JPS60260162A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS60260162A
JPS60260162A JP11685484A JP11685484A JPS60260162A JP S60260162 A JPS60260162 A JP S60260162A JP 11685484 A JP11685484 A JP 11685484A JP 11685484 A JP11685484 A JP 11685484A JP S60260162 A JPS60260162 A JP S60260162A
Authority
JP
Japan
Prior art keywords
layer
semiconductor device
diffusion
impurity layer
concentration impurity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11685484A
Other languages
Japanese (ja)
Other versions
JPH0691267B2 (en
Inventor
Masato Moriwake
政人 守分
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP59116854A priority Critical patent/JPH0691267B2/en
Publication of JPS60260162A publication Critical patent/JPS60260162A/en
Publication of JPH0691267B2 publication Critical patent/JPH0691267B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/866Zener diodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To improve the reliability of the titled semiconductor device by a method wherein the semiconductor device is formed in such a manner that a P-N junction surface is not exposed on the interface of a substrate, thereby enabling to prevent the generation of drifting of Zener voltage. CONSTITUTION:The first P<+> type high density impurity layer 4b is diffused as deep as to the depth reaching a buried diffusion layer 2. The depth of diffusion of the second high density impurity layer 6 can be set by changing the film thickness of poly-silicon 5 consisting of N<+> type impurities. The second high density impurity layer 6 is formed larger in area than the first high density impurity layer 4b by diffusing from the poly-silicon. The above has the construction wherein a P-N junction surface is not exposed on the interface of a substrate. Accordingly, as an adverse effect such as a contamination and the like is not given from outside, the drift of Zener voltage of a Zener diode can be prevented.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、半導体装置の製造方法に係り、特に、ツェナ
ダイオードを備えた半導体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (A) Field of Industrial Application The present invention relates to a method of manufacturing a semiconductor device, and particularly to a method of manufacturing a semiconductor device including a Zener diode.

(ロ)従来技術 通常、バイポーラ型の半導体装置に形成されるツェナダ
イオードは、ブレーナ型トランジスタのエミッタおよび
ベースを利用して製造されている。
(B) Prior Art Usually, a Zener diode formed in a bipolar type semiconductor device is manufactured using the emitter and base of a Brainer type transistor.

そして例えば、前記ツェナダイオードは、ペース領域よ
りもエミッタ領域が小さく形成される構造上、P−N接
合面の端部が基板界面に露出してしまう。即ち、この部
分でもってツェナ電圧特性が定められる。
For example, because the Zener diode has a structure in which the emitter region is formed smaller than the space region, the end of the PN junction surface is exposed at the substrate interface. That is, this portion determines the Zener voltage characteristics.

しかして、前記P−N接合面の端部が外部からの汚染等
の影響を受けやすいので、パシベーション膜を形成して
いる。このパシベーション膜には、ガラスバシヘーショ
ンおよび窒化膜パシベーションの二種類がある。
However, since the end portion of the P-N junction surface is easily affected by external contamination, a passivation film is formed. There are two types of passivation films: glass passivation and nitride film passivation.

しかしながら、前記各パシベーション膜を形成しても外
部からの汚染等の影響を完全に防止することができない
事。またパシベーションを形成す−る事により、前記ツ
ェナダイオードのツェナ電圧がドリフトするという問題
を生じる。従って、製品としての信頼性の低下を招くこ
ととなる。
However, even if each of the passivation films is formed, it is not possible to completely prevent the effects of external contamination and the like. Furthermore, the formation of passivation causes the problem that the Zener voltage of the Zener diode drifts. Therefore, the reliability of the product will be lowered.

さらに、従来のツェナダイオードのツェナ電圧値の設定
は、エミツタ層の拡散深さに依存されている。
Furthermore, setting the Zener voltage value of a conventional Zener diode is dependent on the diffusion depth of the emitter layer.

即ち、前記エミツタ層の拡散深さは、ベース領域の所定
位置の高濃度不純物の拡散時間および拡散温度を適宜に
可変することにより行われている。
That is, the diffusion depth of the emitter layer is determined by appropriately varying the diffusion time and diffusion temperature of the high concentration impurity at a predetermined position in the base region.

しかしながら、上述のような方法では、拡散深さが浅く
なるように制御するのが困難である。
However, with the method described above, it is difficult to control the diffusion depth to be shallow.

そのため、低いツェナ電圧値のツェナダイオードを形成
するのは技術的に困難である。
Therefore, it is technically difficult to form a Zener diode with a low Zener voltage value.

また、前記エミツタ層の拡散深さをコントロールする場
合、拡散炉の拡散温度および拡散時間等をそれぞれ可変
してやる必要があり、非當にわずられしいという問題も
ある。
Furthermore, when controlling the diffusion depth of the emitter layer, it is necessary to vary the diffusion temperature and diffusion time of the diffusion furnace, which is extremely cumbersome.

(ハ)目的 本発明は、ツェナ電圧のドリフトをなくして、製品とし
て信頼性の向上を図り得るツェナダイオードを備えた半
導体装置の製造方法を提供することを目的としている。
(C) Objective The present invention aims to provide a method for manufacturing a semiconductor device equipped with a Zener diode, which can eliminate Zener voltage drift and improve the reliability of the product.

さらに、所望のツェナ電圧値を容易に得ることのできる
ツェナダイオードを備えた半導体装置の製造方法をも提
供することを目的としている。
A further object of the present invention is to provide a method for manufacturing a semiconductor device equipped with a Zener diode that can easily obtain a desired Zener voltage value.

(ニ)構成 本発明に係る半導体装置の製造方法は、ツェナダイオー
ドを備えた半導体装置の製造方法であって、所定箇所に
埋め込み拡散層が形成された基板上にエピタキシャル層
を成長させる工程と、基板に形成する各素子を絶縁分離
する分離拡散層と、これの中央部にダイオード領域を形
成する第1の高濃度不純物層とを前記埋め込み拡散層に
達するまで同時に拡散する工程と、 前記第1の高濃度不純物層の表面に、これと逆極性の不
純物を含む所望の膜厚のポリシリコンを形成する工程と
、 前記ポリシリコンから不純物を拡散させて前記第1の高
濃度不純物層よりも大きい面積で、かつ、所望の拡散深
さである第2の高濃度不純物層を形成する工程とを具備
したことを特徴とする。
(D) Structure A method for manufacturing a semiconductor device according to the present invention is a method for manufacturing a semiconductor device including a Zener diode, which includes the step of growing an epitaxial layer on a substrate on which a buried diffusion layer is formed at a predetermined location; simultaneously diffusing an isolation diffusion layer for insulating and isolating each element formed on the substrate and a first high concentration impurity layer for forming a diode region in the center thereof until reaching the buried diffusion layer; forming polysilicon of a desired thickness containing impurities of opposite polarity on the surface of the first high concentration impurity layer; and diffusing impurities from the polysilicon to form a layer larger than the first high concentration impurity layer. The method is characterized by comprising a step of forming a second high concentration impurity layer having a desired area and a desired diffusion depth.

(ボ)実施例 第1図は本発明に係る製造方法で形成された半導体装置
の一実施例を略示した断面図である。
(B) Embodiment FIG. 1 is a sectional view schematically showing an embodiment of a semiconductor device formed by the manufacturing method according to the present invention.

1はP型のシリコン基板からなる半導体基板、2はP中
型の埋め込み拡散層、3はN型のエピタキシャル層、4
aはP中型の分離拡散層であり、リング状に拡散され前
記埋め込み拡散N2と接続している。4bはP中型の第
1の高濃度不純物層であり、前記埋め込み拡散層2に達
するまで拡散されている。
1 is a semiconductor substrate made of a P-type silicon substrate, 2 is a P medium-sized buried diffusion layer, 3 is an N-type epitaxial layer, 4
A is a P medium-sized separation diffusion layer, which is diffused in a ring shape and connected to the buried diffusion N2. 4b is a first high concentration impurity layer of P medium type, which is diffused until it reaches the buried diffusion layer 2.

5はN十型の不純物を含むポリシリコンであり、この膜
厚を可変することにより第2の高濃度不純物層6の拡散
深さを設定することができる。
Reference numeral 5 denotes polysilicon containing N0 type impurities, and by varying the film thickness, the diffusion depth of the second high concentration impurity layer 6 can be set.

前記第2の高濃度不純物層6は、前記ポリシリコンから
拡散されることにより、前記第1の高濃度不純物Fft
4bよりも大きい面積に形成される。即ちP−N接合面
が基板界面に露出しない構造にされている。
The second high concentration impurity layer 6 is diffused from the polysilicon to form the first high concentration impurity layer Fft.
4b is formed to have a larger area. That is, the structure is such that the PN junction surface is not exposed at the substrate interface.

7は前記分離拡散Fi4aとポリシリコン5とを除くエ
ピタキシャルN3の上部に形成されたシリコン酸化膜で
ある。
7 is a silicon oxide film formed on the epitaxial layer N3 excluding the isolation diffusion Fi4a and polysilicon 5.

8は前記ポリシリコン5を熱処理した後、形成されたシ
リコン酸化膜である。
8 is a silicon oxide film formed after the polysilicon 5 is heat-treated.

9a、9bはアルミニウム等からなる電極であり、前記
分離拡散N4aとポリシリコン5との表面に蒸着形成さ
れている。
Reference numerals 9a and 9b are electrodes made of aluminum or the like, which are deposited on the surfaces of the separated and diffused N4a and the polysilicon 5.

10は例えば窒化膜からなるパシベーション膜である。10 is a passivation film made of, for example, a nitride film.

次に、本発明に係る半導体装置の製造方法を第2図に従
って以下説明する。
Next, a method for manufacturing a semiconductor device according to the present invention will be described below with reference to FIG.

第2図は半導体装置の製造方法の一実施例を略示した説
明図である。
FIG. 2 is an explanatory diagram schematically showing one embodiment of a method for manufacturing a semiconductor device.

tal P型の半導体基板1の表面にシリコン酸化膜1
1を形成して、埋め込み拡散層2を形成する部分の前記
シリコン酸化膜11をエツチングする。前記シリコン酸
化膜11をマスクとしてP十型不純物を熱拡散して埋め
込み拡散層2を拡散する。
A silicon oxide film 1 is formed on the surface of a P-type semiconductor substrate 1.
1 is formed, and a portion of the silicon oxide film 11 where the buried diffusion layer 2 is to be formed is etched. The buried diffusion layer 2 is diffused by thermally diffusing the P0 type impurity using the silicon oxide film 11 as a mask.

(bl 前記シリコン酸化膜11を除去して、基板1の
表面にN型のエピタキシャル層3を成長させる。
(bl) The silicon oxide film 11 is removed and an N-type epitaxial layer 3 is grown on the surface of the substrate 1.

(C) 前記エピタキシャル層3の表面に再度シリコン
酸化膜12を形成して、分離拡散N4a、第1の高濃度
不純物層4bを形成する部分の前記シリコン酸化膜12
をエツチングした後、この表面にP小型不純物拡散源1
3を付着させる。
(C) A silicon oxide film 12 is formed again on the surface of the epitaxial layer 3 to form a portion of the silicon oxide film 12 where the isolation diffusion N4a and the first high concentration impurity layer 4b are to be formed.
After etching, a P small impurity diffusion source 1 is placed on this surface.
Attach 3.

(dl 前記P十型不純物拡散源13を熱処理すること
により、分離拡散層4aおよび第1の高濃度不純物層4
bと前記埋め込み拡散層2とを接続させる。
(dl By heat-treating the P-type impurity diffusion source 13, the separation diffusion layer 4a and the first high concentration impurity layer 4 are
b and the buried diffusion layer 2 are connected.

(e) 前記シリコン酸化膜12とP小型不純物拡散源
13とを除去して、再度シリコン酸化膜7を形成する。
(e) The silicon oxide film 12 and the P small impurity diffusion source 13 are removed, and the silicon oxide film 7 is formed again.

次に、ポリシリコン5を形成する部分のシリコン酸化膜
7をエツチングして、N生型不純物を含むポリシリコン
5を所望の膜厚で形成しバターニングする。
Next, the silicon oxide film 7 in the portion where the polysilicon 5 is to be formed is etched to form a polysilicon 5 containing N-type impurities to a desired thickness and patterned.

(f) 所定の拡散温度、拡散時間でもって熱処理する
ことにより、前記ポリシリコン5から前記第1の高濃度
不純物層4bよりも大きい面積の第2の高濃度不純物N
6を拡散させる。このとき前記ポリシリコン5の表面に
はシリコン酸化膜8が形成される。
(f) A second high concentration impurity N having a larger area than the first high concentration impurity layer 4b is formed from the polysilicon 5 by heat treatment at a predetermined diffusion temperature and diffusion time.
Diffuse 6. At this time, a silicon oxide film 8 is formed on the surface of the polysilicon 5.

tgl 前記ポリシリコン5の表面のシリコン酸化膜8
と、前記分離拡散Ft4aの表面のシリコン酸化膜7と
をエツチングすることにより、各コンタクトホールを形
成する。
tgl Silicon oxide film 8 on the surface of the polysilicon 5
Each contact hole is formed by etching the silicon oxide film 7 on the surface of the isolation diffusion Ft4a.

(hl 半導体基板の表面にアルミニウム等を蒸着しバ
ターニングして各電極9a、9bを形成する。次に窒化
膜等のパシベーション膜10を形成する。
(hl) Aluminum or the like is deposited on the surface of the semiconductor substrate and patterned to form each electrode 9a, 9b. Next, a passivation film 10 such as a nitride film is formed.

尚、上述した実施例で電極9aは、分離拡散層4aの表
面に形成されているが、本発明はこれに限定されず、例
えば基板1の裏面に形成するも好ましい。
Although the electrode 9a is formed on the surface of the separation diffusion layer 4a in the embodiment described above, the present invention is not limited thereto, and it is also preferable to form it on the back surface of the substrate 1, for example.

また、上述した実施例の半導体装置によるツェナ電圧値
の特性を第3図に示す。
Further, FIG. 3 shows the characteristics of the Zener voltage value of the semiconductor device of the above-described embodiment.

(へ)効果 本発明は、第1の高濃度不純物層の表面にこれよりも大
きい面積の第2の高濃度不純物層を形成しているので、
P−N接合面が基板界面に露出しない。
(F) Effect The present invention forms a second high concentration impurity layer with a larger area on the surface of the first high concentration impurity layer.
The P-N junction surface is not exposed at the substrate interface.

従って、外部からの汚染等の影響を受けないので、ツェ
ナダイオードのツェナ電圧のドリフトを防止することが
できる結果、製品として信頼性を向上することができる
Therefore, since it is not affected by external contamination, it is possible to prevent the Zener voltage of the Zener diode from drifting, and as a result, the reliability of the product can be improved.

また、ポリシリコンの膜厚を可変して第2の高濃度不純
物層の拡散深さを定めているので、ツェナダイオードの
ツェナ電圧値を任意に設定することができる。
Further, since the diffusion depth of the second high concentration impurity layer is determined by varying the thickness of the polysilicon film, the Zener voltage value of the Zener diode can be set arbitrarily.

さらに、ポリシリコンの膜厚がそれぞれ異なるものであ
っても、その拡散深さは前記ポリシリコンでもって定め
られるので、各々同一の拡散炉で拡散することができる
。即ち、拡散炉の拡散温度を可変してやる必要がないの
で、製造作業の能率第1図は本発明に係る製造方法で形
成された半導体装置の一実施例を略示した断面図、第2
図は半導体装置の製造方法の一実施例を略示した説明図
、第3図は本発明の製造方法で形成されたツェナダイオ
ードを備えた半導体装置のツェナ電圧値の特性図である
Furthermore, even if the polysilicon film thicknesses are different, the diffusion depth is determined by the polysilicon, so each can be diffused in the same diffusion furnace. That is, since there is no need to vary the diffusion temperature of the diffusion furnace, the efficiency of the manufacturing operation is improved.Figure 1 is a cross-sectional view schematically showing one embodiment of a semiconductor device formed by the manufacturing method according to the present invention, and Figure 2
The figure is an explanatory diagram schematically showing one embodiment of the method for manufacturing a semiconductor device, and FIG. 3 is a characteristic diagram of the Zener voltage value of a semiconductor device equipped with a Zener diode formed by the manufacturing method of the present invention.

l ・・・半導体基板、2 ・・・埋め込み拡散層、3
 ・・・エピタキシャル層、4a・・・分離拡散層、4
b・・・第1の高濃度不純物層、5 ・・・ポリシリコ
ン、6 ・・・第2の高濃度不純物層。
l...Semiconductor substrate, 2...Buried diffusion layer, 3
...Epitaxial layer, 4a...Isolation diffusion layer, 4
b: first high concentration impurity layer, 5: polysilicon, 6: second high concentration impurity layer.

特許出願人 ローム株式会社 代理人 弁理士 大 西 孝 治 第1図 (a) (C) 第2図(ぞの1) 第2図Cぞ 288Patent applicant: ROHM Co., Ltd. Agent: Patent Attorney Takaharu Onishi Figure 1 (a) (C) Figure 2 (Zone 1) Figure 2 C 288

Claims (1)

【特許請求の範囲】[Claims] (1)ツェナダイオードを備えた半導体装置の製造方法
において、 所定箇所に埋め込み拡散層が形成された基板上にエピタ
キシャル層を成長させる工程と、基板に形成する各素子
を絶縁分離する分離拡散層と、これの中央部にダイオー
ド領域を形成する第1の高濃度不純物層とを前記埋め込
み拡散層に達するまで同時に拡散する工程と、 前記第1の高濃度不純物層の表面に、これと逆極性の不
純物を含む所望の膜厚のポリシリコンを形成する工程と
、 前記ポリシリコンから不純物を拡散させて前記第1の高
濃度不純物層よりも大きい面積で、かつ、所望の拡散深
さである第2の高濃度不純物層を形成する工程とを具備
したことを特徴とする半導体装置の製造方法。
(1) A method for manufacturing a semiconductor device equipped with a Zener diode includes a step of growing an epitaxial layer on a substrate in which a buried diffusion layer is formed at a predetermined location, and an isolation diffusion layer for insulating and separating each element formed on the substrate. , simultaneously diffusing a first high-concentration impurity layer forming a diode region in the center of the first high-concentration impurity layer until it reaches the buried diffusion layer; forming a polysilicon layer containing impurities and having a desired thickness; and diffusing impurities from the polysilicon to form a second layer having a larger area than the first high concentration impurity layer and a desired diffusion depth. 1. A method of manufacturing a semiconductor device, comprising: forming a highly concentrated impurity layer.
JP59116854A 1984-06-06 1984-06-06 Method for manufacturing semiconductor device Expired - Lifetime JPH0691267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59116854A JPH0691267B2 (en) 1984-06-06 1984-06-06 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59116854A JPH0691267B2 (en) 1984-06-06 1984-06-06 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS60260162A true JPS60260162A (en) 1985-12-23
JPH0691267B2 JPH0691267B2 (en) 1994-11-14

Family

ID=14697266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59116854A Expired - Lifetime JPH0691267B2 (en) 1984-06-06 1984-06-06 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH0691267B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0314399A2 (en) * 1987-10-30 1989-05-03 Precision Monolithics Inc. Buried zener diode and method of forming the same
US5241213A (en) * 1991-07-30 1993-08-31 Harris Corporation Buried zener diode having auxiliary zener junction access path
CN105556679A (en) * 2013-10-01 2016-05-04 威世通用半导体公司 Zener diode having a polysilicon layer for improved reverse surge capability and decreased leakage current

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5243383A (en) * 1975-10-02 1977-04-05 Nec Corp Process for productiong of constant voltage diode
JPS55134983A (en) * 1979-04-09 1980-10-21 Ibm Surface breakdown zener diode
JPS5737884A (en) * 1980-08-19 1982-03-02 Nec Corp Semiconductor device
JPS57207380A (en) * 1981-06-16 1982-12-20 Rohm Co Ltd Zener diode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5243383A (en) * 1975-10-02 1977-04-05 Nec Corp Process for productiong of constant voltage diode
JPS55134983A (en) * 1979-04-09 1980-10-21 Ibm Surface breakdown zener diode
JPS5737884A (en) * 1980-08-19 1982-03-02 Nec Corp Semiconductor device
JPS57207380A (en) * 1981-06-16 1982-12-20 Rohm Co Ltd Zener diode

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0314399A2 (en) * 1987-10-30 1989-05-03 Precision Monolithics Inc. Buried zener diode and method of forming the same
US5241213A (en) * 1991-07-30 1993-08-31 Harris Corporation Buried zener diode having auxiliary zener junction access path
CN105556679A (en) * 2013-10-01 2016-05-04 威世通用半导体公司 Zener diode having a polysilicon layer for improved reverse surge capability and decreased leakage current
EP3053198A1 (en) * 2013-10-01 2016-08-10 Vishay General Semiconductor LLC Zener diode having a polysilicon layer for improved reverse surge capability and decreased leakage current
EP3053198A4 (en) * 2013-10-01 2017-05-03 Vishay General Semiconductor LLC Zener diode having a polysilicon layer for improved reverse surge capability and decreased leakage current
US9966429B2 (en) 2013-10-01 2018-05-08 Vishay General Semiconductor Llc Zener diode having a polysilicon layer for improved reverse surge capability and decreased leakage current

Also Published As

Publication number Publication date
JPH0691267B2 (en) 1994-11-14

Similar Documents

Publication Publication Date Title
US4140558A (en) Isolation of integrated circuits utilizing selective etching and diffusion
US3772577A (en) Guard ring mesa construction for low and high voltage npn and pnp transistors and diodes and method of making same
JPH038343A (en) Bipolar transistor and manufacture thereof
JPH0145224B2 (en)
GB1310412A (en) Semiconductor devices
JPS60260162A (en) Manufacture of semiconductor device
JPH08227897A (en) Semiconductor device and manufacture thereof
JPS57134956A (en) Manufacture of semiconductor integrated circuit
JPS60244036A (en) Semiconductor device and manufacture thereof
JPH07321347A (en) Manufacture of semiconductor device containing high-concentration p-n junction plane
JPH0691266B2 (en) Method for manufacturing semiconductor device
JPH04168764A (en) Manufacture of semiconductor device
JPS6482668A (en) Manufacture of bipolar transistor
JPH027438A (en) Manufacture of semiconductor device
JPS59200464A (en) Manufacture of bipolar semiconductor device
JPS63245939A (en) Semiconductor device
JPH04273171A (en) Semiconductor device
JPS6294924A (en) Manufacture of semiconductor device
JPS62209868A (en) Manufacture of semiconductor device
JPS6163055A (en) Manufacture of semiconductor device
JPS6022358A (en) Semiconductor integrated circuit device
JPS63104366A (en) Manufacture of semiconductor device
JPS63257261A (en) Manufacture of semiconductor device
JPS6222451A (en) P-n junction isolation method of semiconductor substrate
JPH0982722A (en) Manufacture of transistor