JPS58114463A - Manufacture of compound semiconductor device - Google Patents

Manufacture of compound semiconductor device

Info

Publication number
JPS58114463A
JPS58114463A JP21359081A JP21359081A JPS58114463A JP S58114463 A JPS58114463 A JP S58114463A JP 21359081 A JP21359081 A JP 21359081A JP 21359081 A JP21359081 A JP 21359081A JP S58114463 A JPS58114463 A JP S58114463A
Authority
JP
Japan
Prior art keywords
film
compound semiconductor
semiconductor device
ions
stream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21359081A
Other languages
Japanese (ja)
Inventor
Kunihiko Kodama
邦彦 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP21359081A priority Critical patent/JPS58114463A/en
Publication of JPS58114463A publication Critical patent/JPS58114463A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • H01L21/3245Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering of AIIIBV compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To improve the output characteristic and noise of a compound semiconductor device by covering the surface of compound semiconductor with an insulating film of Si compound, implanting H ions in the film and heat treating in H2 stream. CONSTITUTION:An n type GaAs active layer 3, source and drain electrodes 4 of Au-Ge, and Al gate electrode 5 are formed on the basis of a conventional method, and a CVD SiOx 1 is covered. Then, H ions of approx. 10<12>/cm<3> are implanted to the film 1, and are treated at 400 deg.C in H stream for approx. 20min. The H reacts with As by this treatment, thereby becoming AsH3, which volatilizes. Thus, excess Si and H performs an atomic bond, thereby eliminating dangling bond and removing the adverse influence of mutual diffusion. Then, a window is opened at the film 1, and an electrode is attached. According to this method, electric characteristics can be improved even in other III-V Group or II-VI Group compound semiconductor device. Further, instead of SiOx, SixNy may be employed.

Description

【発明の詳細な説明】 a)発明の技術分野 本発明は化合物半導体装置の製造方法に係り、特にその
表面を被覆する保護絶縁膜の形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION a) Technical Field of the Invention The present invention relates to a method for manufacturing a compound semiconductor device, and more particularly to a method for forming a protective insulating film covering the surface of the device.

(2)従来技術と問題点 一般に、半導体素子の表面は外気からの水分の侵入を防
止し、又ゴミや塵などの付着を防ぐために、保護絶縁膜
が被覆され、場合によってはその被覆性を強くするため
、中性気流中で熱処理がなされる。このような保護絶縁
膜としては、シリコン化合物膜例えば酸化シリコン膜あ
るいは窒化シリコン膜が汎〈用いられており、それはこ
れらの酸化膜あるいは窒化膜がその性質を良く解明され
ていて、また形成法も確立されているためである・しか
しながら、シリコン半導体素子では同材質の化合物であ
るため、問題は余シ起らないが、ガリウム砒素(GaA
S)などの化合物半導体には甚だ不都合な問題が生じる
。例えば第1図はGaASショットキバリヤゲートグー
界効果トランジスタ(MESFET ”)の断面構造を
示しており、周波数IMH2以上のマイクロ波帯能動素
子として知られているが、その表面に膜厚l約5000
人lの酸化シリコン膜lを被覆するう図において、2は
GaAS基板、8はn型eaAs動作層、会は金ゲルマ
ニウム(Au−Ge)からなるソース及びドレイン電極
、5はアルミニウム(AJ)からなるゲート電極で、上
記酸化シリコン膜lはこれらの電極も形成された後に、
化学気相成長(CVD)法又はヌバツタ法で被着する。
(2) Prior art and problems In general, the surface of a semiconductor element is coated with a protective insulating film to prevent moisture from entering from the outside air and from adhering to dirt and dust. To strengthen it, it is heat treated in a neutral air stream. As such a protective insulating film, a silicon compound film such as a silicon oxide film or a silicon nitride film is widely used. However, since silicon semiconductor devices are made of the same material, no problems occur; however, gallium arsenide (GaA)
Compound semiconductors such as S) pose serious problems. For example, Figure 1 shows the cross-sectional structure of a GaAS Schottky barrier gate field effect transistor (MESFET), which is known as a microwave band active device with a frequency of IMH2 or higher.
In the figure, 2 is a GaAS substrate, 8 is an n-type EAAs active layer, 2 is a source and drain electrode made of gold germanium (Au-Ge), and 5 is made of aluminum (AJ). After these electrodes are also formed, the silicon oxide film l is
It is deposited by chemical vapor deposition (CVD) or the Nubatsuta method.

しかし、この酸化シリコン膜の被覆工程の良否によって
、トランジスタ特性の劣化、特にゲイン低下やノイズ増
加が見られ、それを検討したところその原因はGaAS
動作層と酸化シリコン膜との界面に存在する相互拡散層
にあると考えられる。
However, depending on the quality of this silicon oxide film coating process, deterioration of transistor characteristics, especially gain reduction and noise increase, was observed, and when we investigated this, we found that the cause was GaAS.
This is thought to be due to the interdiffusion layer existing at the interface between the active layer and the silicon oxide film.

即ち、酸化シリコン膜はCVD法又はスパッタ法で被着
されるが、GaAs基板は数100℃に加熱して被着す
るから、その界面に相互拡散層が発生する。被着後、熱
処理すれば尚更、この層が画然とすることは言うまでも
ない。
That is, the silicon oxide film is deposited by CVD or sputtering, but since the GaAs substrate is deposited by heating to several hundred degrees Celsius, an interdiffusion layer is generated at the interface. Needless to say, this layer becomes even more distinct if it is heat treated after deposition.

第2図はその相互拡散層を示す原子濃度凹表で、酸化シ
リコン膜をアルゴンイオンでスパッタ食刻しなからオー
ジェ電子分光法で分析した結果を(財)示しており、そ
の層幅は約100人であろうまた、被着した酸化シリコ
ン膜は二酸化シリコン(SiO2)のみではなく、分析
結果では5iOx(X<2)構造であることが判かり、
これは縁者間で良く知られている通りである。しかも、
5j−Oxは一定ではなくて、G 8A S活性層に近
い程S1が過剰となっており、Siのダングリングボン
ド(danglingbond、)が出来ていると予想
され、これがキャリヤ捕獲中心をなして、GaAs表層
の電子をトラップし、表層に表面空乏層が生じて、これ
が悪影響を与えていると推定される。
Figure 2 is an atomic concentration concave table showing the interdiffusion layer, and shows the results of analysis using Auger electron spectroscopy after sputter etching a silicon oxide film with argon ions, and the layer width is approximately In addition, the deposited silicon oxide film was not only silicon dioxide (SiO2), but the analysis results showed that it had a 5iOx (X<2) structure.
This is well known among relatives. Moreover,
5j-Ox is not constant, and the closer to the G 8A S active layer, the more S1 becomes excessive, and it is expected that dangling bonds of Si are formed, and this forms the center of carrier capture, It is presumed that electrons in the GaAs surface layer are trapped and a surface depletion layer is generated in the surface layer, which has an adverse effect.

又、第2図に示すように、相互拡散1内ではGaとA6
とが同量ではな(、Asが過剰となっており、そうする
とAs結合ができて金属Asとなり、これにより酸化シ
リコン膜とGaA、Elとの界面にリーク電流が流れ、
t)! E S F E T ’J性を劣化していると
予想される。
Moreover, as shown in FIG. 2, within the mutual diffusion 1, Ga and A6
are not the same amount (, As is in excess, and then As bonds are formed to form metal As, which causes leakage current to flow at the interface between the silicon oxide film and GaA and El.
t)! It is expected that the E S F E T 'J property will be deteriorated.

(3)発明の目的 本発明はこのような電気待惚劣化の原因を取り除いて、
半導体装置の特性を改着することを目的とするものであ
る。
(3) Purpose of the invention The present invention eliminates the causes of such electrical deterioration,
The purpose is to modify the characteristics of semiconductor devices.

(4)発明の構成 その目的は、半導体素子表面にシリコン化合物からなる
保護絶縁膜を被覆した後、保護絶tM中に水素イオンを
注入して、水垢気流中で熱処理する工程を含む製造方法
によって達成される。
(4) Structure of the invention The purpose is to use a manufacturing method that includes the steps of coating the surface of a semiconductor element with a protective insulating film made of a silicon compound, implanting hydrogen ions in a protective tM, and heat-treating it in a limescale air stream. achieved.

(5)発明の実施例 本発明を、第1図に示すGaAs MESFKTK適用
する冥施例で説明すると、n型GaA3活性層8をエピ
タキシャル成長した後、ソース及びドレイン電極傷とし
て、Au−Geを被着し、パターンユングし、次にn型
GaAS活性層8のゲート電極下をエツチングしてリセ
ス構造(スイッチ速度が速くなる)にする。その上にA
Iからなるゲート電極5を被着形成し、次にCVD法で
膜厚l約5000ムシのSiOx膜lを保護膜として表
面に被着する。
(5) Embodiments of the Invention The present invention will be explained using an example in which GaAs MESFKTK is applied as shown in FIG. The n-type GaAS active layer 8 is then etched under the gate electrode to form a recessed structure (which increases the switching speed). A on top of that
A gate electrode 5 made of I is deposited and then a SiOx film l having a thickness l of about 5000 mm is deposited on the surface as a protective film by CVD.

゛ これら工程は公知の方法で行なわれるが、次いでイ
オン注入法によって水素イオンを5xox膜中に注入す
る。そのドーズ量は10/ail程度にし、次に水素ガ
ス気流中で400℃に加熱し、約20分間熱処理する。
``These steps are performed by known methods, and then hydrogen ions are implanted into the 5xox film by an ion implantation method. The dose is set to about 10/ail, and then heated to 400° C. in a hydrogen gas stream for about 20 minutes.

その後に、Si○X膜1t−窓あけして、グー鼾、ソー
ス及びドレイン電極配線(図示していない)を形成する
が、これらの電極配線はイオン注入と熱処理との水素処
理後に行なってもよい。
After that, a window is opened in the Si○X film, and source and drain electrode wiring (not shown) is formed, but even if these electrode wiring are done after the hydrogen treatment of ion implantation and heat treatment, good.

かような水素処理を加えることによって、半導体素子の
電気的特性は改善され、代表例として、第8口軽)、(
6)に相互コンダクタンス(gm)の周波数に対するデ
ーメト1表を示している6第3区(a)は水素処理工程
のない場合のデータ、第3図中)は水素処理を加えたデ
ータである。図のように、水素処理のない場合は周波数
2oopz以上となるとgmが低下しているが、水素処
理すれば高周波に2けるgmの低下がなく、gmの周波
数分散が解消される。第8口軽)は200H2近傍に変
曲点があるが、この周波数はGaA、3活性層の表面処
理によって前後し、一定しない。しかし、何れにしろ水
素処理はgmを向上し、ゲイン特性を改善するものであ
る。
By applying such hydrogen treatment, the electrical characteristics of semiconductor devices are improved.
6) shows the Demet 1 table of mutual conductance (gm) versus frequency. 6 Section 3 (a) is the data without the hydrogen treatment process, and Figure 3) is the data with the hydrogen treatment added. As shown in the figure, without hydrogen treatment, gm decreases when the frequency exceeds 2 oopz, but with hydrogen treatment, there is no decrease in gm at high frequencies, and the frequency dispersion of gm is eliminated. The 8th round) has an inflection point near 200H2, but this frequency fluctuates depending on the surface treatment of the GaA and 3 active layers and is not constant. However, in any case, hydrogen treatment increases gm and improves gain characteristics.

これは多量の水パが存在す終ば、水素が金属Asと反応
して例えばASH3あるいはASH4などとなって揮発
し、同時に過剰の81と水素とは原子結合してダングリ
ングボンドをなくする効果があるためと考えられ、した
がって相互拡散層の悪影響が除去される。
This is due to the effect that when a large amount of water is present, hydrogen reacts with metal As, forming ASH3 or ASH4 and volatilizing, and at the same time, excess 81 and hydrogen form atomic bonds, eliminating dangling bonds. This is thought to be due to the fact that the interdiffusion layer has an adverse effect on the interdiffusion layer.

(6)発明の効果 以上はGaAsMESFET t$施例として説明した
が、本発明はその他のI−V族化合物あるいは1−M族
化合物などの化合物半導体装置に適用して、同様の効果
があるものである。
(6) Effects of the invention Although the above description has been made using a GaAs MESFET t$ example, the present invention can be applied to other compound semiconductor devices such as IV group compounds or 1-M group compounds, and similar effects can be obtained. It is.

また、上記実施例は酸化シリコン膜で説明したが、シリ
コン化合物からなる保護絶鞭粛として窒化シリコン膜が
あり、これもSixNy  構造であり、このような窒
化シリコン膜にも応用して同じ好結果かえられることは
当然である。
In addition, although the above embodiment was explained using a silicon oxide film, there is a silicon nitride film as a protective film made of a silicon compound, which also has a SixNy structure, and the same good results can be obtained by applying it to such a silicon nitride film. It is natural that they will be changed.

したがって、本発明は化合物半導体装置の電気的特性、
特に出力特性や雑音などの改善に役立つすぐれたもので
ある、
Therefore, the present invention provides electrical characteristics of a compound semiconductor device,
It is especially useful for improving output characteristics and noise.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はGaAsMESFETの断面構造図、第2図は
相互拡散層の原子濃度図表、第3図は水素処理有無のG
m特性図表であるう図中、1は酸化シリコン膜、2はG
aAS基板、8はGaAS活性層、4はソース及びドレ
イン電極、5はゲート電極を示す。 第1図
Figure 1 is a cross-sectional structure diagram of a GaAs MESFET, Figure 2 is an atomic concentration diagram of the interdiffusion layer, and Figure 3 is a graph of G with and without hydrogen treatment.
In the figure, 1 is a silicon oxide film, 2 is a G
The aAS substrate, 8 is a GaAS active layer, 4 is a source and drain electrode, and 5 is a gate electrode. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 半導体素子表面にシリコン化合物からなる保護絶縁膜を
被覆し、次に該保護絶縁膜中に水素イオンを注入して、
水素気流中で熱処理する工程が含まれてなることを特徴
とする化合物半導体装置の製造方法。
Covering the surface of the semiconductor element with a protective insulating film made of a silicon compound, then implanting hydrogen ions into the protective insulating film,
A method for manufacturing a compound semiconductor device, comprising a step of heat treatment in a hydrogen stream.
JP21359081A 1981-12-26 1981-12-26 Manufacture of compound semiconductor device Pending JPS58114463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21359081A JPS58114463A (en) 1981-12-26 1981-12-26 Manufacture of compound semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21359081A JPS58114463A (en) 1981-12-26 1981-12-26 Manufacture of compound semiconductor device

Publications (1)

Publication Number Publication Date
JPS58114463A true JPS58114463A (en) 1983-07-07

Family

ID=16641712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21359081A Pending JPS58114463A (en) 1981-12-26 1981-12-26 Manufacture of compound semiconductor device

Country Status (1)

Country Link
JP (1) JPS58114463A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0152624A2 (en) * 1983-12-24 1985-08-28 Sony Corporation Method of manufacturing a semiconductor device having a polycristalline silicon-active region.
JPS63104483A (en) * 1986-10-22 1988-05-09 Mitsubishi Electric Corp Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0152624A2 (en) * 1983-12-24 1985-08-28 Sony Corporation Method of manufacturing a semiconductor device having a polycristalline silicon-active region.
JPS63104483A (en) * 1986-10-22 1988-05-09 Mitsubishi Electric Corp Semiconductor device

Similar Documents

Publication Publication Date Title
US6504235B2 (en) Passivation layer and process for semiconductor devices
US9818838B2 (en) Semiconductor device
US5393680A (en) MIS electrode forming process
JPS58114463A (en) Manufacture of compound semiconductor device
JPH0361346B2 (en)
JP2682043B2 (en) Method for manufacturing compound semiconductor device
JPH03129774A (en) Semiconductor device and manufacture thereof
Watanabe et al. Low interface trap density and high breakdown electric field SiN films on GaN formed by plasma pretreatment using microwave-excited plasma-enhanced chemical vapor deposition
JP3277910B2 (en) Field effect transistor and method of manufacturing the same
JPS6390175A (en) Manufacture of compound semiconductor field effect transistor
JP2005347527A (en) Method of manufacturing mis compound semiconductor device
JPH06177157A (en) Compound semiconductor device and fabrication thereof
JPS60263437A (en) Manufacture of thin film transistor
JP2731194B2 (en) Method for manufacturing compound semiconductor device
JPH04236424A (en) Semiconductor wafer provided with insulating film and manufacture thereof
JPH1197439A (en) Semiconductor device and manufacture thereof
JPH06244409A (en) Preprocessing method for compound semiconductor substrate
JPH1074775A (en) Semiconductor device and its manufacture
JPH0352238A (en) Manufacture of compound semiconductor device
JPH0410549A (en) Manufacture of field-effect transistor
JPH05136172A (en) Manufacture of gaas field-effect transistor
JPH05190534A (en) Surface stabilization
JPH0457338A (en) Manufacture of semiconductor device
JPS599971A (en) Insulated gate field effect transistor
JPS6028229A (en) Manufacture of semiconductor device