JPS6025163A - Electrode for redox flow battery - Google Patents

Electrode for redox flow battery

Info

Publication number
JPS6025163A
JPS6025163A JP58133286A JP13328683A JPS6025163A JP S6025163 A JPS6025163 A JP S6025163A JP 58133286 A JP58133286 A JP 58133286A JP 13328683 A JP13328683 A JP 13328683A JP S6025163 A JPS6025163 A JP S6025163A
Authority
JP
Japan
Prior art keywords
electrode
graphite
positive
redox flow
negative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58133286A
Other languages
Japanese (ja)
Inventor
Yutaka Hibino
豊 日比野
Mamoru Kondo
守 近藤
Toshio Shigematsu
敏夫 重松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP58133286A priority Critical patent/JPS6025163A/en
Publication of JPS6025163A publication Critical patent/JPS6025163A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To increase the efficiency of the oxidoreductive reaction of a redox flow battery by placing porous complex electrodes consisting of conductive fiber in which active carbon is distributed in the concaves of a positive and a negative graphite electrode. CONSTITUTION:A graphite electrode plate 4 having a concave is placed on one side of each of a positive and a negative electrode 2 facing each other with a diaphragm 3 interposed. Solution passages 6a, 6b, 7a and 7b are formed in the spaces between the positive electrode 1 and the graphite electrode plate 4 and between the negative electrode 2 and the graphite electrode plate 4. Porous complex electrodes 8 are installed in spaces surrounded by the graphite electrode plates 4. They are formed by mixture prepared by homogeneously distributing active carbon 10 in conductive fiber 9 prepared from carbon cloth, graphite cloth or a nonwoven fabric. As a result, the surface area of the contact between the electrode and solution contributing to battery reaction is increased, thereby increasing the efficiency of the reaction of the electrode.

Description

【発明の詳細な説明】 、(7) 技 術 分 野 この発明はレドックスフロー電池の電極構造に関する。[Detailed description of the invention] , (7) Techniques branch This invention relates to an electrode structure for a redox flow battery.

レドックスフロー電池は、電力貯蔵用の二次電池として
極めて有輪である。
Redox flow batteries are extremely useful as secondary batteries for power storage.

安定した′1ヒカ供給を行うためには、電力需要に応じ
て電力供給しなければならない。電力需要は、昼夜、季
節、週間に於て変動する。いかなる場合にも電力不足が
起らないようにするには、発′市能力を、電力需要の最
大値にまで高めなければならない。しかし、発電所の新
設、増設は巨額の費用と長い年月を要し、これに関連す
る困難も多い。
In order to provide a stable '1 power supply, power must be supplied in accordance with the power demand. Electricity demand fluctuates day and night, seasonally, and weekly. In order to avoid power shortages under any circumstances, the generation capacity must be increased to the maximum value of the power demand. However, building new or expanding power plants requires huge costs and takes a long time, and there are many difficulties associated with this.

そこで、需要が低下した時に、発電量も低下させること
なく、余剰電力を電池に充電しておき、需要が高まった
時に、この電池から電力を放出するようにすることが望
ましい。
Therefore, it is desirable to charge a battery with surplus power when demand decreases without reducing the amount of power generated, and to discharge the power from the battery when demand increases.

電力を一時的に貯蔵できる充放電可能な二次電池は既に
数多く知られている。レドックスフロー電池は体積効率
が優れているので、電力貯蔵用の電池として好J1〜で
ある。
Many rechargeable and dischargeable secondary batteries that can temporarily store electricity are already known. Since redox flow batteries have excellent volumetric efficiency, they are suitable as batteries for power storage.

(イ) レドックスフロー電池 レドックスフロー(REDOX FLOW )電池はレ
ドックス反応を利用して、電力を貯蔵する。レドツクス
反応は、一方の反応物が酸化され、他方の反応物が還元
される事で、これが同時に行われる。
(a) Redox Flow Battery A REDOX FLOW battery uses a redox reaction to store electricity. In a redox reaction, one reactant is oxidized and the other reactant is reduced, which occur simultaneously.

可逆的にレドックス反応が起これば、充電、放電がなさ
れるから、二次電池とすることができる。
If the redox reaction occurs reversibly, charging and discharging can be performed, so it can be used as a secondary battery.

二種類のイオン溶液を、隔膜によって仕切り、正負の′
電極を設ける。それぞれのイオン溶液は別に設けたタン
クと、電極を設けた電解槽の間をポンプにJ二って循環
できるようになっている。電極間に電流を流すと、二種
類のイオンが酸化、還元反応を受ける。反応して原子価
が変化したイオンは′電解槽から、タンクへ送られる。
Two types of ionic solutions are separated by a diaphragm, and positive and negative
Provide electrodes. Each ionic solution can be circulated between a separate tank and an electrolytic cell equipped with an electrode using a pump. When a current is passed between the electrodes, two types of ions undergo oxidation and reduction reactions. The ions whose valence has changed due to the reaction are sent from the electrolytic cell to the tank.

電解槽へは、別のタンクから未反応のイオン溶液が送給
され、反応後のイオン溶液は先はど述べたタンクへ貯蔵
される。電解槽は単に酸化還元反応を起こさせるだけの
空間である。別に設けたタンクの中にイオンの形態で電
力が貯蔵される。このため体積効率が良い。
An unreacted ion solution is supplied to the electrolytic cell from another tank, and the ion solution after reaction is stored in the tank mentioned above. An electrolytic cell is simply a space in which redox reactions occur. Electric power is stored in the form of ions in a separate tank. Therefore, volumetric efficiency is good.

第2図によってルドツクスフロー電池による′電力貯蔵
システムを説明する。
An electric power storage system using a redox flow battery will be explained with reference to FIG.

発′屯所11で発′亀された電力は、送電され、直接、
負荷13へ供給されるものもあるか、一部は変電設備1
2、インパーク14を経て直流に変換され、レドンクス
フτコー’tlL 21txを充′屯する。
The electricity generated at the power station 11 is transmitted and directly
Some are supplied to load 13, some are supplied to substation equipment 1
2. It is converted to direct current through the impark 14, and is charged with a redundant current.

レドックスフロー′11L池は、’4仰r槽20と、正
極21、負極22、隔膜23、及び正極液タンク16転
16b1負極液タンク17a117b1ポンプ18.1
9よりなっている。
The redox flow '11L pond consists of a '4 tank 20, a positive electrode 21, a negative electrode 22, a diaphragm 23, and a positive electrode tank 16 turns 16b1 a negative electrode tank 17a117b1 pump 18.1
It consists of 9.

電解槽20は、例えば市(IllA液24液口4Fe”
/Fe2+塩酸溶液、負11ti ?(’i 25とし
テCr2−1−/ Cr3+塩酸溶液を入れてあり、隔
11r)% 23が両者を隔てていす る。隔膜23はH,イオン又はCI イオンを通し、正
、負の活1ノ1:物υtの・イオンを通さない。
The electrolytic cell 20 is, for example, a liquid (IllA liquid 24 liquid port 4Fe)
/Fe2+hydrochloric acid solution, negative 11ti? ('i 25, Cr2-1-/Cr3+ hydrochloric acid solution is placed, and a gap 11r)% 23 separates the two. The diaphragm 23 allows H, ions or CI ions to pass through, but does not allow positive and negative active ions to pass therethrough.

この例で正極、負J14における酸化還元反応は、次式
で表わすことかできろ。
In this example, the redox reaction at the positive electrode and negative electrode J14 can be expressed by the following equation.

正極: Fe3+ 十e 、: Fe”−負極: Cr
””t−:、: cr3+十e反応の方向が左から右へ
向うのが放電、右から左へ向うのが充電反1+jj+で
ある。それぞれの酸化′α位の和が約1vなので、これ
によって、起電力が1vの二次電池ができる。
Positive electrode: Fe3+ 10e,: Fe''-negative electrode: Cr
""t-:,: cr3+1e The direction of the reaction is from left to right, which is discharge, and the direction from right to left is charge, reverse 1+jj+. Since the sum of the respective oxidized 'α positions is about 1 volt, a secondary battery with an electromotive force of 1 volt can be created.

ポンプ1B、19によって、正極液、負極液をタンク1
6bから16aへ、及びタンク17bから17aへ(又
はその逆方向へ)送給できるので、反応物質の量をいく
らでも増加することができる。
Pumps 1B and 19 pump positive and negative electrode liquids into tank 1.
Since it can be fed from 6b to 16a and from tank 17b to 17a (or vice versa), the amount of reactant can be increased to any extent.

このため、タンク容量を増やせば、いくらでも貯蔵電気
量を増大させる事ができる。
Therefore, by increasing the tank capacity, the amount of stored electricity can be increased as much as possible.

以上の説明は、レドックスフロー電池の1単位(セル)
に関するものである。
The above explanation is for one unit (cell) of a redox flow battery.
It is related to.

実際には、多数の単セルを直列に接続して、必要な起電
力を得るようにする。こうした直列集合セルをさらに、
いくつか並列に接続し、充分な電流を得るようにする。
In practice, a large number of single cells are connected in series to obtain the required electromotive force. Furthermore, these serially assembled cells are
Connect several in parallel to obtain sufficient current.

このように、多数の単セルを含む電池であっても、正極
液、負極液の流路は共通で、同一のタンク16as 1
6b% 17as 17bを使うことができる。液の流
路は、直列集合セルの各積層面に直角になるよう集合セ
ルを貫いて、正極液、負極液について2本ずつ設けるだ
けで良い。
In this way, even in a battery including a large number of single cells, the positive and negative electrode liquids have a common flow path and are placed in the same tank 16as 1.
6b% 17as 17b can be used. It is only necessary to provide two liquid flow paths for the positive electrode liquid and the negative electrode liquid, penetrating the assembled cells so as to be perpendicular to each stacked surface of the serially assembled cells.

もちろん、正極11化、負極液にも電圧が分圧されて加
わることになるので、1?Ii’亀気によるパイプの腐
蝕などの問題があり、この問題を解決しようとした発明
(特開昭57−180081号)もなされている。
Of course, the voltage will be applied to the positive electrode 11 and the negative electrode liquid in a divided manner, so 1? There are problems such as corrosion of pipes due to Ii' flakes, and an invention (Japanese Unexamined Patent Publication No. 180081/1981) has been made in an attempt to solve this problem.

レドックスフロー′市池は、正極液、負極液の活性イオ
ンと、これらイオンを溶かす溶液の種類によって様々の
種類のものが知られている。以下に、溶液と、正極イオ
ン、負極イオンを記す0カツコの中の数字はイオン価数
の変化を示している。
Various types of redox flow are known depending on the active ions in the positive and negative electrolytes and the types of solutions that dissolve these ions. Below, the numbers in the 0 brackets indicating the solutions, positive electrode ions, and negative electrode ions indicate changes in ion valence.

(a) 塩酸溶液を使うもの Fe (8,/2 ) 、Cr (2/3 )Fe (
3/2 ) 、’ri (8/4 )(b) リン酸溶
液を使うもの Mn (3/2 ) 、Or (2/3 )Mn (3
/2 ) 、Cu (1/2 )Cr (6/3 ) 
、Cr (2/8 ) −(C) ピロリン酸溶液を使
うもの Mn (3/2 ) 、Cr (2/8 )Cr(6/
8 ) 、Cr (2/8 )(つ)従来技術とその問
題点 レドックスフロー電池の電解槽は、できるだけ体積が小
さく、シかも酸化還元反応が盛んに起るものであること
が望ましい。
(a) Using hydrochloric acid solution Fe (8,/2), Cr (2/3) Fe (
3/2), 'ri (8/4) (b) Those using phosphoric acid solution Mn (3/2), Or (2/3) Mn (3
/2), Cu (1/2) Cr (6/3)
, Cr (2/8) - (C) Using pyrophosphoric acid solution Mn (3/2), Cr (2/8) Cr (6/
8), Cr (2/8) (2) Prior art and its problems It is desirable that the electrolytic cell of a redox flow battery has a volume as small as possible, and that the redox reaction actively occurs.

実際は、電解槽と電極が別体になっているのではなく、
正負の電極の対向面に電解液の入る空間を作り、隔膜を
挾んで正電極、負電極を合体させると、この中に電解液
が保有されるようにした電極構造が採用される。
In reality, the electrolytic cell and electrode are not separate bodies,
An electrode structure is adopted in which a space for the electrolyte is created on the opposing surfaces of the positive and negative electrodes, and the positive and negative electrodes are combined with a diaphragm in between to hold the electrolyte in the space.

第3図は従来のレドックスフロー電池の晰セルの電極構
造を示す断面図である。
FIG. 3 is a sectional view showing the electrode structure of a lucid cell of a conventional redox flow battery.

正極1、負極2ともに同じ構造を持っており、隔膜3を
間に挾んでほぼ対称になっている。
Both the positive electrode 1 and the negative electrode 2 have the same structure and are almost symmetrical with the diaphragm 3 in between.

正極1、負極2ともに、グラファイト電極板4と、多孔
質カーボン電極5とを組合せた二層構造になっている。
Both the positive electrode 1 and the negative electrode 2 have a two-layer structure in which a graphite electrode plate 4 and a porous carbon electrode 5 are combined.

多孔質カーボン電極というのはカーボンの導電性クロス
や不織布などの事で、多孔質であるから、ここに正極液
、負極液などの電解液を保有させることができる。
A porous carbon electrode is a carbon conductive cloth or nonwoven fabric, and because it is porous, it can hold electrolytes such as a positive electrode solution and a negative electrode solution.

多孔質カーボン電極5は、隔膜3に接する方向に配置さ
れ、ゲラ゛ノアイI・′「1極板4はカーボン電極5を
囲むように皿J1,1Jとなっている。グラファイト電
極板4&j液を通さないから、電解液を包囲する電解槽
としての役11も11!つている。グラファイト電極板
4には、既に述べたように、正極液通し穴5 a z 
5 b % 〔’L極液、rl’fi シ穴7a、7b
などが、積層面に対し直角Gこl’J通ずるよう設けら
れている。
The porous carbon electrode 5 is arranged in a direction in contact with the diaphragm 3, and the graphite electrode plate 4 has plates J1, 1J surrounding the carbon electrode 5. Since it does not pass through, it also functions as an electrolytic cell 11 that surrounds the electrolyte.As already mentioned, the graphite electrode plate 4 has positive electrode liquid through holes 5, z, and 11.
5 b% ['L polar liquid, rl'fi hole 7a, 7b
etc. are provided so as to communicate at right angles to the laminated surface.

正極液、負極液+iそれぞれ、6”s 7aから、カー
ボン電極5 (′l’lr、 l(1’1t’l”Iに
あたる)の中へ入りこれを通り抜りて、6b、7bへと
通過する(或は反対方向へ通過する)。
The positive electrode liquid and the negative electrode liquid +i each enter from 6"s 7a into the carbon electrode 5 ('l'lr, l (corresponding to 1'1t'l"I)), pass through this, and go to 6b and 7b. Pass through (or pass in the opposite direction).

グラファイト、カーボンともに電気の良導体であるが、
それでも、このようなtlt極には以下の欠点があった
Both graphite and carbon are good conductors of electricity, but
Still, such TLT poles had the following drawbacks.

電極反応(電極に於ける酸化還元反応)は、電極面積が
大きいほど、′11i極の導電性が高い程効率よく進む
The electrode reaction (oxidation-reduction reaction at the electrode) proceeds more efficiently as the electrode area becomes larger and as the conductivity of the '11i electrode becomes higher.

カーボン、グラフアイ!・などの導電性クロスもしくは
不織布を多孔質′電極5として用いるが、電極の実効面
4イ1及び導?li率ともに十分で4rい。このため、
反応速度が遅く、内部抵抗が大きく、充放電効率が低か
った。
Carbon, Graphai! A conductive cloth or non-woven fabric such as . Both the li rate is sufficient and it is 4r. For this reason,
The reaction rate was slow, the internal resistance was large, and the charge/discharge efficiency was low.

(1)本発明の構成 本発明のレドックスフロー電池の電極は、多孔質カーボ
ン電極(グラファイト電極)に粒状の活性炭を附加し、
電極面積を広くしている。
(1) Structure of the present invention The electrode of the redox flow battery of the present invention is a porous carbon electrode (graphite electrode) to which granular activated carbon is added.
The electrode area is widened.

第1図は本発明の電極構造を示す断面図である。FIG. 1 is a sectional view showing the electrode structure of the present invention.

第3図に示す従来例の電極構造に近似するので、同一部
材に対し、同一の符号をらける。
Since the electrode structure is similar to the conventional electrode structure shown in FIG. 3, the same reference numerals are used for the same members.

正極1と負極2とが隔膜3を挾んで対向している点、及
び皿型断面のグラファイト電極板4を使い、ここにでき
る間隙に電解液を通す点は前例と変らない。溶液通し穴
6a% 6b% 7a、7bも同様に設ける。
This is the same as the previous example in that the positive electrode 1 and negative electrode 2 face each other with a diaphragm 3 in between, and that a graphite electrode plate 4 with a dish-shaped cross section is used and the electrolyte is passed through the gap created here. Solution through holes 6a% 6b% 7a and 7b are provided in the same manner.

異なる点は、グラファイト電極板4によって囲まれる空
間に、屯なる多孔質カーボン電極を設けるのではなく、
多孔質複合電極8を設ける点である。
The difference is that instead of providing a porous carbon electrode in the space surrounded by the graphite electrode plate 4,
The point is that a porous composite electrode 8 is provided.

多孔質複合電極8は、導電性繊維9と、この中に分布し
た活性炭10とよりなる。
The porous composite electrode 8 consists of conductive fibers 9 and activated carbon 10 distributed therein.

導電性繊維9は、カーボン又はグラファイトなどのクロ
ス又は不織布であり、従51!:のカーボン電極などと
同様である。カーボンクロスは、数71径のカーボンフ
ィラメントを集合して紡糸し、0.1〜1.□mm厚さ
の織布にしたものなどが良い。
The conductive fiber 9 is a cloth or nonwoven fabric made of carbon or graphite, and the conductive fiber 9 is a cloth or nonwoven fabric made of carbon or graphite. : It is similar to the carbon electrode etc. Carbon cloth is made by gathering and spinning carbon filaments with several diameters of 0.1 to 1. A woven fabric with a thickness of □mm is good.

活性炭10は、0.1〜1ηr1i、 (ミリミクロン
:10 m)径のカーボン粒子を、0.5〜5朋の粒径
に造粒した活性炭が良い。活性炭の寸法は、レドックス
フロー電池L池の屯セルの電極寸法によって適当なもの
を選ぶ。活性炭の導電度は10〜10Ωが好ましい。
The activated carbon 10 is preferably activated carbon obtained by granulating carbon particles having a diameter of 0.1 to 1 ηr1i (millimicrons: 10 m) to a particle size of 0.5 to 5 mm. The size of the activated carbon is selected appropriately depending on the size of the electrode of the redox flow battery L cell. The conductivity of activated carbon is preferably 10 to 10Ω.

活性炭10は、導電性繊維9に対し、均等に分布してい
るのが望ましい。2枚の導電性繊維9で、活性炭10を
挾むようにしてもよい。そうでなく1枚の繊維に活性炭
を附着させる、1:うにしても差支えない。
It is desirable that the activated carbon 10 is evenly distributed over the conductive fibers 9. The activated carbon 10 may be sandwiched between two conductive fibers 9. Alternatively, activated carbon may be attached to one fiber, 1:

活性炭10はいずれにし−(も導tlt性繊紺9に対し
接着しなければならない。しかし、接着することによっ
て活性炭10と導電性繊維9の間の電気抵抗が大きくな
ってはtrらtI′い。
In any case, the activated carbon 10 must be bonded to the conductive fiber 9. However, the electrical resistance between the activated carbon 10 and the conductive fiber 9 should not increase due to the bonding. .

導電性繊維に、活性炭を附着させるには次のようにする
。フェノール樹脂、エポキシフェノール樹脂等の接着用
バインダーを用いて粒子間、粒子−繊維間を接着させる
。この後、窒素中で300〜700°Cで炭化させる。
To attach activated carbon to conductive fibers, proceed as follows. An adhesive binder such as phenol resin or epoxy phenol resin is used to bond particles and particles to fibers. This is followed by carbonization at 300-700°C in nitrogen.

接着剤の中の有機成分は炭化し、粒子、繊維は一体化成
形されることになる。
The organic components in the adhesive are carbonized, and the particles and fibers are integrally molded.

こうすれば、粒子−粒子間、粒子−繊維間の導電性は良
好で、しかも堅固に活性炭が附着される。
In this way, the conductivity between particles and between particles and fibers is good, and the activated carbon is firmly attached.

け) 効 果 活性炭は、優れた多孔質導電材料である。本発明の電極
は、活性炭を新しく加えたので、反応に寄与する溶液と
電極との接触面積が著しく広くなる。N極に於ける酸化
還元反応が甚しく促進される。このため電極反応効率が
高まる。実際、この電極構造によって、従来のものの約
1.5倍の連関で、酸化還元反応が行われることがある
Activated carbon is an excellent porous conductive material. Since activated carbon is newly added to the electrode of the present invention, the contact area between the electrode and the solution that contributes to the reaction is significantly increased. The redox reaction at the north pole is greatly promoted. This increases electrode reaction efficiency. In fact, with this electrode structure, redox reactions can occur at a rate about 1.5 times greater than with conventional ones.

また、活性炭は電気の良導体であるので、これを加える
ことによって、電池の内部抵抗が低減する、という利点
もある。
Furthermore, since activated carbon is a good conductor of electricity, adding it has the advantage of reducing the internal resistance of the battery.

(力) 実 施 例 本発明の実施例を、iQ明する。(Power) Example of implementation An embodiment of the present invention will be explained by iQ.

隔膜3として、厚さ0.1問、絆r10o問、横100
間の陽イオン交換膜を用いる。
As the diaphragm 3, the thickness is 0.1, the bond is 100, and the width is 100.
A cation exchange membrane is used between the two.

正負の電イ1lliには、a mm×1oo mm×1
oo myのグラファイト電極板と、0.5順×70問
×7Qy+mのカーボンクロス(平織クロス)とを組合
せたものを用いた。グラファイト電極板の片面には四部
があって、ここに、カーボンクロス2枚を積層した。
For 1lli of positive and negative electric current, a mm×1oo mm×1
A combination of a graphite electrode plate of oo my and a carbon cloth (plain weave cloth) of 0.5 order x 70 questions x 7Qy+m was used. There were four parts on one side of the graphite electrode plate, on which two sheets of carbon cloth were laminated.

2枚のカーボンクロスの間隙に、直径0 * 5 ”1
t(ミリミクロン)のカーボン粒子を、Q、25mmの
粒径に造粒した活性炭をフェノール樹脂を用いて接着し
た。電極部の厚さは、これによって2.0門となった。
In the gap between two pieces of carbon cloth, diameter 0 * 5 ”1
Activated carbon made by granulating carbon particles of T (millimicrons) to a particle size of Q, 25 mm was adhered using a phenol resin. As a result, the thickness of the electrode portion was 2.0 mm.

この後、500°Cの窒素中で接着剤を炭化さぜ、グラ
ファイト?lt 極板と一体化成形した。こうすると反
応電極の広さは、70 X 70 、mmどなる。電解
槽に当る部分の体イビlは2mm X 70 mm X
 70 mmで与えられる。
After this, carbonize the adhesive in nitrogen at 500°C and graphite? It is integrally molded with the electrode plate. In this way, the area of the reaction electrode is 70 x 70 mm. The part of the body that touches the electrolytic tank is 2mm x 70mm x
Given in 70 mm.

このセルに、正極液としてFeCe21モルを溶解(1
1) させた4N−HC1溶液、負極液としてCrCl31モ
ルを溶解させた4N−HC1溶液を導入し、充放電実験
を行った。
In this cell, 21 mol of FeCe was dissolved (1
1) A 4N-HC1 solution in which 1 mole of CrCl3 was dissolved was introduced as a negative electrode liquid, and a charge/discharge experiment was conducted.

この結果、従来のものに比べて、充放電効率が少くとも
5%上昇することが認められた。
As a result, it was found that the charge/discharge efficiency increased by at least 5% compared to the conventional one.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の電極構造を示す断面図。 第2図はレドックスフロー電池を電力貯蔵に使用したシ
ステムの構成図。 @3図は従来のレドックスフロー電池の単セルの電極構
造を示す断面図。 1 ・・・・・・・・・ 正 極 2 ・・・・・・・・・ 負 極 3 ・・・・・・・・・ 隔 膜 4 ・・・・・・・・・ グラファイト電極板5 ・・
・・・・・・・ 多孔質カーボン電極6.7・・・・・
・・・・ 正極液、負極液通し穴8 ・・・・・・・・
・ 多孔質複合電極9 ・・・・・・・・・ 導電性繊
維 10 ・・・・・・・・・ 活 性 炭16a、16b
・・・ 正極液タンク 17a、171)・・・ 負極液タンクIL19 ・・
・・・・ ポ ン プ 20・・・・・・・・・電解槽 21 ・・・ ・・・ ・・・ 正 極22 ・・・・
・・・・・ 負 極 発 明 者 1−1 比 野 豊 近 藤 守 l【 松 敏 夫 特許出願人 住友電気−L業株式会社
FIG. 1 is a sectional view showing the electrode structure of the present invention. Figure 2 is a configuration diagram of a system using redox flow batteries for power storage. Figure @3 is a cross-sectional view showing the electrode structure of a single cell of a conventional redox flow battery. 1 ...... Positive electrode 2 ...... Negative electrode 3 ...... Diaphragm 4 ...... Graphite electrode plate 5・・・
・・・・・・ Porous carbon electrode 6.7・・・・・・
・・・・ Positive electrode liquid, negative electrode liquid through hole 8 ・・・・・・・・・
・ Porous composite electrode 9 ...... Conductive fiber 10 ...... Activated carbon 16a, 16b
... Positive electrode liquid tank 17a, 171)... Negative electrode liquid tank IL19...
... Pump 20 ... Electrolytic cell 21 ... ... Positive electrode 22 ...
... Negative electrode inventor 1-1 Toyokon Hino Mori Fuji [Toshio Matsu Patent applicant Sumitomo Electric-L Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)正極1と負極2を隔II!43によって分離し、
正極1に正極液を、負極2に負極液を供給し両極に於て
可逆的に酸化還元反応を行わせて充放電させるレドック
スフロー電池に於て、両電極1.2が片側に四部を有す
るグラファイト電極板4と、グラファイト電極板4の四
部に設けた外孔質複合′電極8」こりなり、多孔質複合
電極8は導電性繊維9に活性炭10を付加したものであ
る事を特徴とするレドックスフロー電池の電極。
(1) Separate the positive electrode 1 and negative electrode 2! separated by 43;
In a redox flow battery in which a positive electrode liquid is supplied to the positive electrode 1 and a negative electrode liquid is supplied to the negative electrode 2, a redox reaction is performed reversibly at both electrodes to charge and discharge, both electrodes 1.2 have four parts on one side. A graphite electrode plate 4 and an external porous composite electrode 8 provided on the four parts of the graphite electrode plate 4 are characterized in that the porous composite electrode 8 is made by adding activated carbon 10 to conductive fibers 9. Redox flow battery electrode.
(2) 導電性繊維9がカーボンのクロス又は不織布で
ある特許請求の範囲第(1)項記載のレドックスフロー
電池の電極。
(2) The electrode for a redox flow battery according to claim (1), wherein the conductive fibers 9 are carbon cloth or nonwoven fabric.
JP58133286A 1983-07-20 1983-07-20 Electrode for redox flow battery Pending JPS6025163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58133286A JPS6025163A (en) 1983-07-20 1983-07-20 Electrode for redox flow battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58133286A JPS6025163A (en) 1983-07-20 1983-07-20 Electrode for redox flow battery

Publications (1)

Publication Number Publication Date
JPS6025163A true JPS6025163A (en) 1985-02-07

Family

ID=15101090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58133286A Pending JPS6025163A (en) 1983-07-20 1983-07-20 Electrode for redox flow battery

Country Status (1)

Country Link
JP (1) JPS6025163A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010088847A1 (en) * 2009-02-06 2010-08-12 北京金能燃料电池有限公司 Electrode for a flow battery
DE102010033380A1 (en) 2010-08-04 2012-02-09 Bayerisches Zentrum für Angewandte Energieforschung e.V. Large and open porous C / C composite with high internal surface, as well as methods of making the same and their use
WO2012051973A1 (en) 2010-08-04 2012-04-26 Bayerisches Zentrum Für Angewandte Energieforschung E.V. Zae Bayern Large-pore and open-pore c/c composite having a high inner surface area, and process for producing it and use thereof
CN102623721A (en) * 2012-04-06 2012-08-01 中国东方电气集团有限公司 Collector plate, bipolar collector plate comprising same, monocell and flow redox cell
DE102011108435A1 (en) 2011-07-26 2013-05-02 Bayerisches Zentrum für Angewandte Energieforschung e.V. Carbon-carbon composite, useful e.g. as electrode, catalyst support and adsorber, comprises large- and open porous support of carbon or organic precursor coated with nanoporous carbon material of high specific surface
JP2013137957A (en) * 2011-12-28 2013-07-11 Asahi Kasei E-Materials Corp Redox flow secondary battery
CN103531828A (en) * 2012-07-05 2014-01-22 上海弘枫实业有限公司 Flow battery graphite plate
JP2015530709A (en) * 2012-09-03 2015-10-15 ティッセンクルップ インダストリアル ソリューションズ アクツィエンゲゼルシャフトThyssenKrupp Industrial Solutions AG Flow-type electrochemical cell
JP2017506809A (en) * 2014-02-26 2017-03-09 レッドフロー アールアンドディ プロプライエタリー リミテッドRedflow R&D Pty Ltd Bipolar battery electrode with improved carbon surface and method of manufacturing the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010088847A1 (en) * 2009-02-06 2010-08-12 北京金能燃料电池有限公司 Electrode for a flow battery
DE102010033380A1 (en) 2010-08-04 2012-02-09 Bayerisches Zentrum für Angewandte Energieforschung e.V. Large and open porous C / C composite with high internal surface, as well as methods of making the same and their use
WO2012051973A1 (en) 2010-08-04 2012-04-26 Bayerisches Zentrum Für Angewandte Energieforschung E.V. Zae Bayern Large-pore and open-pore c/c composite having a high inner surface area, and process for producing it and use thereof
DE102011108435A1 (en) 2011-07-26 2013-05-02 Bayerisches Zentrum für Angewandte Energieforschung e.V. Carbon-carbon composite, useful e.g. as electrode, catalyst support and adsorber, comprises large- and open porous support of carbon or organic precursor coated with nanoporous carbon material of high specific surface
JP2013137957A (en) * 2011-12-28 2013-07-11 Asahi Kasei E-Materials Corp Redox flow secondary battery
CN102623721A (en) * 2012-04-06 2012-08-01 中国东方电气集团有限公司 Collector plate, bipolar collector plate comprising same, monocell and flow redox cell
WO2013149512A1 (en) * 2012-04-06 2013-10-10 中国东方电气集团有限公司 Current collector, double-electrode current collector comprising same, single battery, and flow battery
CN103531828A (en) * 2012-07-05 2014-01-22 上海弘枫实业有限公司 Flow battery graphite plate
JP2015530709A (en) * 2012-09-03 2015-10-15 ティッセンクルップ インダストリアル ソリューションズ アクツィエンゲゼルシャフトThyssenKrupp Industrial Solutions AG Flow-type electrochemical cell
JP2017506809A (en) * 2014-02-26 2017-03-09 レッドフロー アールアンドディ プロプライエタリー リミテッドRedflow R&D Pty Ltd Bipolar battery electrode with improved carbon surface and method of manufacturing the same

Similar Documents

Publication Publication Date Title
KR100860002B1 (en) Secondary Battery Pack Having Configuration of Alternative Orientation
CN102576850B (en) Battery
KR101049179B1 (en) Redox flow cell with separator
US10381667B2 (en) High performance redox flow battery stack
JP2002367658A (en) Cell frame for redox flow cell, and redox flow cell
US20130022846A1 (en) Electrode structure of vanadium redox flow battery
JP4630529B2 (en) Fuel cell system
JP3496385B2 (en) Redox battery
US9153832B2 (en) Electrochemical cell stack having a protective flow channel
JPH06223858A (en) Diaphragm flow cell battery
JP2010525551A (en) Electrochemical cell and energy storage device with non-graphitizable carbon electrode
JPS6025163A (en) Electrode for redox flow battery
US11611098B2 (en) Cell for flow battery
AU2016342919B2 (en) Redox flow battery electrode, and redox flow battery
WO2023169600A1 (en) Flow battery stack or battery cell, electrode-diaphragm composite assembly and composite electrode structure thereof
JP3555303B2 (en) Redox battery
JPS6340267A (en) Bipolar plate for redox flow type cell
US20220238904A1 (en) Redox flow battery
JPH0630252B2 (en) Electrode member for redox flow battery
JPS60101881A (en) Cell structure for redox flow battery
JPS63140095A (en) Bipolar plate for electrolytic cell
JP2998969B2 (en) Battery terminal structure
JPS614169A (en) Redox flow battery
JPS59154770A (en) Fuel cell
JPH05242883A (en) Secondary battery