JPS60253261A - Integrated circuit containing iil element - Google Patents

Integrated circuit containing iil element

Info

Publication number
JPS60253261A
JPS60253261A JP59110624A JP11062484A JPS60253261A JP S60253261 A JPS60253261 A JP S60253261A JP 59110624 A JP59110624 A JP 59110624A JP 11062484 A JP11062484 A JP 11062484A JP S60253261 A JPS60253261 A JP S60253261A
Authority
JP
Japan
Prior art keywords
region
type
conductivity type
regions
impurity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59110624A
Other languages
Japanese (ja)
Inventor
Shigeru Kawamura
茂 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Faurecia Clarion Electronics Co Ltd
Original Assignee
Clarion Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clarion Co Ltd filed Critical Clarion Co Ltd
Priority to JP59110624A priority Critical patent/JPS60253261A/en
Publication of JPS60253261A publication Critical patent/JPS60253261A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8222Bipolar technology
    • H01L21/8226Bipolar technology comprising merged transistor logic or integrated injection logic

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Element Separation (AREA)
  • Bipolar Integrated Circuits (AREA)

Abstract

PURPOSE:To realize characteristics desirable to both a first one conductive type semiconductor region and a second one conductive type semiconductor region by isolating the first region and the second region having impurity concentration higher than that of the first region by an other conductive type semiconductor region and forming an IIL element in the second region and an analog element in the first region. CONSTITUTION:An N<+> type region 14 and impurity layers 15B, 15C having concentration higher than that of the region 14 are shaped, and an N type layer 16 is grown on the whole surface. P type regions 18A, 18B are formed so as to surround N<+> type regions 17A, 17B by thermally treating a substrate 11. Consequently, the N type layer 16 is isolated into two regions 16A, 16B. A P type impurity is diffused to each shape P type regions 19A, 19B and 19C in the N<+> type region 17A and the N type region 16B. An N type impurity is diffused to severally form N<+> type region 20A, 20B and 20D in the P type regions 19B and 19C, and N<+> tyep regions 20C and 20E are shaped in the N<+> type region 17A and the N type region 16B. An I<2>L element is formed in one N<+> type region 17A isolated by the P type region 18A, and an N-P-N Tr as an analog element is shaped in the other N type region 16B.

Description

【発明の詳細な説明】 本発明は、IIL素子とアナログ素子とにおける各々の
望ましい特性を両立させ得るIIL累子を含む集積回路
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an integrated circuit including an IIL component that can achieve both desired characteristics of an IIL device and an analog device.

I IL(インテグレーテッド・インジェクション・ロ
ジック、以下I2Lと称する)素子は、第1図のようK
PNPトランジスタQ1とNPN )ランジスタQ2と
を組み合わせることによってデバイス構造を簡単にし、
製造プロセス的に高集積化を可能圧すると共に低消費電
力化を計ったバイポーラ型wa埋回路である。
The IIL (Integrated Injection Logic, hereinafter referred to as I2L) element is K as shown in Figure 1.
By combining PNP transistor Q1 and NPN) transistor Q2, the device structure is simplified,
It is a bipolar type WA embedded circuit that allows for high integration in terms of manufacturing process and reduces power consumption.

またILはプロセス的に従来のアナログICと共通化で
きるため、アナログ・デジタA/、54載ICに盛んに
利用されている。
In addition, since IL can be used in common with conventional analog ICs in terms of process, it is widely used in analog/digital A/54 ICs.

第2図はこのような混載ICの従来構造を示す断面図で
、1はP型子導体基板、2A、2Bは鹸型埋込領域、4
A、4BはP型領域3A、3B。
FIG. 2 is a cross-sectional view showing the conventional structure of such a hybrid IC, in which 1 is a P-type conductor substrate, 2A and 2B are embedding regions, and 4 is a P-type conductor substrate.
A and 4B are P-type regions 3A and 3B.

3Cによって分mきれたN型領域、5A〜5CはPfj
J像域、6A〜6EはNm領域である。ここで上記N型
領域4A、48に対応した島領域A、8には各々IL素
子およびアナログ素子としてNPNトランジスタが形成
される。I L素子において■はインジェクターs c
i t c24Xマルチコレクタ、Bはベース、Eはエ
ミッタであり、NPN)ランジスタにおいてEムはエミ
ッタ、Bムはベース、Cムはコレクタである。
N-type region separated by m by 3C, 5A to 5C are Pfj
The J image area, 6A to 6E, is the Nm area. Here, NPN transistors are formed as IL elements and analog elements in the island regions A and 8 corresponding to the N-type regions 4A and 48, respectively. In the I L element, ■ is the injector sc
i t c24X multicollector, B is the base, E is the emitter, and in an NPN transistor, Em is the emitter, B is the base, and C is the collector.

このような従来の混載ICにおいてI″Lは前述のよう
に優れた特徴を有している反面、スイッチングスピード
の点で他の論理回路に一歩譲るとい5欠点を有していた
。その理由は第2図の構造においてエミッタEとなるN
型領域4Aの不純物濃度が低くなっているために、エミ
ッタEで少数キャリアの蓄積が生じるためである。この
欠点を除くためには上記N型領域4Aの不純物濃度を高
くすればいいが、このN型領域4Aはアナログ素子であ
るNPN)ランジスタ(NPNTr)のコレクタ領域4
Bと同一プロセスで形成されるためその不純物濃度は画
素子の特性の兼ね合いで決定される。ここでN型領域4
Aと4Bとでは特性の点で矛盾する関係にあり、NPN
Trのコレクタ耐圧を上げるためにはその不純物濃度は
低い方がよい。
In such conventional hybrid ICs, I″L has excellent features as mentioned above, but on the other hand, it has five drawbacks that make it one step slower than other logic circuits in terms of switching speed.The reason is In the structure shown in Figure 2, N becomes the emitter E.
This is because minority carriers are accumulated in the emitter E because the impurity concentration in the type region 4A is low. In order to eliminate this drawback, the impurity concentration of the N type region 4A can be increased, but this N type region 4A is the collector region 4 of the NPN transistor (NPNTr) which is an analog element.
Since it is formed in the same process as B, its impurity concentration is determined based on the characteristics of the pixel element. Here, N type region 4
A and 4B have a contradictory relationship in terms of characteristics, and NPN
In order to increase the collector breakdown voltage of the Tr, the lower the impurity concentration, the better.

したがってILの都合のみで不純物濃度χ決定するわけ
にはいかない。このためには上記N型領域4A、4Bを
各々に都合のよくなるように独立して形成する方法も考
えられるが、プロセスが極めて複雑となるので現実的で
はない。
Therefore, the impurity concentration χ cannot be determined solely based on IL considerations. For this purpose, it is conceivable to form the N-type regions 4A and 4B independently in a manner convenient for each, but this is not practical since the process would be extremely complicated.

 3一 本発明は以上の観点からなされたもので、IIL素子と
アナログ素子の両者に望ましい特性を実現できるように
したIIL素子を含む集積回路を提供することを目的と
するものである。
31 The present invention has been made from the above point of view, and it is an object of the present invention to provide an integrated circuit including an IIL element that can realize desirable characteristics for both the IIL element and the analog element.

本発明の特徴とするところは、第1導電型牛導体領域と
これよりも高不純物濃度の第二の第1導電型牛導体領域
とが第2導を型中導体領域によって分離され、上記第二
の第1導電型牛導体領域にIIL素子が形成されると共
に上記第1導電型牛導体領域にアナログ素子が形成され
るように構成したIIL素子を含む集積回路にある。
The present invention is characterized in that the first conductivity type conductor region and the second first conductivity type conductor region having a higher impurity concentration are separated by the conductor region in the mold, and the second conductor region is separated by the conductor region in the mold. The integrated circuit includes an IIL element configured such that an IIL element is formed in a first conductive type conductor region and an analog element is formed in the first conductive type conductive region.

以下図面を参照して本発明実施例を説明する。Embodiments of the present invention will be described below with reference to the drawings.

第3図は本発明実施例によるIIL素子を含む集積回路
を示す断面図で、11はP型シリコン基板、14はN型
埋込領域、16A、16BはP型領域18Aによって分
離されたN型領域、17A、17Bは上記P型領域18
AによってN型領域16A、16Bと分離されているN
m領域でそれらN型領域16A、16Bよりも高い不純
物濃度を有している。
FIG. 3 is a cross-sectional view showing an integrated circuit including an IIL element according to an embodiment of the present invention, in which 11 is a P-type silicon substrate, 14 is an N-type buried region, and 16A and 16B are N-type silicon substrates separated by a P-type region 18A. The regions 17A and 17B are the P-type regions 18
N separated from N-type regions 16A, 16B by A
The m region has a higher impurity concentration than those of the N type regions 16A and 16B.

19 A〜19Bは上記Nff1l領域17 A fP
3VC形成され4− たPffi領域、19 Cは上記Nm領域16B内に形
成されy:P型領域、2OA、20Bおよび20Dは各
々上記P型領域19Bおよび19C内に形成されたN型
領域、20Cおよび20Eは各々上記Nm領域17 A
およびN型領域16B内に形成されたNm領域、21 
A〜21Hは各領域Ilc設けられた1!極である。
19 A to 19B are the above Nff1l regions 17 A fP
3VC is formed in the Pffi region, 19C is formed in the Nm region 16B; and 20E are the above Nm regions 17A, respectively.
and an Nm region formed in the N-type region 16B, 21
A to 21H are 1! where each area Ilc is provided! It is extreme.

以上の構成において上記P型領域18Aによって分離さ
れた電力のN型領域17 A KはIL素子が形成され
、他方のN型領域16 Bにはアナログ素子としてNP
NTrが形成される。ここでN型領域17AとNm領域
16 Bの不純物濃度は、各々IL累子としておよびア
ナログ素子として望ましい特性が得られるような値に設
定される。
In the above configuration, an IL element is formed in the power N type region 17AK separated by the P type region 18A, and an NP as an analog element is formed in the other N type region 16B.
NTr is formed. Here, the impurity concentrations of the N-type region 17A and the Nm region 16B are set to values that provide desirable characteristics as an IL resistor and as an analog element, respectively.

第4図(at〜(jlは第3図の構造の集積回路の製法
を示す断面−で、以下図面を参照して工程順に説明する
FIG. 4 (at to (jl) is a cross-sectional view showing a method for manufacturing an integrated circuit having the structure shown in FIG. 3, and the steps will be explained below in order of process with reference to the drawings.

工程(a):第4図(atのように、PMシリコン単結
晶基板11i用意し酸化処理を行なってその表面に二酸
化シリコン(Sing)膜12Aを形成した後、周知の
フォトリソグラフィー法を施こして5i02膜12Aの
一部に窓13Aを設ける。
Step (a): As shown in FIG. 4 (at), a PM silicon single crystal substrate 11i is prepared, oxidized to form a silicon dioxide (Sing) film 12A on its surface, and then a well-known photolithography method is applied. A window 13A is provided in a part of the 5i02 film 12A.

工程(bl:第4図(blのように、上記窓13Aから
ヒ素(As)等のN型不純物を選択的に拡散して抜根埋
込まれるN型領域14を形成する。拡散処理と同時にあ
るいはその後の酸化処理によって窓13 Aは再びSi
02mAで扱う。
Step (bl: As shown in FIG. 4 (bl), an N-type impurity such as arsenic (As) is selectively diffused from the window 13A to form an N-type region 14 which is to be buried by the root. At the same time as the diffusion process or Through the subsequent oxidation treatment, the window 13A becomes Si again.
Treated with 02mA.

工a(C1:第4図(C1のように、上記基板11fi
面の5i02Jii12AヲM択的11tiieiして
[13B、iacを形成する。
Work a (C1: As shown in Fig. 4 (C1), the above board 11fi
5i02Jii12A of the surface is selectively 11tiiei to form [13B, iac.

工I(di:第4図(di ]、J:うに、上記窓13
8,130カラヒ素(As)等のNff1不純物および
ボロン(8)等のP型不純物を導入し、不純物層158
,150を形成する。ヒ素の不純物1に度を上記(bl
工程におけるそれの濃度よりも高(選ぶ。
Engineering I (di: Figure 4 (di ), J: Sea urchin, above window 13
8,130 Nff1 impurities such as arsenic (As) and P-type impurities such as boron (8) are introduced to form an impurity layer 158.
, 150. Arsenic impurity 1 degree above (bl
Higher than its concentration in the process (select.

工程(el:第4図(elのように、S i02膜12
Aを完全に除去した後、全面にエピタキシャル法によっ
てNm層16を成長させる。
Process (el: As shown in Fig. 4 (el), Si02 film 12
After completely removing A, a Nm layer 16 is grown on the entire surface by epitaxial method.

工I(fl:第4図(flのよ5に、基板11に熱処理
な十 施こすことによりN型領域17At17BおよびP型領
域18A、188Y形成する。熱処理によって上記不純
物層158,150のヒ素およびボロンがN型層16円
に拡散してその]Elで達するが、この時ボロンはヒ素
よりも拡散定数が太7.Cので大きく広が+ るために、N型領域17A、178ン囲むようにPM領
域18A、18Bが形成される。これによって上記N型
層16は二つの領域16A、168に分離されると共に
、N型領域17A、17BもP型領域18 A 、 1
8 BによってそれらNm領域16A、16Bと分離さ
れる。
Step I (fl: As shown in FIG. 4, the substrate 11 is subjected to heat treatment to form an N-type region 17At17B and P-type regions 18A and 188Y.The heat treatment removes arsenic and Boron diffuses into the N-type layer 16 and reaches El, but at this time, boron has a diffusion constant 7.C thicker than arsenic, so it spreads widely, so it surrounds the N-type regions 17A and 178. PM regions 18A, 18B are formed in. As a result, the N-type layer 16 is separated into two regions 16A, 168, and the N-type regions 17A, 17B are also divided into P-type regions 18A, 1.
8B separates them from the Nm regions 16A and 16B.

表面には再び5i02換12 Bが形成される。5i02-12B is formed on the surface again.

工程(g) :第4図(glのように、上記S i02
膜12 Bに選択的に窓開けを行ないこの窓からボロン
(8)等のP型不純物ン拡散して、上記N型領域17A
およびN型領域16 B内に各々P型領域19A、19
Bおよび19Cを形成する。窓開は都は再び5i02膜
で嶺われる。
Step (g): Figure 4 (as in gl, the above S i02
A window is selectively opened in the film 12B, and P-type impurities such as boron (8) are diffused through the window to form the N-type region 17A.
and P-type regions 19A and 19 in the N-type region 16B, respectively.
B and 19C are formed. The opening of the window is covered with 5i02 film again.

工程(h):第4図(h)のように、上記5i02膜1
2 Bに選択的に窓開けを行ないこの窓からリンCP)
等のN型不純物を拡散して、上記P型領域19 Bおよ
+ び19 C内に各々N型領域2OA、20Bおよヒ20
D+ を形成し、またNav領域17 AおよびNff1領域
167− 8内にNm領域2DCおよび20gを形成する。窓開は
部は再び5i02膜で徨われる。
Step (h): As shown in FIG. 4(h), the above 5i02 film 1
2 Selectively open a window on B and link CP from this window)
By diffusing N-type impurities such as
D+ is formed, and Nm regions 2DC and 20g are formed in the Nav region 17A and the Nff1 region 167-8. The aperture area is again covered with 5i02 film.

工N(j) : 第4図(i)ノヨ5 K、上記5i0
2 m 12 Bを選択的に窓開けを行ないこれらの窓
および5i02jl12B上にフルゼニウム膜21を蒸
着法等によって形成する。
Engineering N (j): Figure 4 (i) Noyo 5 K, above 5i0
Windows are selectively opened in 2 m 12 B, and a fluzenium film 21 is formed on these windows and 5i02jl12B by vapor deposition or the like.

工@U):第4図(j)のように、上記アルミニウム1
3421に対してフォトリンクラフイー法を適用して不
要部を除去し、必要部分のみを残して電極21 A〜2
18を形成した後シンター処理を施こす。
Engineering@U): As shown in Figure 4 (j), the above aluminum 1
3421 by applying the photorin roughy method to remove unnecessary parts, leaving only the necessary parts and forming electrodes 21 A to 2.
After forming 18, a sintering process is performed.

これによって第3因の構造の集積回路が完成する。This completes the integrated circuit having the third factor structure.

以上の工程ン経て得られた集積回1isKよれば、l 
L!子は上記工程(f)のヒ素拡散によって形成8hr
sNm領域17A内に形成されるためこの不純物濃度は
その望ましい特性を実現するための高い値IIcf&定
することができる。一方、アナログ素子であるNPNT
rは上記工程(e)のエピタキシャル成長法によって形
成されたN■領域168P3 K形成されるためこの不
純物濃度は、上記I”L素子の 8− 形成予定領域の値とは関係なく独立して選べるため、そ
の望ましい特性を実現するための低い値に設定すること
ができる。
According to the integrated circuit 1isK obtained through the above steps, l
L! The particles were formed by arsenic diffusion in step (f) above for 8 hours.
Since it is formed in the sNm region 17A, the impurity concentration can be set to a high value IIcf& to realize the desired characteristics. On the other hand, NPNT which is an analog element
Since r is formed in the N■ region 168P3K formed by the epitaxial growth method in step (e) above, this impurity concentration can be selected independently regardless of the value of the region to be formed in the I''L element. , can be set to a low value to achieve its desired properties.

本発明の製法においては特に工8(f)においてP型不
軸物とN型不純物の二重拡散を行ない、両不純物の拡散
定数の差を利用することにより高濃度+ のN型領域を形成することができ、しかも同時にPmア
イソレーション領域の形成も行なうことができる。この
場合アイソレーション領域は二重拡散により形成される
ため、その面積は小さく抑えられる利点が得られ為集積
化に寄与することができる。
In the manufacturing method of the present invention, double diffusion of P-type axes and N-type impurities is performed particularly in step 8(f), and a high concentration + N-type region is formed by utilizing the difference in diffusion constant of both impurities. Moreover, a Pm isolation region can be formed at the same time. In this case, since the isolation region is formed by double diffusion, the area can be kept small, which can contribute to integration.

以上述べて明らかなように本発明によれば、第1導電型
牛導体領域とこれよりも高不純物濃度の第二の第1導電
型牛導体領域とが第2導電型牛導体領域によって分離さ
れ、上記第二の第1導ta牛導体領域KI IL素子が
形成されると共に上記第1導電型牛導体領域にアナログ
素子が形成されるように構成したものであるから、II
L累子とアナログ素子の両者に望ましい特性を実現させ
ることができる。
As is clear from the above description, according to the present invention, the first conductivity type cow conductor region and the second first conductivity type cow conductor region having a higher impurity concentration are separated by the second conductivity type cow conductor region. , since the second first conductor region KI IL element is formed and an analog element is formed in the first conductor region, II.
Desirable characteristics can be achieved for both the L resistor and the analog element.

よってIIL素子においてはスイッチングスピードを増
加させることができ、アナログ素子においては耐圧が低
下されることはなくなる。
Therefore, the switching speed of the IIL element can be increased, and the breakdown voltage of the analog element will not be lowered.

なお本文実施的で示した牛導体領域の導を型、不純物の
種類等は一同を示したものであり、目的、用途に応じて
任意な選択、組み合せが可能である。
Note that the conductor type, impurity type, etc. of the conductor region shown in the practical section of the text are all shown, and arbitrary selections and combinations can be made depending on the purpose and use.

【図面の簡単な説明】[Brief explanation of drawings]

第り図は本発明を説明するための回路図、第2図および
第3因は従来および本発明実施例による集積回路を示す
断面図、第4図(a)〜(j)は第3図の集積回路の製
法を工程順に示す断面図である。 IrL・・・インテグレーテッド・インジェクション・
ロジック菓子、16A、16B・・・N型領域%17A
。 17 B・・・NfJ領域、18A、18B・・・P型
アイソレーション領域。 ll−
Figure 1 is a circuit diagram for explaining the present invention, Figures 2 and 3 are cross-sectional views showing integrated circuits according to the conventional and embodiments of the present invention, and Figures 4 (a) to (j) are Figure 3. FIG. 3 is a cross-sectional view showing the manufacturing method of the integrated circuit in order of steps. IrL...Integrated injection
Logic confectionery, 16A, 16B...N type area% 17A
. 17B...NfJ region, 18A, 18B...P type isolation region. ll-

Claims (1)

【特許請求の範囲】 1、第1導電型牛導体領域とこれよりも高不純物濃度の
第二の第1導1型半尋体領域とが第2導電型牛導体領域
によって分mされ、上記第二の第1導を型牛導体領域に
IIL素子が形成されると共に上記第1導電型牛導体領
域にアナログ素子が形M、されることを特徴とするII
L素子を含む集積回路。 2、(At fi142導電型半導体基板に選択的に第
1導電型牛導体領域を形成する工程、 (81上記第2導電型手導体基板に選択的に第1導電型
不純物および第2導電型不純物を導入する工程、 (Q 上記第2導電型牛導体基板上に第1導電型牛導体
層を形成する工程、 (D+ 上記第1導電型不純物および第2導電型不純物
な第tstm牛導体層内にこの表面まで達するように拡
散させて上記第1導電型半導体層よりも高不純物濃度の
第二の第1導電型牛導体領域およびこの領域を囲むよう
に第2導電型牛導体領域を形成するために熱処理する工
程、(D 上記第二の第1導電型半導体領域内にIIL
素子を形成する工程、 (F 上記第tSt型半導体層内に他の回路素子を形成
する工程、 を含むことを特徴とするIIL素子を含む集積回路の製
法。 3、上記工程+81 において第2専1!型不純物とし
て第1導1!型不純物よりも拡散定数の大なるものが選
ばれることを特徴とする特許請求の範囲第2項記載のI
IL素子を含む集積回路の製法。
[Scope of Claims] 1. A first conductive type conductor region and a second first conductive type 1 semiconducting region having a higher impurity concentration than the first conductive type conductor region are separated by a second conductive type conductor region, and the above-mentioned II characterized in that an IIL element is formed in the second first conductor region and an analog element is formed in the first conductor region.
An integrated circuit containing L elements. 2. (Step of selectively forming a first conductivity type conductor region on the At fi142 conductivity type semiconductor substrate, (81 selectively forming a first conductivity type impurity and a second conductivity type impurity on the second conductivity type conductor substrate) a step of introducing (Q) a step of forming a first conductivity type conductor layer on the second conductivity type conductor substrate; A second first conductivity type conductor region having a higher impurity concentration than the first conductivity type semiconductor layer is diffused to reach this surface, and a second conductivity type conductor region is formed to surround this region. a step of heat-treating (D) in the second first conductivity type semiconductor region;
A method for manufacturing an integrated circuit including an IIL element, comprising: a step of forming an element; (F) a step of forming another circuit element in the tSt type semiconductor layer; 3. I according to claim 2, characterized in that the 1! type impurity is selected from one having a larger diffusion constant than the first conductive 1! type impurity.
A method for manufacturing an integrated circuit including an IL element.
JP59110624A 1984-05-29 1984-05-29 Integrated circuit containing iil element Pending JPS60253261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59110624A JPS60253261A (en) 1984-05-29 1984-05-29 Integrated circuit containing iil element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59110624A JPS60253261A (en) 1984-05-29 1984-05-29 Integrated circuit containing iil element

Publications (1)

Publication Number Publication Date
JPS60253261A true JPS60253261A (en) 1985-12-13

Family

ID=14540497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59110624A Pending JPS60253261A (en) 1984-05-29 1984-05-29 Integrated circuit containing iil element

Country Status (1)

Country Link
JP (1) JPS60253261A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5851561A (en) * 1981-09-24 1983-03-26 Hitachi Ltd Semiconductor integrated circuit device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5851561A (en) * 1981-09-24 1983-03-26 Hitachi Ltd Semiconductor integrated circuit device

Similar Documents

Publication Publication Date Title
US4120707A (en) Process of fabricating junction isolated IGFET and bipolar transistor integrated circuit by diffusion
JPH01264253A (en) Manufacture of semiconductor device
JPH0410226B2 (en)
KR940008566B1 (en) Manufacturing method of semiconductor device
JPS60253261A (en) Integrated circuit containing iil element
US4567644A (en) Method of making triple diffused ISL structure
EP0111977B1 (en) Integrated circuit and method
JPS6097670A (en) Semiconductor device
JPS59144168A (en) Bipolar mos semiconductor device and manufacture thereof
JPS58206153A (en) Semiconductor integrated circuit
JPS63136659A (en) Manufacture of semiconductor integrated circuit
JP2571449B2 (en) Manufacturing method of bipolar IC
JP3386293B2 (en) Method for manufacturing semiconductor integrated circuit device
JPH0470781B2 (en)
JPS59130458A (en) Semiconductor integrated circuit
JPH038582B2 (en)
JPS60154656A (en) Semiconductor device and manufacture thereof
JPS6318672A (en) Bipolar transistor
JPH02234453A (en) Manufacture of semiconductor device
JPS6152574B2 (en)
JPH04188630A (en) Semiconductor integrated circuit
JPS6148966A (en) Manufacture of semiconductor device
JPS60242660A (en) Semiconductor integrated circuit
JPS6149460A (en) Manufacture of semiconductor device
JPH0281438A (en) Bipolar integrated circuit