JPS6025276A - Forming method of gate of field-effect type transistor - Google Patents

Forming method of gate of field-effect type transistor

Info

Publication number
JPS6025276A
JPS6025276A JP13343483A JP13343483A JPS6025276A JP S6025276 A JPS6025276 A JP S6025276A JP 13343483 A JP13343483 A JP 13343483A JP 13343483 A JP13343483 A JP 13343483A JP S6025276 A JPS6025276 A JP S6025276A
Authority
JP
Japan
Prior art keywords
semiconductor
substrate
active layer
gate
mes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13343483A
Other languages
Japanese (ja)
Inventor
Hiroshi Yamazoe
山添 博司
Atsushi Nakagawa
敦 中川
Takashi Hirose
広瀬 貴司
Ichiro Yamashita
一郎 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP13343483A priority Critical patent/JPS6025276A/en
Publication of JPS6025276A publication Critical patent/JPS6025276A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To increase the mutual conductance of an MES.FET with a III-V group compound semiconductor active layer by exposing the surface of a III-V group compound semiconductor in a plasma atmosphere containing iodine ions and forming a metallic film on the surface of the semiconductor through an evaporation method or a sputtering method. CONSTITUTION:An SiO2 film 13 is formed on a semiconductor active layer 12 at a substrate temperature of 320 deg.C, and a positive type resist 14 is applied. The resist film 14 is processed through a photo-lithography method, and SiO2 13 is processed by a buffer solution consisting of fluoric acid and an ammonium fluoride aqueous solution. The exposed active layer 12 is corroded slightly with a tartaric acid group corrosive liquid, washed by water and dried. A substrate is mounted in a reaction chamber for a plasma CVD device, and a mixed gas of I vapor and Ar is introduced and pressure in the chamber is decompressed up to approximately 0.8Torr. Glow discharge is generated in the chamber, the substrate is exposed to plasma containing iodine ions for five min, the substrate is shifted to an electron-beam metallizing apparatus, thin-films 15, 16 in Al are formed, and a lift-off method is further executed, thus obtaining an MES.FET.

Description

【発明の詳細な説明】 産業−・−の利用分野 本発明は、X −V族化合物半導体の電界効果型トラン
ジスターのゲートの形成法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Application: Industry The present invention relates to a method of forming a gate of a field effect transistor of an X-V group compound semiconductor.

従来例の構成とその問題点 近年、高周波通信機器業界を中心として、産業界では■
−■族化合物半導体の電界効果型トランジスター(以後
MES 、FETという)は鍵を握るデバイスとして、
巾広く、生産されている。
Conventional configurations and their problems In recent years, in industry, mainly in the high frequency communication equipment industry,
- The field-effect transistor (hereinafter referred to as MES or FET) made of group compound semiconductors is a key device.
It is widely produced.

■−■族化合物半導体とは、ここでは砒化ガリウム(G
aAs)や燐化インジウム(Ink)等をさす。
The ■-■ group compound semiconductor here refers to gallium arsenide (G
aAs) and indium phosphide (Ink).

MES・FETについて、若干説明する。第1図にME
S−FETの斜視図を示す。1は絶縁性ないし半絶縁性
基板、2は3−5化合物半導体からなる活性層、3,4
はソース及びドレイン、6はゲートである。ゲート直下
の活性層に空乏層が広がシ、しかも、この広がシがゲー
ト電圧で制御される。この働きによシソースとドレイン
間の活性層内の電流の通路の断面積が支配される。これ
がMES−FETの基本原理である。
Let me explain a little about MES/FET. ME in Figure 1
A perspective view of an S-FET is shown. 1 is an insulating or semi-insulating substrate, 2 is an active layer made of a 3-5 compound semiconductor, 3, 4
are the source and drain, and 6 is the gate. A depletion layer spreads in the active layer directly under the gate, and this spread is controlled by the gate voltage. This function controls the cross-sectional area of the current path in the active layer between the source and drain. This is the basic principle of MES-FET.

前記半絶縁性とは、体積抵抗率にして1oΩ・m朗予指
している。
The term "semi-insulating" refers to a volume resistivity of 10Ω·m.

ところで、MES−FICTは第1図から判る如くゲー
ト金属が直接半導体活性層に接して形成されるシ3.7
 )キー障壁を利用している。従って、グー1−金属と
半導体活性層の間に介在物があるとFKT特性、特に相
互コンダクタンス(Elm)の低下をきたす。この介在
物の一つとしてMES−FETの製作過程で発生する。
By the way, as can be seen from FIG. 1, MES-FICT is a silicon film in which the gate metal is formed in direct contact with the semiconductor active layer.
) utilizes key barriers. Therefore, the presence of inclusions between the metal and the semiconductor active layer causes a decrease in FKT characteristics, especially mutual conductance (Elm). One of these inclusions is generated during the manufacturing process of MES-FET.

半導体活性層の表面酸化層があることは、よく知られて
いる。
It is well known that a semiconductor active layer has a surface oxidation layer.

発明の目的 本発明の目的は、]If−V族化合物半導体活性層を自
するMES−FETの相互コンダクタンス(gm)を向
上させるようなゲートの形成法を提供するものである。
OBJECTS OF THE INVENTION It is an object of the present invention to provide a method for forming a gate that improves the mutual conductance (gm) of a MES-FET having an If-V compound semiconductor active layer.

発明の購版 本発明のMES、FKTのゲートの形成法は、Z−V族
化合物半導体表面を沃素エイオンを含むプラズマ雰囲気
中に晒す第1の工程と、前記半導体表面に蒸着法又はス
パッター法で金属膜を形成せしめる第2の工程とを有す
るものであり、それにより、MKS@FITの相互コン
ダクタンス(&m)を向上させるものである。
Purchase version of the invention The method for forming gates of MES and FKT of the present invention includes a first step of exposing the surface of a Z-V group compound semiconductor to a plasma atmosphere containing iodine ions, and a step of depositing metal on the semiconductor surface by vapor deposition or sputtering. and a second step of forming a film, thereby improving the mutual conductance (&m) of MKS@FIT.

本発明を実施するにあたって、前記II−V族化合物半
導体が砒化ガリウム(GaAs )の時、特に効果を発
揮するものである。
The present invention is particularly effective when the II-V compound semiconductor is gallium arsenide (GaAs).

また、]I[−V族化合物半導体表面を沃素イオンを含
むプラズマ雰囲気中に晒す第1の工程と、この半導体表
面に蒸着法又はスパッター法で金属膜を形成せしめる第
2の工程とを、同一反応室内で引き続いて、すみやかに
行うこと、すなわち、第1の工程と、第2の工程の間に
、この半導体表面を外気に晒すことなく、さらに時間的
間隔を置かないようにすると、MES −FETのgm
を更に向上させるものである。
In addition, the first step of exposing the surface of the I[-V group compound semiconductor to a plasma atmosphere containing iodine ions and the second step of forming a metal film on the semiconductor surface by vapor deposition or sputtering are the same. MES- gm of FET
This will further improve the

また、前記第1の工程において、その半導体を70〜1
00℃に保つと本発明の効果は一段と著るしくなる。
In addition, in the first step, the semiconductor is
If the temperature is maintained at 00°C, the effect of the present invention becomes even more remarkable.

何故、前述のように、半導体表面の沃素(I)イオンの
処理が、MES−FITの9mを向上させるかについて
は、以下の如く推定している。すなわち、従来のMES
−FETのゲートの製作手順では、適当な手段で半導体
表面を露出させて後、腐蝕液でかるく、腐蝕し、水洗、
乾燥、さらに運搬等でその半導体表面は外気に晒して後
、蒸着装置又はスパッター装置内に設置される。水洗や
乾燥等の操作で、■−■族化合物半導体の表面は数1Q
〜100人位の自然酸化膜が形成されるのは、よく知ら
れている。従って、従来法ではある程変の自然酸化膜の
上に、ゲート金属膜が形成されていたと推定される。本
発明の実施にあたっては、ゲート金属膜の形成前にその
半導体表面を沃素イオンで削シそのま\すみやかにゲー
ト金属を形成する故に、その半導体表面の自然酸化膜が
比較的薄くなる。従って相互コンダクタンス1mが向上
するわけである。
The reason why treatment of iodine (I) ions on the semiconductor surface improves 9m of MES-FIT as described above is estimated as follows. That is, conventional MES
-The FET gate fabrication procedure involves exposing the semiconductor surface using an appropriate method, then lightly etching it with an etchant, washing it with water, and
After drying, transporting, etc., the semiconductor surface is exposed to the outside air, and then installed in a vapor deposition device or a sputtering device. Through operations such as washing with water and drying, the surface of the ■-■ group compound semiconductor is
It is well known that a natural oxide film of about 100% is formed. Therefore, it is presumed that in the conventional method, the gate metal film was formed on a naturally oxidized film that had changed to some extent. In carrying out the present invention, the semiconductor surface is ablated with iodine ions before the gate metal film is formed, and the gate metal is immediately formed, so that the natural oxide film on the semiconductor surface becomes relatively thin. Therefore, the mutual conductance of 1 m is improved.

実施例の説明 以下に本発明の実施例について説明する。Description of examples Examples of the present invention will be described below.

半絶縁性砒化ガリウム(CaAs)(第1図の1)に濃
度約2 X 1o ”/clの硫黄(S)、不純物を含
むGaAs活性層(厚み約20oo人)を気相成長で形
成した基板を用意した。
A substrate in which a GaAs active layer (approximately 20 mm thick) containing impurities and sulfur (S) at a concentration of approximately 2 x 1o''/cl is formed on semi-insulating gallium arsenide (CaAs) (1 in Figure 1) by vapor phase growth. prepared.

つぎに、前記基板について、苛性ソーダ(NaOH)水
溶液と過酸化水素混液でもって、GaAs活性層を第1
図のようにメサ・エッチする。同図においてGaAs活
性層の厚み人は約2000人であった。
Next, a first GaAs active layer was formed on the substrate using a mixture of caustic soda (NaOH) aqueous solution and hydrogen peroxide.
Etch the mesa as shown. In the figure, the thickness of the GaAs active layer was about 2000.

つぎに、ソースとドレインのオーミック電極を以下の如
く形成した。金(Au)−ゲルマニウム(Ge)合金(
Ge が12W%含まれていを)を約1300A 、ニ
ッケル(N1)を約300AIさらに金(Au)を約3
000人、順次電子ビーム蒸着し、リフト・オフ法でソ
ース及びドレインの電極パターンを形成し、その後、ア
ルゴン(Ar)気流中で450℃3分熱処理した。
Next, source and drain ohmic electrodes were formed as follows. Gold (Au)-germanium (Ge) alloy (
Ge (containing 12W%) is about 1300A, nickel (N1) is about 300AI, and gold (Au) is about 3
Source and drain electrode patterns were formed by sequential electron beam evaporation using a lift-off method, followed by heat treatment at 450° C. for 3 minutes in an argon (Ar) stream.

つぎに、第1図の6に対応するゲートの形成を行う。ゲ
ート電極のパターンの形成は、リフト・オフ法で行った
。ゲート形成の従来法による手順を第2図を用いて示す
。第2図はゲート付近の構成断面図である。同図におい
て、11は半絶縁性基板、12は活性層、13はリフト
・オフ法において、ヌペーサーとして用いる化学蒸着(
cvn)された二酸化硅素(S102)J4はポジ型レ
ジy−) 、16.1eは蒸着法あるいはスパンター法
で形成された金属膜である。手順は以下の如くである。
Next, a gate corresponding to 6 in FIG. 1 is formed. The gate electrode pattern was formed using a lift-off method. The procedure of gate formation according to the conventional method is shown in FIG. FIG. 2 is a sectional view of the structure near the gate. In the figure, 11 is a semi-insulating substrate, 12 is an active layer, and 13 is a chemical vapor deposition (chemical vapor deposition) used as a spacer in the lift-off method.
16.1e is a metal film formed by a vapor deposition method or a spunter method. The procedure is as follows.

まず、活性層の上に国際電気製DJ−83000VD装
置で基板を320°Cとして約5000八膜厚のSiO
2が形成され、つぎに、東京応化製ポジ型レジスト、0
FPR−800が塗布される( (a) )。
First, on the active layer, a SiO film with a thickness of about 5000 nm was deposited on the substrate at 320°C using a DJ-83000VD device manufactured by Kokusai Denki Co., Ltd.
2 was formed, and then a positive resist manufactured by Tokyo Ohka Co., Ltd., 0
FPR-800 is applied ((a)).

さらに、フォト・リン法でそのレジスト膜が加工され、
更に弗酸と弗化アンモン水溶液の混液からなる緩衝液で
、SiO2が加工される( (b) )。
Furthermore, the resist film is processed using the photophosphor method,
Furthermore, SiO2 is processed with a buffer solution consisting of a mixture of hydrofluoric acid and ammonium fluoride aqueous solution ((b)).

つぎに、露出した活性層を酒石酸系の腐蝕液でかるく腐
蝕し、水洗、乾燥した後、すみやかに蒸着法又はスパン
ター法で所定の金属膜を形成する。
Next, the exposed active layer is slightly etched with a tartaric acid-based etchant, washed with water, and dried, after which a predetermined metal film is immediately formed by a vapor deposition method or a spunter method.

この金属膜の膜厚は、通常、前記5102のスペーサー
の膜厚より以下にされる( (c) )。さらに、前記
レジスト膜を熱したアセトンに浸漬して膨潤。
The thickness of this metal film is usually less than that of the spacer 5102 ((c)). Furthermore, the resist film is immersed in heated acetone to swell.

溶解させ、前記レジヌト膜上の金属膜とともに除去する
( (d) )。かくして、MES−FETが出来上る
It is dissolved and removed together with the metal film on the resinite film ((d)). Thus, the MES-FET is completed.

本実施例では、ゲート用金属材料として、アルミニウム
(Aβ)を使った。A4膜の形成は1×1σ6Torr
以下の真空中で電子ビーム蒸着法で形成した。前記Ad
膜の膜厚は約4Q0〇八であった。
In this example, aluminum (Aβ) was used as the metal material for the gate. Formation of A4 film is 1×1σ6 Torr
It was formed by the electron beam evaporation method in vacuum as described below. Said Ad
The film thickness of the film was approximately 4Q008.

本実施例においては、第1図において、ターI・長りは
1μm、チャンネル巾Wば250μmとした。相互コン
ダクタンス(9m)の測定条件はドレイン電圧3V、ド
レイン電流的35771Aということである。9mの測
定はカーブ・トレーサーを用いた。
In this example, in FIG. 1, the length I and the channel length were 1 μm and the channel width W was 250 μm. The conditions for measuring the mutual conductance (9m) are a drain voltage of 3V and a drain current of 35771A. A curve tracer was used for the 9m measurement.

従来法による比較例を第1表ロット番号1に示す。本実
施例において、各ロソ1〜には複数ケの砒化ガリウム基
板が使われており、各基板には数100個の測定用ME
S−FITがある。第1表の相互コンダクタンスの値は
、FET特、性を示すこれらFETに亘る平均値である
A comparative example using the conventional method is shown in Lot No. 1 in Table 1. In this example, a plurality of gallium arsenide substrates are used in each of the rotors 1 to 1, and each substrate is equipped with several hundred MEs for measurement.
There is S-FIT. The transconductance values in Table 1 are average values across these FETs that indicate FET characteristics.

つぎに、本発明によるMES 、FETのター1、形成
法の実施例を第2図を用いて説明する。第2図は、ゲー
ト伺近の構成断面図である。手順は以下の通りである。
Next, an embodiment of the method for forming MES and FET transistors according to the present invention will be described with reference to FIG. FIG. 2 is a sectional view of the structure near the gate. The procedure is as follows.

まず半導体活性層の上に、国際t’<製CVD装置DJ
−8300で基板温度320°Cで、膜厚約5o00人
の二酸化硅素(SiO2)膜が形成され、つぎに、東京
応化製ポジ型レジスト0FPR−800が塗布される(
 (a) )。さらに、フォI・・リン法でそのレジス
ト膜が加工され、更に弗酸と弗化アンモン水溶液の混液
からなる緩衝液1に酸化硅素(SiOz)が加工される
( (b) )・つ 伴ぎに、露光した活性層を酒石酸
系の腐蝕液でかるく腐蝕し、水洗、乾燥する。
First, on top of the semiconductor active layer,
-8300 at a substrate temperature of 320°C, a silicon dioxide (SiO2) film with a thickness of about 5000 is formed, and then a positive resist 0FPR-800 manufactured by Tokyo Ohka Co., Ltd. is applied (
(a) ). Further, the resist film is processed by the FoI-phosphorus method, and silicon oxide (SiOz) is further processed into buffer solution 1 consisting of a mixture of hydrofluoric acid and ammonium fluoride aqueous solution ((b)). Next, the exposed active layer is slightly etched with a tartaric acid-based etchant, washed with water, and dried.

以下余白 シ 第1表、ロフト番号2はこの後火の如くなされる。まず
、プラズマ装置、すなわち、プラズマ・CVD装置の反
応室に基板を設置し、沃素(I)蒸気とアルゴン(Ar
)の混合ガスをその反応室に導入して反応室内の圧力を
約0.B Torrに調節する。
Below is the blank space in Table 1, loft number 2, which will be made like fire after this. First, a substrate is placed in a reaction chamber of a plasma device, that is, a plasma/CVD device, and iodine (I) vapor and argon (Ar) are used.
) is introduced into the reaction chamber to bring the pressure inside the reaction chamber to about 0. Adjust to B Torr.

使用したプラズマ装置の概要は第3図に模式的に示され
ている。第3図において、zlはチャンバー(反応室)
、22が半導体基板、23は基板を載せるテーブル、1
4はヒーター、215は温度測定用熱電対、L6は沃素
(I)蒸気発生のだめのガラス容器、′2−7はガラス
製三方弁、28はガラス製弁、′L9は摺り合わせ、3
0は沃素(I)のかたまり、31はその沃素を加熱する
だめマントル 反応室内に沃素(I)とアルゴン(Ar)の混合ガスを
導入するだめには、ヒーター24により、沃素(I)合
ガスを三方弁27を通じてチャンバー に導入する。
The outline of the plasma apparatus used is schematically shown in FIG. In Figure 3, zl is the chamber (reaction chamber)
, 22 is a semiconductor substrate, 23 is a table on which the substrate is placed, 1
4 is a heater, 215 is a thermocouple for temperature measurement, L6 is a glass container for generating iodine (I) vapor, '2-7 is a glass three-way valve, 28 is a glass valve, 'L9 is rubbed together, 3
0 is a mass of iodine (I), and 31 is for heating the iodine.To introduce a mixed gas of iodine (I) and argon (Ar) into the mantle reaction chamber, a heater 24 is used to heat the iodine (I) mixture gas. is introduced into the chamber through the three-way valve 27.

つぎに、13.56MHzで50Wの高周波入力でチャ
ンバー11の内にグロー放電させる。このま〈5分間そ
の基板は沃素イオンを含むプラズマに晒される。
Next, a glow discharge is caused in the chamber 11 with a high frequency input of 50 W at 13.56 MHz. The substrate is then exposed to plasma containing iodine ions for 5 minutes.

つぎに、すみやかに電子ビーム蒸着装置に基板を移し、
400〇八膜厚のアルミニウム(AC)薄膜を形成する
(第2図(C))。さらに、前述のようにリフト・オフ
法をなして、MyLS−FETが得られる( (d) 
’)。
Next, immediately transfer the substrate to an electron beam evaporator,
A thin aluminum (AC) film having a thickness of 400.8 mm is formed (FIG. 2(C)). Furthermore, MyLS-FET is obtained by performing the lift-off method as described above ((d)
').

このMES 、FETは、比較例よりもgmに関してか
なり優れている。
This MES, FET is considerably better in terms of gm than the comparative example.

また、第1表ロット番号3〜9までは、本発明に係るも
ので、沃素(1)イオンを含むプラズマに半導体活性層
を晒すことと、ゲート用金属膜の形成を同一チャンバー
内で、この順にすみやかに行う実施例を示す。この装置
の概要を第4図に示す。〜この装置は、電子ビーム蒸着
装置が基本でこれを改造したものである。+1はチャン
バー(反応室)、12は半導体基板、牛3は基板ホルダ
ー、44はヒーター、+6は熱電対,46はアルミニウ
ム・ソース訝7は沃素蒸気を含むガスを導くガイド、4
8は沃素蒸気発生のだめのガラス容器、+9はガラス製
三方弁、をはガラス製弁,り1は摺シ合わせ、り2は沃
素(I)塊、11,3ばその沃素を加熱するだめのマン
トル・ヒーター、略4はグロー放電用のタングステン線
からなる電極である。反応室に沃素(I)蒸気とアルゴ
ン(Ar)の混合ガスを導入する方法は前述のとおりで
ある。
In addition, lot numbers 3 to 9 in Table 1 are related to the present invention, in which the semiconductor active layer is exposed to plasma containing iodine (1) ions and the gate metal film is formed in the same chamber. An example will be shown which is carried out promptly in order. An outline of this device is shown in FIG. ~This device is basically an electron beam evaporation device, which has been modified. +1 is a chamber (reaction chamber), 12 is a semiconductor substrate, 3 is a substrate holder, 44 is a heater, +6 is a thermocouple, 46 is an aluminum source, 7 is a guide for guiding gas containing iodine vapor, 4
8 is a glass container for generating iodine vapor, +9 is a glass three-way valve, is a glass valve, 1 is a sliding joint, 2 is an iodine (I) lump, 11, 3 is a vessel for heating the iodine. The mantle heater, approximately 4, is an electrode made of tungsten wire for glow discharge. The method for introducing the mixed gas of iodine (I) vapor and argon (Ar) into the reaction chamber is as described above.

まず、酒石酸素腐蝕液でかるく腐蝕された活性層をもつ
半導体基板は、第4図の装置に設置される。
First, a semiconductor substrate having an active layer lightly etched with a tartaric oxygen etchant is placed in the apparatus shown in FIG.

つぎに、必要とあれば、ヒータ44によシ、所定の温度
に昇温され、そのま\維持される。
Next, if necessary, the temperature is raised to a predetermined temperature by the heater 44 and maintained at that temperature.

つぎに、沃素(I)蒸気及びアルゴン(Ar)の混合ガ
スをチャンバー41に、真空度が約0.5 Torrに
なるように調節して導入する。この調節は三方弁ヰ9V
cよってなされる。600VAのネメーン・トランスで
、チャンバー41内にグロー放電を起こし、そのま!所
定の時間維持する。そののち、そのまますみやかに拡散
ポンプ等で高真空にチャン/<−41内を引く、1X 
1o−6Torr 以下にチャンバー41の真空度が到
達すると、アルミニウム(A4)・ソーメ弘に電子ビー
ムをあてて、アルミニウム(Al)蒸着を行う。
Next, a mixed gas of iodine (I) vapor and argon (Ar) is introduced into the chamber 41 while adjusting the degree of vacuum to about 0.5 Torr. This adjustment is done using a three-way valve with a 9V
It is done by c. A 600VA Nemen transformer causes a glow discharge in chamber 41, and then! Maintain for a specified period of time. After that, immediately apply a high vacuum using a diffusion pump, etc., and pull within 1X
When the degree of vacuum in the chamber 41 reaches 10-6 Torr or less, an electron beam is applied to the aluminum (A4) sheet to perform aluminum (Al) vapor deposition.

その後の過程は前述の通りである。かくして、MES−
FITが得られた。
The subsequent process is as described above. Thus, MES-
FIT was obtained.

沃素(I)イオンを含むプラズマに半導体活性層を晒し
て後、ゲート用金属膜の形成を行う方法は従来法に比し
て相互コンダクタン7.(、!i’m)において大いに
優れていることがわかる。
7. The method of forming a gate metal film after exposing a semiconductor active layer to plasma containing iodine (I) ions has a higher transconductance than the conventional method. (,!i'm).

また、第1表ロット番号2と、3〜9とを比較すると、
沃素(I)イオンを含むプラズマに、半導体活性層を晒
す第1の工程と、ゲート用金属膜の形成という第2の工
程の間に、前記半導体活性層を外気に晒すと、結果とし
て出来たMES−FETのgm がや!劣化することが
判る。
Also, when comparing lot numbers 2 and 3 to 9 in Table 1,
When the semiconductor active layer is exposed to the outside air between the first step of exposing the semiconductor active layer to plasma containing iodine (I) ions and the second step of forming the gate metal film, the resulting MES-FET GM Gaya! It can be seen that it deteriorates.

また、プラズマ処理のより好ましい処理時間は、2分〜
15分位であることがわかる。また、プラズマ処理のよ
シ好ましい基板温度は7o〜100℃であることが判る
Further, a more preferable treatment time for plasma treatment is 2 minutes to
It turns out that it takes about 15 minutes. Further, it is found that the most preferable substrate temperature for plasma processing is 7o to 100°C.

今まで、ゲート電極用金属として、アルミニウム(Al
)のみ述べて来たが、本発明はこれに拘束されず他の金
属をゲートに採用したときも同様の結果が得られた。ま
た、砒化ガリウム(GaAs)についてのみ述べて来た
が、燐化インジウムMES・FETについても本発明の
効果は発揮された。
Until now, aluminum (Al
), but the present invention is not limited to this, and similar results were obtained when other metals were used for the gate. Further, although only gallium arsenide (GaAs) has been described, the effects of the present invention were also exhibited in indium phosphide MES/FETs.

発明の効果 以上の説明から明らかなように本発明は、半導体表面を
沃素(I)イオンを含む7°ラズマ雰囲気中に晒す第1
の工程と、この半導体表面に蒸着法又はヌバッター法で
金属を沈積せしめる第2の工程とからなる]I[−V族
化合物半導体のMES−FETのゲートの形成法を提供
するものであシ、かくして相互コンダクタンス(、!9
m)の大きいMES−FETが得られるものである。
Effects of the Invention As is clear from the above explanation, the present invention has the advantage of exposing the semiconductor surface to a 7° plasma atmosphere containing iodine (I) ions
and a second step of depositing a metal on the surface of the semiconductor by a vapor deposition method or a Nubatter method] I[-V compound semiconductor MES-FET gate formation method Thus, the mutual conductance (,!9
MES-FET with large m) can be obtained.

さらに前記の工程の後、この半導体表面を外気に晒すこ
となく、そのま\第2の工程を引き続いてなすことによ
る]I[−V族化合物半導体のMES・FETのゲート
形成法を提供するものであり、かくしてさらにgmの高
いMES−FETが得られる。
Furthermore, after the above step, a method for forming a gate of an MES/FET of a group I[-V compound semiconductor is provided, by directly performing a second step without exposing the surface of the semiconductor to the outside air. Thus, a MES-FET with even higher gm can be obtained.

又、第1の工程において、その半導体を70〜1o。Further, in the first step, the semiconductor is heated to a temperature of 70 to 1o.

℃に保つと、結果として出来だMES−FETOgmは
更に改善される。
When kept at 0.degree. C., the resulting MES-FETOgm is further improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は電界効果型トランジスターの斜視図、第2図(
a)〜(d)は本発明の方法におけるゲート形成の過程
を示す断面図、第3図は本発明の方法を実施するだめの
プラズマ装置の構成図、第4図は本発明の方法において
プラズマ処理と電極形成を同一反応室にて行うだめの装
置の構成図である。 1・・・・・・絶縁性又は半絶縁性基板、2・・・・・
・半導体活性層、3,4・・・・・・ソースとドレイン
、6・・・・・・ゲート、11・・・・・・絶縁性又は
半絶縁性基板、12・・・・・・半導体活性層、13・
・・・・・化学蒸着(cvn)二酸化硅素、14・・・
・・・レジスト膜、15.16・・・・・・金属膜、2
1・・・・・・チャンバー、22・・・・・・半導体基
板、23・・・・・・基板を載せるチーグル、24・・
・・・・ヒーター、25・・・・・・熱電対、26・・
・・・・沃素蒸気を発生させるだめのガラス容器、27
・・・・・・三方弁、28・・・・・・二方弁、29・
・・・・・摺り合わせ、30・・・・・・沃素の塊、3
1・・・・・・マントル・ヒーター、41・・・・・・
チャンバー、42・・・・・・半導体基板、43・・・
・・・基板ホルダー、44・・・・・・ヒーター、46
・・・・・・熱電対、46・・・・・・アルミニウム・
ソース、4ア・・・・・・沃素ヲ含む混合ガスを導くた
めのテフロン製ガイド、48・・・・・・沃素蒸気を発
生させるだめのガラス製容器、49・・・・・・三方弁
、50・・・・・・二方弁、51・・・・・・摺り合わ
せ、52・・・・・・沃素環、53・・・・・・マント
ル書ヒーター、54・・・・・・グロー放電のだめのタ
ングステン線電極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名3 第1図 2図 、第3図 図 4
Figure 1 is a perspective view of a field effect transistor, Figure 2 (
a) to (d) are cross-sectional views showing the process of gate formation in the method of the present invention, FIG. 3 is a configuration diagram of a plasma apparatus for implementing the method of the present invention, and FIG. FIG. 2 is a configuration diagram of an apparatus in which processing and electrode formation are performed in the same reaction chamber. 1... Insulating or semi-insulating substrate, 2...
・Semiconductor active layer, 3, 4... Source and drain, 6... Gate, 11... Insulating or semi-insulating substrate, 12... Semiconductor active layer, 13.
...Chemical vapor deposition (CVN) silicon dioxide, 14...
...Resist film, 15.16...Metal film, 2
1...Chamber, 22...Semiconductor substrate, 23...Cheagle for mounting the substrate, 24...
... Heater, 25 ... Thermocouple, 26 ...
...Glass container for generating iodine vapor, 27
...Three-way valve, 28...Two-way valve, 29.
...Grinding together, 30...Iodine lump, 3
1... Mantle heater, 41...
Chamber, 42...Semiconductor substrate, 43...
...Substrate holder, 44...Heater, 46
・・・Thermocouple, 46・・・Aluminum・
Source, 4A...Teflon guide for guiding the mixed gas containing iodine, 48...Glass container for generating iodine vapor, 49...Three-way valve , 50... Two-way valve, 51... Grinding, 52... Iodine ring, 53... Mantle book heater, 54... Tungsten wire electrode for glow discharge reservoir. Name of agent: Patent attorney Toshio Nakao and 1 other person3 Figure 1 Figure 2, Figure 3 Figure 4

Claims (4)

【特許請求の範囲】[Claims] (1)III−V族半導体表面を沃素イオンを含むプラ
ズマ雰囲気中に晒す第1の工程と、前記半導体表面に蒸
着法又はスパッター法で金属膜を形成する第2の工程と
を有する電界効果型トランジスターのゲートの形成法。
(1) A field-effect type comprising a first step of exposing the surface of a III-V semiconductor to a plasma atmosphere containing iodine ions, and a second step of forming a metal film on the semiconductor surface by vapor deposition or sputtering. How to form a transistor gate.
(2)第1の工程の後、この半導体表面を外気に晒すこ
となく、第2の工程を引き続いて行なうことを特徴とす
る特許請求の範囲第1項に記載の電界効果型トランジス
ターのゲートの形成法。
(2) After the first step, the second step is performed without exposing the semiconductor surface to the outside air. Formation method.
(3)N−V族化合物半導体が砒化カリウムであること
を特徴とする特許請求の範囲第1項に記載の電界効果型
トランジスターのゲートの形成法。
(3) A method for forming a gate of a field effect transistor according to claim 1, wherein the N-V group compound semiconductor is potassium arsenide.
(4)第1の工程において、半導体を70〜100℃に
保つことを特徴とする特許請求の範囲第1項記載の電界
効果型トランジスターのゲートの形成法。
(4) A method for forming a gate of a field effect transistor according to claim 1, characterized in that in the first step, the semiconductor is maintained at a temperature of 70 to 100°C.
JP13343483A 1983-07-20 1983-07-20 Forming method of gate of field-effect type transistor Pending JPS6025276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13343483A JPS6025276A (en) 1983-07-20 1983-07-20 Forming method of gate of field-effect type transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13343483A JPS6025276A (en) 1983-07-20 1983-07-20 Forming method of gate of field-effect type transistor

Publications (1)

Publication Number Publication Date
JPS6025276A true JPS6025276A (en) 1985-02-08

Family

ID=15104680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13343483A Pending JPS6025276A (en) 1983-07-20 1983-07-20 Forming method of gate of field-effect type transistor

Country Status (1)

Country Link
JP (1) JPS6025276A (en)

Similar Documents

Publication Publication Date Title
US4540607A (en) Selective LPCVD tungsten deposition by the silicon reduction method
JPH03273632A (en) Manufacture of mis-type semiconductor device
KR20000017498A (en) A controllable oxidation technique for high quality ultra-thin gate oxide
JP2002151693A (en) Bottom gate thin-film transistor, manufacturing method thereof, etching device, and nitriding device
JPS6025276A (en) Forming method of gate of field-effect type transistor
JP2002289611A (en) Manufacturing method and manufacturing apparatus of semiconductor device
US4752815A (en) Method of fabricating a Schottky barrier field effect transistor
JPS6053013A (en) Thin film forming equipment
JPH08306707A (en) Fabrication of semiconductor device
JPH06132521A (en) Manufacture of mis type semiconductor device
JPS6024071A (en) Forming method of gate of field-effect type transistor
JPS6024070A (en) Forming method of gate of field-effect type transistor
JPH06244409A (en) Preprocessing method for compound semiconductor substrate
JP2775117B2 (en) Method for forming protective film
JPS6025275A (en) Forming method of gate of field-effect type transistor
JPH11177080A (en) Manufacture of semiconductor device
JPS628573A (en) Semiconductor device and manufacture thereof
JPH0740605B2 (en) Method for manufacturing semiconductor device
JPH04236424A (en) Semiconductor wafer provided with insulating film and manufacture thereof
JPH0352238A (en) Manufacture of compound semiconductor device
JPS628528A (en) Manufacture of semiconductor device
JPH0574814A (en) Manufacture of schottky-gate type field-effect transistor
JPS58114463A (en) Manufacture of compound semiconductor device
JPH0645273A (en) Manufacture of semiconductor device
JPS633415A (en) Manufacture of semiconductor device