JPS63136659A - Manufacture of semiconductor integrated circuit - Google Patents

Manufacture of semiconductor integrated circuit

Info

Publication number
JPS63136659A
JPS63136659A JP61283726A JP28372686A JPS63136659A JP S63136659 A JPS63136659 A JP S63136659A JP 61283726 A JP61283726 A JP 61283726A JP 28372686 A JP28372686 A JP 28372686A JP S63136659 A JPS63136659 A JP S63136659A
Authority
JP
Japan
Prior art keywords
transistor
diffusion
emitter
channel
collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61283726A
Other languages
Japanese (ja)
Inventor
Yoshihiko Nagayasu
芳彦 長安
Takayuki Katsuoka
勝岡 隆行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP61283726A priority Critical patent/JPS63136659A/en
Publication of JPS63136659A publication Critical patent/JPS63136659A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8248Combination of bipolar and field-effect technology
    • H01L21/8249Bipolar and MOS technology

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain a high current amplification factor with less steps by forming the emitter, the collector of a lateral PNP bipolar transistor by the channel stopper diffusion and the P-channel source, drain diffusion of an N- channel MOS transistor. CONSTITUTION:Emitter 6, collector 7 of a lateral P-N-P bipolar transistor, and P-channel stopper 14 of an N-channel MOS transistor are formed by a simultaneous diffusion. The N-channel stopper 11 of a P-channel MOS transistor and the base 8 of a lateral PNP bipolar transistor are formed by a simultaneous diffusion. Then, the source 9, the drain 10 of the P-channel MOS transistor are diffused, the emitter 6, the collector 7 of lateral PNP bipolar transistor are simultaneously similarly diffused to form a lateral PNP transistor having high concentration regions 15, 16 of the same concentration and the same diffusion depth as the source, 9 and the drain 10 of the P-channel MOS transistor are formed. Thus, a current amplification factor hFE can be enhanced by double diffusions in the emitter, the collector of the bipolar transistor.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ラテラルPNP型バイポーラトランジスタと
相補型MO8)ランジスタよりなるモノリシック半導体
集積回路の製造方法C二関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a monolithic semiconductor integrated circuit comprising a lateral PNP bipolar transistor and a complementary MO8) transistor.

〔従来の技術〕[Conventional technology]

従来、ラテラルPNP型バイポーラトランジスタと相補
型MOSトランジスタよりなるモノリシック集積回路は
第2図(:示すような構造をとっている。すなわち、例
えばP型の半導体基板1上のバイポーラトランジスタを
作るべき個所!二基板と反対導電型のN型埋込拡散層2
を設けた後、基板1上に反対導電型のN型エビタキシャ
ノシ層3を成長させ、さら(二P型不純物を選択拡散し
てアイソレーション拡散層4を形成し、N型埋込拡散層
2を持たないエピタキシャル層3の一部に反対導電型の
Pウェル5を形成し、埋込拡散層2の上部のエピタキシ
ャル層3内(:エミッタ6、コレクタ7、ペース8より
成るラテラルPNP型バイポーラトランジスタを形成し
、このバイポーラトランジスタとアイソレーション拡散
層4で分離された工ビタキンヤル層3中C,Pチャネル
ソース9、P′−゛より成りエピタキシャル層の表面を
チャネル形成部分とするMOS)ランジスタを形成し、
さらにPフェル5中にチャネル形成部分を有しNチャネ
ルソース12、Nチャネルドレイン13、Pチャネルス
トッパ】4より成るMOS )ランジスタを形成して相
補型MO8)ランジスタとするものである。
Conventionally, a monolithic integrated circuit consisting of a lateral PNP type bipolar transistor and a complementary MOS transistor has a structure as shown in FIG. N-type buried diffusion layer 2 of opposite conductivity type to the two substrates
After that, an N-type epitaxy layer 3 of the opposite conductivity type is grown on the substrate 1, and further (2P-type impurities are selectively diffused to form an isolation diffusion layer 4, and an N-type buried diffusion layer 2 is formed). A P-well 5 of the opposite conductivity type is formed in a part of the epitaxial layer 3 that does not have a lateral conductivity type, and a lateral PNP type bipolar transistor consisting of an emitter 6, a collector 7, and a paste 8 is formed in the epitaxial layer 3 above the buried diffusion layer 2. A MOS (MOS) transistor is formed by forming a C, P channel source 9, and P'-'' in an epitaxial layer 3 separated from this bipolar transistor by an isolation diffusion layer 4, and using the surface of the epitaxial layer as a channel forming part. ,
Furthermore, a MOS transistor having a channel forming portion in the P-fer 5 and consisting of an N-channel source 12, an N-channel drain 13, and a P-channel stopper 4) is formed to form a complementary MO8 transistor.

バイポーラトランジスタはMOS)う/ジスタに比較し
て大電流を流せる特徴があり、一方MOSトランジスタ
はバイポーラトランジスタに比較して低消費電力で入力
インピーダンスが高いという特徴がある。この両者を同
一基板に形成し、各々の特徴を生かす方法として、論理
回路をMOS型で構成し、出力回路をバイポーラ型で構
成することが知られている。
A bipolar transistor has the characteristic that it can flow a large current compared to a MOS transistor, while a MOS transistor has a characteristic that it consumes less power and has a higher input impedance than a bipolar transistor. As a method of forming both on the same substrate and taking advantage of their respective characteristics, it is known to configure the logic circuit with a MOS type and the output circuit with a bipolar type.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

相補型MO8)ランジスタとラテラルPNP型バイポー
ラトランジスタとを同一チップに形成する場合、MOS
)ランジスタのソース、ドレイン拡散と同時にラテラル
PNP型バイポーラトランジスタのエミッタ、コレクタ
拡散を形成する方法が一般(二側用されているが、ソー
ス、ドレインの接合深さが浅いため、ラテラルPNP型
バイポーラトランジスタの電流増幅率hFB が低いと
いう欠点がある。
When forming complementary MO8) transistors and lateral PNP bipolar transistors on the same chip, MOS
) A common method is to form the emitter and collector diffusions of a lateral PNP bipolar transistor at the same time as the source and drain diffusions of the transistor. The disadvantage is that the current amplification factor hFB is low.

本発明はこの点C二重み、製造工程な従来より複雑化す
ることなく、相補型MO8)ランジスタと同一チップ内
に形成した。ラテラルPNP型バイポーラトランジスタ
の電流増幅率hFBを高くする方法を得ることを目的と
する。
In this respect, the present invention can form the complementary MO8 transistor in the same chip without making the manufacturing process more complicated than the conventional method. It is an object of the present invention to obtain a method for increasing the current amplification factor hFB of a lateral PNP type bipolar transistor.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、ラテラルPNP型バイポーラトランジスタの
エミッタ、コレクタ領域な相補型MOSトランジスタの
チャネルストッパーP型拡散の際同一の方法で同時(:
拡散形成し、この形成されたエミッタ、コレクタ領域に
さらに相補型MO8)ランジスタのPチャネルソース、
ドレイン拡散の際同一の方法で同時(二拡散を行うこと
により目的を達成するものである。
The present invention simultaneously performs channel stopper P-type diffusion of a complementary MOS transistor in the emitter and collector regions of a lateral PNP-type bipolar transistor using the same method (:
Diffusion is formed, and the formed emitter and collector regions are further complementary to the P-channel source of the MO8) transistor,
This purpose is achieved by performing drain diffusion simultaneously (double diffusion) using the same method.

〔作用〕[Effect]

本発明においては、先ず相補型MO8)ランジスタのチ
ャネルストッパーを形成するため行われるP型拡散の工
程をそのまま利用して、ラテラルPNP型バイポーラト
ランジスタのエミッタ、コレクタ領域が作られ、次にM
OS)ランジスタのPチャネルのソース、ドレインを形
成するため行われるP型拡散の工程をそのまま利用して
、先(:形成されたラテラルPNP型バイポーラトラン
ジスタのエミッタ、コレクタ領域にさらに拡散が行われ
、この二重拡散により、拡散深さが深く、かつ表面濃度
の高いエミッタ、コレクタ領域が形成される。
In the present invention, first, the emitter and collector regions of the lateral PNP bipolar transistor are created by directly utilizing the P-type diffusion process performed to form the channel stopper of the complementary MO8) transistor, and then the M
Utilizing the P-type diffusion process performed to form the P-channel source and drain of the OS transistor, further diffusion is performed in the emitter and collector regions of the previously formed lateral PNP bipolar transistor. This double diffusion forms emitter and collector regions with deep diffusion depth and high surface concentration.

〔実施例〕〔Example〕

次に本発明の実施例を図面(二ついて説明する。 Next, embodiments of the present invention will be explained using two drawings.

第1図a −dは本発明方法の製造工程を示すもので、
第2図と同等部分には同符号を付しである。
Figures 1a to 1d show the manufacturing steps of the method of the present invention,
Components equivalent to those in FIG. 2 are given the same reference numerals.

先ず第1図aにおいて、P型シリコン基板](比抵抗1
0〜20Ω・cIm)上にN 埋込拡散層2(10〜2
0010)が選択拡散により形成され、その上に基板1
の全面にわたってN−エピタキシャル層3を成長させ、
さらにP型不純物を選択拡散してアイソレーション拡散
層4を形成する。
First, in Fig. 1a, P-type silicon substrate] (specific resistance 1
N buried diffusion layer 2 (10 to 2
0010) is formed by selective diffusion, and the substrate 1 is formed on it by selective diffusion.
grow an N-epitaxial layer 3 over the entire surface of the
Furthermore, the isolation diffusion layer 4 is formed by selectively diffusing P-type impurities.

次に第1図bc示すよう1:、Nチャネル型MOSトラ
ンジスタのためのPフェル5をエピタキシャル層中(=
形成する。
Next, as shown in FIG.
Form.

第1図CC示す工程においては、ラテラルPNP型バイ
ポーラトランジスタのエミッタ6、コレクタ7と、Nチ
ャネル型MOS)ランジスタのPチャネルストッパー1
4とを同時拡散C二より形成し、またPチャネル型MO
8)ランジスタのNチャネルストッパー1】とラテラル
PNP型バイポーラトランジスタのベース8とを同時拡
散(二より形成する。ここでラテラ/LIPNP型バイ
ポーラトランジスタのエミッタ6、コレクタ7のP型層
の表面不純物濃度は】OI6〜IQC11、拡散深さは
2〜3μ鴇とし、ベース8のN型層の表面不純物濃度は
1011〜1019 cm−”  、拡散深さは2〜3
μ肩とする。
In the process shown in FIG.
4 from simultaneous diffusion C2, and P channel type MO
8) Simultaneously diffuse the N-channel stopper 1 of the transistor and the base 8 of the lateral PNP bipolar transistor. ] OI6 to IQC11, the diffusion depth is 2 to 3 μm, the surface impurity concentration of the N-type layer of the base 8 is 1011 to 1019 cm-”, and the diffusion depth is 2 to 3 μm.
Let it be μ shoulder.

次C二第1図dに示す工程(二おいては、Pチャネルg
MOSトランジスタのソース9、ドレイン1゜の拡散を
行うと同時蓋二、ラテラルPNP型バイポーラトランジ
スタのエミッタ6、コレクタ7内(二同様の拡散を行い
、Pチャネル型MO8)ランジスタのソース9、ドレイ
ン10と同じ濃度、同じ拡散深さの高1度領域15.1
6を有するラテラルPNP型トランジスタを形成する。
Next C2 The step shown in Figure 1d (in 2, the P channel g
When the source 9 and drain of the MOS transistor are diffused by 1°, the inside of the lid 2 and the emitter 6 and collector 7 of the lateral PNP type bipolar transistor (diffusion is performed in the same way as the P-channel type MO8), and the source 9 and drain 10 of the transistor are High 1 degree region 15.1 with the same concentration and the same diffusion depth as
A lateral PNP type transistor having 6 is formed.

このP型層の表面不純物濃度は10′8〜10 +I)
 c、 −”、拡散深さは2〜3μ鴫である。次いでN
チャネル型MO8トランジスタのソース】2、ドレイン
13の拡散を行う。このN型層の表面不純物濃度は】0
!0〜10” cm−’  、拡散深さは2〜3μ陽で
ある。
The surface impurity concentration of this P-type layer is 10'8~10 +I)
c, −”, the diffusion depth is 2-3 μm. Then N
2. Diffusion of the drain 13 of the channel type MO8 transistor. The surface impurity concentration of this N-type layer is 】0
! 0-10''cm-', the diffusion depth is 2-3 μm.

このよう(−バイポーラトランジスタのエミッタ、コレ
クタ内(ニニ重拡散することI:よって電流増幅率h 
FBが改善される理由は次のとおりである。
In this way (-in the emitter and collector of a bipolar transistor (diffuse I: therefore, the current amplification factor h
The reason why FB is improved is as follows.

すなわち、MOS)ランジスタのチャネルストッパー拡
散のみでエミッタ、コレクタを形成すると、その後のL
OCO8形成の長時間酸化のためボロンの吸出しが起こ
り、表面濃度が低下するため電流増幅率hFEが下がる
が、Pチャネルソース、ドレイン拡散はLOCO8形成
の後に行うため、ボロンの吸出しが少なく、表面濃度が
高く、エミッタ注入効率が向上するため電流増幅率特性
が向上する。
In other words, if the emitter and collector are formed only by channel stopper diffusion of a MOS transistor, the subsequent L
Due to the long-term oxidation of OCO8 formation, boron is sucked out and the surface concentration decreases, resulting in a decrease in the current amplification factor hFE. However, since the P channel source and drain diffusion is performed after LOCO8 formation, there is less boron sucked out and the surface concentration decreases. is high and the emitter injection efficiency is improved, resulting in improved current amplification characteristics.

またバイポーラトランジスタのエミッタ、コレクタをP
テヤネノνソース、ドレイン拡散のみで形成した場合(
:は、拡散深さが浅くなるため、有効エミッタ面積が小
さく、電流容量が少なくなる。
Also, the emitter and collector of a bipolar transistor are
When formed only by source and drain diffusion (
: Since the diffusion depth is shallow, the effective emitter area is small and the current capacity is small.

したがって、拡散の深いPチャネルストッパー拡散と、
高濃度のPチャネルソース、ドレイン拡散とを利用して
二重に拡散したエミッタ、コレクタの構成では、電流容
量が大きく電流増幅率も大きいラテラルPNP型バイポ
ーラトランジスタが得られる。
Therefore, the P-channel stopper diffusion with deep diffusion,
With a double-diffused emitter-collector configuration using highly doped P-channel source and drain diffusions, a lateral PNP bipolar transistor with a large current capacity and a large current amplification factor can be obtained.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ラテラルPNP型バイポーラトランジ
スタのエミッタ、コレクタをNチャネルMO8トラ/ジ
スタのチャネルストッパー拡散とPチャネルソース、ド
レイン拡散とにより形成することにより、従来より少な
い工程で、高電流増幅率のラテラルPNP型バイポーラ
トランジスタを有するBICMO8型集積回路全集積回
路ができる。
According to the present invention, the emitter and collector of a lateral PNP type bipolar transistor are formed by channel stopper diffusion of an N-channel MO8 transistor/transistor and P-channel source and drain diffusion, thereby achieving a high current amplification rate with fewer steps than before. A BICMO8 type integrated circuit fully integrated circuit having lateral PNP type bipolar transistors is produced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a M−dは本発明の製造工程の説明図、第2図
は従来のバイポーラトランジスタと相補型MO8)ラン
ジスダとからなるモノリシック半導体集積回路の断面図
である。 1・・・P型シリコン基板、  2・・・N埋込拡散層
、  3・・・N エピタキシャル層、  4・φ・ア
イソレーション拡散層、  5・・・pフェル、 6・
・・エミッタ、  7…コレクタ、  8争φ・ベース
、9・・・Pfチャネルソース  10・・・Pチャネ
ルドレイン、  11・−Nチャネルストッパー、12
・・・Nチャネルソース、  13・−Nチャネルドレ
イン、  14・−Pチャネルストッパー、15・・・
エミッタ高濃度領域、  】6・・・コレクタ高濃度領
域。 第1図 CQ、) (b) ン理込拡散層 !シリコン基板 第1図 (d)
FIG. 1a M-d is an explanatory diagram of the manufacturing process of the present invention, and FIG. 2 is a sectional view of a monolithic semiconductor integrated circuit consisting of a conventional bipolar transistor and a complementary MO8) transistor. DESCRIPTION OF SYMBOLS 1...P-type silicon substrate, 2...N buried diffusion layer, 3...N epitaxial layer, 4.φ isolation diffusion layer, 5...p-fer, 6.
...Emitter, 7.Collector, 8.φ base, 9..Pf channel source 10..P channel drain, 11.-N channel stopper, 12
...N channel source, 13.-N channel drain, 14.-P channel stopper, 15...
Emitter high concentration region, ]6...Collector high concentration region. Figure 1 CQ,) (b) N Rikon diffusion layer! Silicon substrate Figure 1 (d)

Claims (1)

【特許請求の範囲】[Claims] 1)一導電型の半導体基板上に該半導体基板と反対導電
型のエピタキシャル成長層を形成し、該エピタキシャル
成長層上にバイポーラトランジスタと相補型MOSトラ
ンジスタとを形成したモノリシック半導体集積回路にお
いて、ラテラルPNP型バイポーラトランジスタのエミ
ッタ、コレクタ領域を相補型MOSトランジスタのチャ
ネルストッパP型拡散の際同一の工程で同時に拡散形成
し、この形成されたエミッタ、コレクタ領域にさらに相
補型MOSトランジスタのPチャネルソース、ドレイン
拡散の際同一の工程で同時に拡散を行うことを特徴とす
る半導体集積回路の製造方法。
1) In a monolithic semiconductor integrated circuit in which an epitaxial growth layer of a conductivity type opposite to that of the semiconductor substrate is formed on a semiconductor substrate of one conductivity type, and a bipolar transistor and a complementary MOS transistor are formed on the epitaxial growth layer, a lateral PNP type bipolar The emitter and collector regions of the transistor are simultaneously diffused in the same process as the channel stopper P type diffusion of the complementary MOS transistor, and the formed emitter and collector regions are further diffused for the P channel source and drain of the complementary MOS transistor. A method for manufacturing a semiconductor integrated circuit characterized by performing diffusion simultaneously in the same process.
JP61283726A 1986-11-28 1986-11-28 Manufacture of semiconductor integrated circuit Pending JPS63136659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61283726A JPS63136659A (en) 1986-11-28 1986-11-28 Manufacture of semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61283726A JPS63136659A (en) 1986-11-28 1986-11-28 Manufacture of semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPS63136659A true JPS63136659A (en) 1988-06-08

Family

ID=17669295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61283726A Pending JPS63136659A (en) 1986-11-28 1986-11-28 Manufacture of semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS63136659A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02139961A (en) * 1988-11-21 1990-05-29 Olympus Optical Co Ltd Manufacture of horizontal pnp transistor in bipolar-cmos semiconductor device
USRE35442E (en) * 1990-07-06 1997-02-04 Sgs-Thomson Microelectronics, S.R.L. Mixed technology integrated circuit comprising CMOS structures and efficient lateral bipolar transistors with a high early voltage and fabrication thereof
JP2010109379A (en) * 2009-12-25 2010-05-13 Mitsumi Electric Co Ltd Method of manufacturing cmos device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02139961A (en) * 1988-11-21 1990-05-29 Olympus Optical Co Ltd Manufacture of horizontal pnp transistor in bipolar-cmos semiconductor device
USRE35442E (en) * 1990-07-06 1997-02-04 Sgs-Thomson Microelectronics, S.R.L. Mixed technology integrated circuit comprising CMOS structures and efficient lateral bipolar transistors with a high early voltage and fabrication thereof
JP2010109379A (en) * 2009-12-25 2010-05-13 Mitsumi Electric Co Ltd Method of manufacturing cmos device

Similar Documents

Publication Publication Date Title
JPH0442968A (en) Semiconductor device and manufacture thereof
KR840005927A (en) Semiconductor integrated circuit device and manufacturing method thereof
JPS63136659A (en) Manufacture of semiconductor integrated circuit
US5529939A (en) Method of making an integrated circuit with complementary isolated bipolar transistors
JPS61281544A (en) Manufacture of semiconductor integrated circuit
JPS61245563A (en) Bipolar cmos semiconductor device
JPS5949702B2 (en) Semiconductor integrated circuit device
JPS59144168A (en) Bipolar mos semiconductor device and manufacture thereof
JPS59169177A (en) Semiconductor device
JPS62219555A (en) Bipolar mos semiconductor device
JPS63175463A (en) Manufacture of bipolar mos integrated circuit
JPH01244660A (en) Manufacture of bi-cmos semiconductor device
JPS60211867A (en) Semiconductor device and manufacture thereof
KR940001257B1 (en) Method of making semiconductor device
JPH01112763A (en) Semiconductor device
JPH03159246A (en) Semiconductor device
KR900000816B1 (en) I2l device manufacturing method
JPH07101717B2 (en) Method for manufacturing semiconductor device
JPH04303963A (en) Semiconductor device
JPS62130554A (en) Semiconductor device
JPS6124828B2 (en)
JPH0797610B2 (en) Bi-CMOS integrated circuit
JPS5987850A (en) Semiconductor device
JPH01120054A (en) Manufacture of semiconductor device
JPH0222857A (en) Manufacture of semiconductor device