advance to the aqueous phase I4.

Na”、K”、B a44、Ca++、Go+4、C、
++、Cd”、Mg +4、MO+4、pb”、Cu”
、Fe++、N i++、Zn++、co+4 +、C
、++ 4. Fe44 +、At””、RuAno、
1.a++4等やアンモニウムイオンを溶解させておけ
ば、これらの塩として膜状に形成させることもできる。
Na”, K”, B a44, Ca++, Go+4, C,
++, Cd”, Mg +4, MO+4, pb”, Cu”
, Fe++, Ni++, Zn++, co+4 +, C
, ++ 4. Fe44 +, At””, RuAno,
1. By dissolving a++4, etc. and ammonium ions, these salts can be formed into a membrane.

その際、カルボキシル基の水素原fかこれらの金属イオ
ン若しくはアンモニウムイオンと置換する割合は水相1
4のpH及び上記イオンの濃度に囚って快まり、係るイ
オン濃度を調節することによって任意の割合のものを得
ることができる。
At that time, the ratio of substitution of the hydrogen atom f of the carboxyl group with these metal ions or ammonium ions is determined based on the aqueous phase 1.
The pH of 4 and the concentration of the above ions are satisfactory, and by adjusting the ion concentration, any ratio can be obtained.

次にこの展開層が水相上を自由に拡散して広がりすぎな
いように仕切板(または浮子)7を設けて展開面積を制
限して膜物質の集合状態を制御しその集合状態に比例し
た表面圧を得る。この仕切板7を動かし展開面積を縮小
して膜物質の集合状態を制御し、表面圧を徐々に上昇さ
せ、累積膜の製造に適する表面圧を設定することが出来
る。この表面圧を維持しながら静かに清浄な担体15を
垂直に上下させることにより両親媒性重合性化合物の昨
分子膜が担体15上に移しとられる。ここでいつ担体と
は、既述の磁性体薄膜を示す。この様にして両親媒性重
合性化合物の単分子膜を中間層3上に形成することがで
きる。
Next, in order to prevent this spread layer from spreading freely on the water phase and spreading too much, a partition plate (or float) 7 is provided to limit the spread area and control the aggregation state of the membrane material. Obtain surface pressure. By moving the partition plate 7 and reducing the developed area, it is possible to control the aggregation state of the membrane material, gradually increase the surface pressure, and set the surface pressure suitable for producing a cumulative membrane. By gently moving the clean carrier 15 up and down vertically while maintaining this surface pressure, the molecular film of the amphiphilic polymerizable compound is transferred onto the carrier 15. Here, the term "carrier" refers to the magnetic thin film described above. In this manner, a monomolecular film of the amphiphilic polymerizable compound can be formed on the intermediate layer 3.

両親媒性重合性化合物の単分子膜はこのようにして製造
されるが前記の操作を繰り返す事により所望の累積数の
両親媒性重合性化合物の昨分子累積膜を形成することが
できる。
A monomolecular film of the amphipathic polymerizable compound is produced in this manner, and by repeating the above-mentioned operations, a desired cumulative number of monomolecular films of the amphipathic polymerizable compound can be formed.

両親媒性重合性化合物の単分子膜を担体上に移すには上
述した垂直浸漬法の他、水平付着法、回転円筒法などの
方法も採用できる。
In order to transfer the monomolecular film of the amphiphilic polymerizable compound onto the carrier, in addition to the above-mentioned vertical dipping method, methods such as the horizontal adhesion method and the rotating cylinder method can also be employed.

水平付着法は担体を水面に水平に接触させて移しとる方
法で、回転円筒法は円筒形の担体を水面上を回転させて
担体表面に移しとる方法である。
The horizontal adhesion method is a method in which the carrier is brought into horizontal contact with the water surface and transferred, and the rotating cylinder method is a method in which a cylindrical carrier is rotated on the water surface and transferred onto the carrier surface.

前述した垂直浸漬法では、表面が親水性である担体を水
面を横切る方向に水中から引き上げると両親媒性重合性
化合物の親木基が担体側に向いた単分子膜が担体上に形
成される。前述のように担体を上下させると、各行程ご
とに一枚ずつ両親媒性重合性化合物の単分子膜が積み重
なっていく。製膜分Y−の向きが引上行程と浸液行程で
逆になるので、この方法によると各層間は両親媒性重合
性化合物の親木基と疎水基が向かいあうY型膜が形成さ
れる。それに対し水平付着法は、両親媒性重合性化合物
の疎水基が担体側に向いた単分子膜が担体上に形成され
る。この方法では、累積しても、製膜分子の向きの交代
はなく全ての層において、疎水基が担体側に向いたX膜
が形成される。反対に全ての層において親水基が担体側
に向いた累積膜はZ型膜と呼ばれる。
In the vertical immersion method described above, when a carrier with a hydrophilic surface is lifted out of water in a direction across the water surface, a monomolecular film is formed on the carrier with the parent group of the amphiphilic polymerizable compound facing the carrier. . When the carrier is moved up and down as described above, one monomolecular film of the amphipathic polymerizable compound is stacked on top of the other with each step. Since the direction of the film forming component Y- is reversed between the pulling process and the dipping process, this method forms a Y-shaped film in which the parent group and the hydrophobic group of the amphipathic polymerizable compound face each other between each layer. . In contrast, in the horizontal adhesion method, a monomolecular film is formed on the carrier with the hydrophobic groups of the amphipathic polymerizable compound facing the carrier side. In this method, there is no change in the orientation of the film-forming molecules even if they are accumulated, and an X film is formed in which the hydrophobic groups face the carrier side in all layers. On the contrary, a cumulative film in which the hydrophilic groups in all layers face the carrier side is called a Z-type film.

単分子層を担体上に移す方法は、これらに限定されるわ
けではなく、大面積担体を用いるときには担体ロールか
ら水相中に担体を押し出していく方法などもとり得る。
The method of transferring the monomolecular layer onto the carrier is not limited to these methods, and when a large-area carrier is used, a method of extruding the carrier from a carrier roll into an aqueous phase may also be used.

また、前述した親木基、疎水基の担体への向きは原則で
あり、担体の表面処理等によって変えることもできる。
Furthermore, the orientation of the aforementioned parent wood group and hydrophobic group toward the carrier is a general rule, and can be changed by surface treatment of the carrier.

上述の方法に困って担体上、すなわち中間層3上に形成
された両親媒性重合性化合物の単分子膜又は単分子累積
膜にX線、紫外光、熱等のエネルギー照射を行うことに
より係る両親媒性重合性化合物を例えば下記反応式(1
)〜(3)のように重合させ、重合単分子膜又は、重合
単分子累積膜を得る。
By irradiating energy such as X-rays, ultraviolet light, heat, etc. to the monomolecular film or monomolecular cumulative film of the amphiphilic polymerizable compound formed on the carrier, that is, on the intermediate layer 3, when the above-mentioned method is difficult. For example, an amphipathic polymerizable compound can be prepared using the following reaction formula (1).
) to (3) to obtain a polymerized monomolecular film or a polymerized monomolecular cumulative film.

n−C112−Cl1 (CH2)k−R→(に112
 CHTh    (1)(C:H2)k−R n −tl ((:H2)m−c=c−c=c−(cH
2)n−R→  H(C:H2)Tn(2) ■ 呻c−c=c−c  +1 (C)Iz)n −R n −CH3(Ctl 2)k(:0(]CH= CH
2→ CH3(CH2)kcOO(3) fCll−CHz+n なお係る重合反応を、水面上に展開させたヤ分子膜中で
行なわせることも可能であり、その場合には担体上に直
接重合単分子膜又は重合単分子累積膜が形成される。
n-C112-Cl1 (CH2)k-R→(ni112
CHTh (1)(C:H2)k-Rn-tl ((:H2)m-c=c-c=c-(cH
2)n-R→ H(C:H2)Tn(2) ■ groan c-c=c-c +1 (C)Iz)n -R n -CH3(Ctl 2)k(:0(]CH= CH
2→ CH3(CH2)kcOO(3) fCll-CHz+n It is also possible to carry out the polymerization reaction in a monomolecular film developed on the water surface, and in that case, it is possible to directly deposit a polymerized monomolecular film on the carrier. Or a polymerized monomolecular cumulative film is formed.

上述の方法に囚って中間層上に形成される両親媒性重合
性化合物の重合単分子膜及び重合単分子累積膜は高度の
秩序性を有する超薄膜(単分子層あたりの厚さ220〜
35人)であり、これらの■%で保護層を形成した場合
には、電磁変換特性に与える影晋を著しく小さなものに
することか可能になる。この際、係る有機保護層の下地
たる中間層(特に酸化コバルト層)3はG o −Cr
 jail性層2に比へ特に酸化コバルト層)3はGo
−Cr 磁性層2に比へて親水性が高く、従って、有機
保護層をGo−Cr &fi性層上に形成する場合と比
較してより強固な密着性を保つことができる。
The polymerized monomolecular film and polymerized monomolecular cumulative film of the amphiphilic polymerizable compound formed on the intermediate layer by the above-mentioned method are ultra-thin films with a high degree of order (thickness per monomolecular layer is 220 ~
35 people), and when a protective layer is formed with these %, it becomes possible to significantly reduce the influence on the electromagnetic conversion characteristics. At this time, the intermediate layer (particularly the cobalt oxide layer) 3 which is the base of the organic protective layer is made of G o -Cr
Cobalt oxide layer (especially cobalt oxide layer) 3 is Go
-Cr has higher hydrophilicity than the magnetic layer 2, and therefore stronger adhesion can be maintained compared to the case where an organic protective layer is formed on the Go-Cr &fi layer.

この保護層の厚さは15〜100人の範囲が好ましい。The thickness of this protective layer is preferably in the range of 15 to 100 layers.

係る保護層形成を行なった磁性薄膜を熱処理及び又は真
空処理に付すことにより、中間層3と保護層4との密着
性が向上すると共に保護層4そのものが安定化し、電磁
変換特性を本質的に低下させることなく、特に耐久性、
並びに走行性の優れた薄膜堆積型磁気記録媒体が得られ
る。
By subjecting the magnetic thin film on which such a protective layer has been formed to heat treatment and/or vacuum treatment, the adhesion between the intermediate layer 3 and the protective layer 4 is improved, and the protective layer 4 itself is stabilized, essentially improving the electromagnetic conversion characteristics. Particularly durable, without reducing
In addition, a thin film deposition type magnetic recording medium with excellent running properties can be obtained.

前記熱処理としては、基体や有機保護層の材質にもよる
が、40℃〜90℃の環境温度にて1分間〜30分間加
熱するのが適当である。また、真空処理としては、1O
−2Lorr〜lO−’ Lorrの減圧状態に5分間
〜lO分間さらすのが適当である。
As for the heat treatment, heating at an environmental temperature of 40° C. to 90° C. for 1 minute to 30 minutes is appropriate, although it depends on the materials of the substrate and the organic protective layer. In addition, as for vacuum treatment, 1O
It is appropriate to expose the sample to a reduced pressure of -2Lorr to 10-' Lorr for 5 minutes to 10 minutes.

もちろん、熱処理と真空処理の両方を実力lしてもよい
Of course, both heat treatment and vacuum treatment may be performed.

本発明によって得ら九るCo−Cr合金強磁性体薄膜堆
積型磁気記録媒体において、当該磁気記録媒体の基体の
少なくとも片側表面には磁気記録層を形成し、これと反
対側の一方の面には、必要に応じて表面と対称型の薄膜
を積層形成しても良く、あるいは当該基体の保護、滑性
、補強、その他の有効な効果を補足する目的で各種のバ
ックコート層を形成しても良い。バックコート層として
は、AI、 Ti、 V、 Zr、 (:o、 Nb、
 Ta、 W、 (:r、 Si、Ge等の金属、半金
属あるいはその酸化物、窒化物、炭化物の薄膜、あるい
は酸化物微粒子炭酸カルシウム等の易滑性微粒子と、カ
ーボン、金属粉末等の導電性粒子と、脂肪酸、脂肪酸エ
ステル等の潤滑剤を少なくとも一種類含む熱可塑性また
は熱硬化性樹脂等の高分子バインダーに混練して塗布し
たものか挙げられる。
In the Co-Cr alloy ferromagnetic thin film deposited magnetic recording medium obtained by the present invention, a magnetic recording layer is formed on at least one surface of the substrate of the magnetic recording medium, and a magnetic recording layer is formed on the opposite surface. If necessary, a thin film symmetrical to the surface may be laminated, or various back coat layers may be formed to provide protection, lubricity, reinforcement, and other effective effects to the substrate. Also good. The back coat layer includes AI, Ti, V, Zr, (:o, Nb,
Ta, W, (:r, thin films of metals such as Si, Ge, semimetals or their oxides, nitrides, carbides, or oxide fine particles, easily slippery fine particles such as calcium carbonate, and conductive particles such as carbon, metal powder, etc. Examples include those obtained by kneading and coating a polymer binder such as a thermoplastic or thermosetting resin containing rubber particles and at least one type of lubricant such as a fatty acid or a fatty acid ester.

〔実施例〕〔Example〕

以下、本発明の具体的実施例を挙げることにより本発明
を更に詳細に説明する。
Hereinafter, the present invention will be explained in more detail by giving specific examples of the present invention.

[I]磁気テープの製造 〈テープの評価方法〉 出力の周波数特性: 0.75帽1z、 4.5MHz、 7.5MHzの1
il−−−一信号を記録し、再生出力を測定。
[I] Manufacture of magnetic tape <Tape evaluation method> Output frequency characteristics: 0.75 Hz, 4.5 MHz, 7.5 MHz 1
il---record one signal and measure the playback output.

スチル耐久性テスト: 20℃、65%および0℃の環境下でスチル再生出力の
時間変化を測定。20分経過後出力低下が3dB以内を
Oとする。
Still durability test: Measured changes in still playback output over time in environments of 20°C, 65% and 0°C. If the output decreases within 3 dB after 20 minutes, it is considered O.

耐蝕テスト: 50℃、80%で1000時間放置後飽和磁束密度の低
下が10%以内をOとする。
Corrosion resistance test: If the saturation magnetic flux density decreases by 10% or less after being left at 50°C and 80% for 1000 hours, it is considered O.

実施例1 内容積300 ftの重合釜に3.3′、4.4’−ビ
フェニルテトラカルボン酸二無水物、20モル、ピロメ
リット酸二無水物;80モル、バラフェニレンジアミン
;70モル及び4.4−ジアミンジフェニルエーテル;
30モルを原料として厚さ10μの芳香族ポリイミド膜
のベースフィルムを製造した。
Example 1 In a polymerization kettle with an internal volume of 300 ft, 20 moles of 3.3',4.4'-biphenyltetracarboxylic dianhydride, 80 moles of pyromellitic dianhydride, 70 moles of phenylene diamine, and 4 .4-Diamine diphenyl ether;
A base film of an aromatic polyimide membrane having a thickness of 10 μm was manufactured using 30 mol of the raw material.

この芳香族ポリイミドフィルムについて種々の物性を測
定したが、その結果、引張弾性定数が490kg/mm
2.熱膨張係数αは 100〜300℃で1 、6 X
 l O’ cm/am/”C1RZ (JIS B 
0601による10点平均粗)は80人であった。
Various physical properties of this aromatic polyimide film were measured, and as a result, the tensile elastic constant was 490 kg/mm.
2. Thermal expansion coefficient α is 1.6X at 100-300℃
l O'cm/am/"C1RZ (JIS B
The average score of 10 points according to 0601 was 80 people.

この芳香族ポリイミドフィルムをベースフィルムとして
使用し、電子ビーム加熱装置を有した磁気テープの連続
成膜装置により、当該ベースフィルムの表面にGo 7
8wL’< −Cr 22wt1の垂直磁化蒸着膜をベ
ースフィルムの温度を200℃として、0.1μm/s
ecの成膜速度で約0.4μ厚形成した後、その上部に
酸素10%を含むアルゴンガス中でCOをスパッタし、
酸化コバルト薄膜を80A厚形成した。
Using this aromatic polyimide film as a base film, Go 7 was applied to the surface of the base film using a continuous magnetic tape film forming apparatus equipped with an electron beam heating device
8wL'< -Cr 22wt1 perpendicularly magnetized vapor deposited film with base film temperature of 200°C, 0.1 μm/s
After forming a film with a thickness of about 0.4μ at a film formation rate of EC, CO is sputtered on top of it in argon gas containing 10% oxygen.
A cobalt oxide thin film was formed to a thickness of 80A.

次に、(4)式に示す両親媒性ジアセチレン化合物、 
10.12−ペンタコサシイツイン酸、C1IA(Ct
b)++  C=C−CEC−(CH2)B(:OOH
(4)をベンゼンに溶解せしめ(濃度117m1)だ後
、塩化マンガン4Xl(1層Mを含むpH7、水温20
℃の水相14(第2図)上に展開し、膜状に析出させた
Next, an amphiphilic diacetylene compound shown in formula (4),
10.12-Pentacosacitic acid, C1IA (Ct
b) ++ C=C-CEC-(CH2)B(:OOH
After dissolving (4) in benzene (concentration 117 ml), manganese chloride 4Xl (pH 7 containing 1 layer M, water temperature 20
It was spread on an aqueous phase 14 (FIG. 2) at ℃ and deposited in the form of a film.

溶媒蒸発除去後、表面圧を20mN/mに迄高めた。こ
の表面圧を一定に保ち乍ら上述磁性体薄膜を担体とし、
10mm/minの速度で係る担体を水面を横切る方向
に水中より引き上げ、10.12−ペンタコサシイツイ
ン酸マンガン塩の単分子膜を係る担体上に形成した。こ
うして得た磁気シートに対し、200W高圧水銀灯を照
射して10.12−ペンタコサシイツイン酸マンガン塩
を重合せしめた後、80℃の恒温炉にて15分間熱処理
をした上で、 8 、0+n+r+幅にスリットした。
After evaporating the solvent, the surface pressure was increased to 20 mN/m. While keeping this surface pressure constant, using the above-mentioned magnetic thin film as a carrier,
The carrier was pulled out of the water in a direction across the water surface at a speed of 10 mm/min, and a monomolecular film of 10.12-pentacosasiitoic acid manganese salt was formed on the carrier. The magnetic sheet thus obtained was irradiated with a 200W high-pressure mercury lamp to polymerize 10.12-pentacosasiitic acid manganese salt, and then heat-treated in a constant temperature oven at 80°C for 15 minutes, and then 8,0+n+r+ It was slit to the width.

この テープのカールは、−<  O,lmm−’と小さく、
実用土問題のない量であった。このテープを8ミリVT
Rテープ用カセツトに装着し、 8ミリビデオデツキに
て出力の周波数特性、スチル耐久性、50℃・8096
[(1tでの耐食性テスト等を行なった。
The curl of this tape is small, -< O, lmm-'.
The amount of soil was not a problem for practical use. This tape is 8mm VT
Attached to an R tape cassette, output frequency characteristics, still durability, 50℃/8096 with an 8mm video deck.
[(Corrosion resistance test etc. at 1 ton were conducted.

結果は第1表に示す如く、大変良好であった。The results were very good as shown in Table 1.

実施例2 実施例1における10.12−ペンタコサシイツイン酸
マンガン塩栄分7′膜を3層に累積した以外は、実施例
1と全く同様にして、テープを作製し、性能評価を行っ
た結果を第1表に示す。その結果は、m分子−膜のもの
と同等に良好であった。
Example 2 A tape was prepared in the same manner as in Example 1, except that the 10.12-pentacosacyitic acid manganese salt nutrient 7' film in Example 1 was accumulated in three layers, and the performance was evaluated. The results are shown in Table 1. The results were as good as those of the m-molecule-membrane.

実施例3 下記式(5)に示す両親媒性ジアセヂレン化合物、2.
1−トリコサシイツイン酸 C113(C1h)+7− C=C−C=C−C00I
I          (5)をヘンセンに溶解せしめ
(濃度img/(Ill )た後、塩化コバルト(II
 ) l X 10−3Mを含むpl+9.5 、水温
20℃の水相14(第2図)上に展開し、2.4−トリ
コサシイツイン酸コバルト塩を膜状に形成させた。
Example 3 Amphiphilic diacetylene compound represented by the following formula (5), 2.
1-tricosacitic acid C113 (C1h)+7- C=C-C=C-C00I
After dissolving I (5) in Hensen (concentration img/(Ill)), cobalt chloride (II
) 1 x 10-3M in pl+9.5 and water temperature 20°C on the aqueous phase 14 (Fig. 2) to form 2,4-tricosacitic acid cobalt salt in the form of a film.

溶媒7/2発除去M2、表面圧を20mN/mに迄高め
た。気相側を窒素置換した上て表面圧を一定に保ちなが
ら係る水面上に展開している24−トリコサシイツイン
酸コバルト塩の単分子1漠に高圧水銀灯を照射し、これ
を取合せしめた。次に20mN/mの表面圧を一定に保
ち乍ら実施例1と同様にして作成した、119厚80人
の酸化コバルト膜を含むCo−Cr 照性薄膜を1[1
体とし、10mm/minの速度で係る担体を水面を横
切る方向に水中より引き上げ、2.4−トリコサシイツ
イン酸コバルト塩の重合単分子1漠を係る担体」二に形
成した。こうして得た電気シートを60℃の真空恒G炉
(真空度10−’ torr)にて5分間真空熱処理を
行なった後、 8.0m+n幅スリットした。このテー
プを実施例1と同様にして性能評価を行なった。結果を
第1表に示す。
The solvent was removed 7/2 times M2, and the surface pressure was increased to 20 mN/m. After purging the gas phase side with nitrogen and keeping the surface pressure constant, a high-pressure mercury lamp was irradiated onto a single molecule of cobalt 24-tricosacitic acid salt spread on the water surface, and this was combined. . Next, a Co-Cr luminescent thin film containing a 119-thick 80-layer cobalt oxide film was prepared in the same manner as in Example 1 while keeping the surface pressure constant at 20 mN/m.
The carrier was lifted out of the water in a direction across the water surface at a speed of 10 mm/min, and a polymerized monomolecule of 2,4-tricosacitic acid cobalt salt was formed into the carrier. The electrical sheet thus obtained was subjected to vacuum heat treatment for 5 minutes in a vacuum constant G furnace at 60° C. (vacuum degree 10-'torr), and then slit with a width of 8.0 m+n. The performance of this tape was evaluated in the same manner as in Example 1. The results are shown in Table 1.

比較例1.2 実施例IBtび3に於いて各々熱処理乃至真空処理工程
を省略した他は全く同等にして得られたテープの性能評
価を行なった。結果を第1表に示す。
Comparative Example 1.2 The performance of tapes obtained in Examples IBt and 3 was evaluated in the same manner as in Examples IBt and 3, except that the heat treatment and vacuum treatment steps were omitted. The results are shown in Table 1.

[+1コ磁気デイスクの製造 くディスクの評価法〉 スチルビデオデツキ(試作機)で再生出力、耐久性、円
周方向の出力変動(出力ムラ)を測定、耐久性は連続5
0時間再生し、出力の低下が6dll以下のものをOと
する。出力ムラは1トラツク中での出力の最大値と最小
値の差を示す。
[+1 Evaluation method for manufacturing magnetic disks] Using a still video deck (prototype), the playback output, durability, and output fluctuations in the circumferential direction (output unevenness) were measured, and the durability was continuous 5.
If the output decreases by 6 dll or less after 0 hours of playback, it is rated O. Output unevenness indicates the difference between the maximum and minimum output values in one track.

実施例4 3.3’、4.4−ビフェニルテトラカルボン酸二無水
物:40モル、ピロメリット酸二無水物:60モル、パ
ラフェニレンジアミン:50モル及び4,4゛−ジアミ
ノジフェニルエーテル、50モルより成るモノマー成分
及び成分比で実施例1と同一方法にて芳香族ポリアミッ
ク酸の溶液組成物を製造した。そのようにして得ら九だ
溶液組成物を使用し実施例1と同一方法にて厚さ40μ
sの芳香族ポリイミドフィルムを製造した。
Example 4 3.3′,4.4-biphenyltetracarboxylic dianhydride: 40 mol, pyromellitic dianhydride: 60 mol, paraphenylenediamine: 50 mol, and 4,4′-diaminodiphenyl ether, 50 mol A solution composition of aromatic polyamic acid was produced in the same manner as in Example 1 using the following monomer components and component ratios. Using the thus obtained nine-layer solution composition, a thickness of 40 μm was prepared in the same manner as in Example 1.
An aromatic polyimide film of s was manufactured.

この芳香族ポリイミドフィルムは引張弾性定数か400
kg/mm’、 too 〜300℃における熱膨張係
数αか2.6x 10’ c+n/cm/”C1Ry、
は30人であった。
This aromatic polyimide film has a tensile elastic constant of 400
kg/mm', too Thermal expansion coefficient α at ~300℃ 2.6x 10'c+n/cm/"C1Ry,
There were 30 people.

この片香族ポリイミドフィルムをベースフィルムとして
使用し、スパッタリンク装置にて当該ベースフィルムF
にCo 80wtJ −Cr 20w1J、の垂直磁化
膜をベースフィルムの温度を150℃として、約05μ
頂1シ成した後、その1部に酸素12%を含むアルゴン
ガス中でCOをスパッタし、酸化コバルト薄膜を100
人厚形成した。
This polyimide film is used as a base film, and the base film F is
A perpendicularly magnetized film of Co 80wtJ - Cr 20w1J was applied to the base film at a temperature of 150°C, about 05μ
After the top layer is formed, CO is sputtered on a part of it in argon gas containing 12% oxygen to form a cobalt oxide thin film of 100%.
The people were thick.

次いで下記式(6)に示す両親媒性オレフィン化合物、
ω−トリコセン酸 Cll2−Cll (Cll、) 、。C00I+  
  (5)をクロロホルムに溶解せしめ(濃度11D/
rnl)た後、塩化カドミウム5xlO−’ニーを含む
pH8,5、水温20℃の水相14(第2図)上に展開
し、ω−トリコセン酸カドミウム塩を膜状に析出させた
。溶媒蒸発除去後、表面圧を30mN/mに迄高めた。
Next, an amphiphilic olefin compound shown in the following formula (6),
ω-Trichosenic acid Cll2-Cll (Cll, ),. C00I+
(5) was dissolved in chloroform (concentration 11D/
After that, the mixture was spread on an aqueous phase 14 (Fig. 2) containing cadmium chloride 5xlO-' at pH 8.5 and water temperature of 20°C (Fig. 2) to precipitate ω-tricosenoic acid cadmium salt in the form of a film. After evaporating the solvent, the surface pressure was increased to 30 mN/m.

この表面圧を一定に保ちながら、上記磁性体薄膜を担体
とし、io+nm/mi口の速度で係る担体を水面を横
切る方向に水中より引き上げ、ω−トリコセン酸カドミ
ウム塩単分子膜を係る担体上に作成した。更に係る担体
を速度10mm/minで静かに」皿上させて、係る単
分子膜を3層に累積したものを作成した。こうして得た
磁気シートをX線露光せしめた後、80℃の恒温炉にて
15分間熱処理を行なった。
While keeping this surface pressure constant, the magnetic thin film is used as a carrier, and the carrier is lifted out of the water in a direction across the water surface at a speed of io+nm/mi, and the ω-tricosenoic acid cadmium salt monomolecular film is placed on the carrier. Created. Further, the carrier was gently moved onto a plate at a speed of 10 mm/min to produce a monolayer of three layers. After the magnetic sheet thus obtained was exposed to X-rays, it was heat-treated in a constant temperature oven at 80° C. for 15 minutes.

こうして得られたサンプルを直径47mmφのディスク
に打ち抜き加工し、ビテオディスクlF生機を用いて評
価した。
The sample thus obtained was punched into a disk with a diameter of 47 mm, and evaluated using a Viteo Disc IF gray machine.

その結果は第2表に示した様に大変良好であった。The results were very good as shown in Table 2.

実施例5 実施例4に於ける有機保護層を10.12−ペンタコサ
シイツイン酸カドミウム塩1′11分7−1漠に変更し
た他は実施例6と全く同様にしてディスクを作成した。
Example 5 A disk was prepared in exactly the same manner as in Example 6, except that the organic protective layer in Example 4 was changed to cadmium salt 1'11'7-1 of 10.12-pentacosacyitic acid.

重合反応は2001!水銀灯を照射して行わせた。Polymerization reaction is 2001! This was done by irradiating it with a mercury lamp.

この際、中分子l漠の作成条件として水相14は、塩化
カドミウム5 X 10−’ M 、pH6,8、水温
20℃に調製した。又、製膜は表面圧20+nN/mの
もと、引きトげ速度10mm/minにて行った。かか
るディスクの性能評価の結果を第2表に示す。
At this time, the aqueous phase 14 was prepared to contain cadmium chloride 5 x 10-'M, pH 6.8, and water temperature 20°C as conditions for producing the medium molecule. Further, film formation was carried out under a surface pressure of 20+nN/m and at a drawing speed of 10 mm/min. Table 2 shows the results of performance evaluation of such disks.

比較例3.4 実施例4及び5に於いて、各々熱処理工程を省略した他
は全く同等にして得られたディスクの性能評価を行なっ
た。その結果を第2表に示す。
Comparative Example 3.4 The performance of disks obtained in Examples 4 and 5 was evaluated in exactly the same manner as in Examples 4 and 5, except that the heat treatment step was omitted. The results are shown in Table 2.

比較例5 実施例1において酸化コバルト層と10.12−ペンタ
コサシイツイン酸マンカン塩層の代わりに純鉄系磁性体
を塗布したメタル塗布型の磁気シートを直径47mmφ
のディスクに打ち抜き加工し、ビデオディスク再生機を
用いて評価した。結果を第2表に示す。
Comparative Example 5 A metal-coated magnetic sheet with a diameter of 47 mm in which a pure iron-based magnetic material was coated instead of the cobalt oxide layer and the 10.12-pentacosacyiic acid manquatin salt layer in Example 1 was used.
A disc was punched out and evaluated using a video disc player. The results are shown in Table 2.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明による磁気記録媒木の製造
方法によれば、走行性、耐久性、耐環境4の優れた高密
度磁気記録媒体の実現をならしめることができる。
As explained above, according to the method for manufacturing a magnetic recording medium according to the present invention, it is possible to realize a high-density magnetic recording medium that is excellent in runnability, durability, and environmental resistance.

A而の筒fliな説明 第1図は本発明によって製造される磁気記録媒本の構成
図であり、第2図(a)、第2図(b)は本邑明の製造
方法に使用される昨分り又は(li分子累1膜形成装置
である。
A detailed explanation of the cylinder Figure 1 is a diagram showing the configuration of a magnetic recording medium manufactured by the present invention, and Figures 2 (a) and 2 (b) are diagrams showing the structure of a magnetic recording medium manufactured by the present invention. This is an apparatus for forming a single film of li molecules.

■・・・基体、     2・・・強磁性体層、3・・
・中間層、     4・・・有機保護層、5・・・水
槽、      6・・・枠、7・・・仕切板、   
  8・・・おもり、9・・・滑車、      10
・・・!f!石、11・・・対磁石、     12・
・・吸引パイプ、13・・・吸引ノズル、   14・
・・水相、15・・・担体く基板)、 16・・・担体
トF腕。
■...Substrate, 2...Ferromagnetic layer, 3...
・Intermediate layer, 4...Organic protective layer, 5...Aquarium, 6...Frame, 7...Partition plate,
8... Weight, 9... Pulley, 10
...! f! Stone, 11... Pair magnet, 12.
...Suction pipe, 13...Suction nozzle, 14.
...Aqueous phase, 15...Carrier and substrate), 16...Carrier and F arm.

Claims (5)

【特許請求の範囲】[Claims] (1)基体上に、磁性体層を積層し、次いでその上に重
合性化合物の重合単分子膜又はその累積膜を含む有機保
護層を形成し、更に得られた積層物に熱処理及び/又は
真空処理を施すことを特徴とする磁気記録媒体の製造方
法。
(1) A magnetic material layer is laminated on a substrate, and then an organic protective layer containing a polymerized monomolecular film of a polymerizable compound or a cumulative film thereof is formed thereon, and the resulting laminate is subjected to heat treatment and/or A method for manufacturing a magnetic recording medium, the method comprising performing vacuum treatment.
(2)前記有機保護層と前記磁性体層の間に中間層を設
けた特許請求の範囲第1項記載の製造方法。
(2) The manufacturing method according to claim 1, wherein an intermediate layer is provided between the organic protective layer and the magnetic layer.
(3)前記有機保護層の厚みが15Å以上100Å以下
である特許請求の範囲第1項記載の製造方法。
(3) The manufacturing method according to claim 1, wherein the organic protective layer has a thickness of 15 Å or more and 100 Å or less.
(4)前記中間層が酸化コバルトの薄膜である特許請求
の範囲第2項記載の製造方法。
(4) The manufacturing method according to claim 2, wherein the intermediate layer is a thin film of cobalt oxide.
(5)前記基体が芳香族ポリイミドフィルムである特許
請求の範囲第1項記載の製造方法。
(5) The manufacturing method according to claim 1, wherein the substrate is an aromatic polyimide film.
JP11358086A 1986-05-20 1986-05-20 Production of magnetic recording medium Pending JPS62271221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11358086A JPS62271221A (en) 1986-05-20 1986-05-20 Production of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11358086A JPS62271221A (en) 1986-05-20 1986-05-20 Production of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS62271221A true JPS62271221A (en) 1987-11-25

Family

ID=14615828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11358086A Pending JPS62271221A (en) 1986-05-20 1986-05-20 Production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS62271221A (en)

Similar Documents

Publication Publication Date Title
JPS62271221A (en) Production of magnetic recording medium
JPH0546013B2 (en)
JPS62271220A (en) Production of magnetic recording medium
JPH0461414B2 (en)
JPS5841443A (en) Manufacture of magnetic recording medium
JPS62271222A (en) Production of magnetic recording medium
JPS62277622A (en) Magnetic recording medium
JPS62271219A (en) Production of magnetic recording medium
JPS62277621A (en) Magnetic recording medium
JP2514216B2 (en) Magnetic recording media
JPH0479065B2 (en)
JPS63102038A (en) Magnetic recording medium and its production
JPH01264632A (en) Method and apparatus for producing magnetic recording medium
JP2946748B2 (en) Manufacturing method of magnetic recording medium
JPS6057535A (en) Magnetic recording medium
JP2959110B2 (en) Manufacturing method of magnetic tape
JPS62277625A (en) Magnetic recording medium
JPH0381202B2 (en)
JPS62277623A (en) Magnetic recording medium
JPS63266627A (en) Perpendicular magnetic recording medium
JPH02282917A (en) Magnetic recording medium
JPS58222432A (en) Magnetically recording medium and its manufacture
JPS62279516A (en) Vertical magnetic recording medium
JPH10105945A (en) Magnetic recording medium
JPH10334441A (en) Magnetic recording medium