WO2012051973A1 - Large-pore and open-pore c/c composite having a high inner surface area, and process for producing it and use thereof - Google Patents
Large-pore and open-pore c/c composite having a high inner surface area, and process for producing it and use thereof Download PDFInfo
- Publication number
- WO2012051973A1 WO2012051973A1 PCT/DE2011/001535 DE2011001535W WO2012051973A1 WO 2012051973 A1 WO2012051973 A1 WO 2012051973A1 DE 2011001535 W DE2011001535 W DE 2011001535W WO 2012051973 A1 WO2012051973 A1 WO 2012051973A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- composite
- carbon
- surface area
- composite according
- carrier material
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/624—Sol-gel processing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/20—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28054—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
- B01J20/28057—Surface area, e.g. B.E.T specific surface area
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28054—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
- B01J20/28078—Pore diameter
- B01J20/2808—Pore diameter being less than 2 nm, i.e. micropores or nanopores
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/3078—Thermal treatment, e.g. calcining or pyrolizing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/3085—Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3202—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
- B01J20/3204—Inorganic carriers, supports or substrates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3231—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
- B01J20/3234—Inorganic material layers
- B01J20/324—Inorganic material layers containing free carbon, e.g. activated carbon
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62645—Thermal treatment of powders or mixtures thereof other than sintering
- C04B35/6267—Pyrolysis, carbonisation or auto-combustion reactions
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/71—Ceramic products containing macroscopic reinforcing agents
- C04B35/78—Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
- C04B35/80—Fibres, filaments, whiskers, platelets, or the like
- C04B35/83—Carbon fibres in a carbon matrix
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
- C04B38/0022—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof obtained by a chemical conversion or reaction other than those relating to the setting or hardening of cement-like material or to the formation of a sol or a gel, e.g. by carbonising or pyrolysing preformed cellular materials based on polymers, organo-metallic or organo-silicon precursors
- C04B38/0032—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof obtained by a chemical conversion or reaction other than those relating to the setting or hardening of cement-like material or to the formation of a sol or a gel, e.g. by carbonising or pyrolysing preformed cellular materials based on polymers, organo-metallic or organo-silicon precursors one of the precursor materials being a monolithic element having approximately the same dimensions as the final article, e.g. a paper sheet which after carbonisation will react with silicon to form a porous silicon carbide porous body
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
- C04B38/0045—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by a process involving the formation of a sol or a gel, e.g. sol-gel or precipitation processes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M12/00—Hybrid cells; Manufacture thereof
- H01M12/04—Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8817—Treatment of supports before application of the catalytic active composition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8825—Methods for deposition of the catalytic active composition
- H01M4/8846—Impregnation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8878—Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
- H01M4/8882—Heat treatment, e.g. drying, baking
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/96—Carbon-based electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/20—Indirect fuel cells, e.g. fuel cells with redox couple being irreversible
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00474—Uses not provided for elsewhere in C04B2111/00
- C04B2111/00793—Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00474—Uses not provided for elsewhere in C04B2111/00
- C04B2111/00793—Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
- C04B2111/00801—Membranes; Diaphragms
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00474—Uses not provided for elsewhere in C04B2111/00
- C04B2111/0081—Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00474—Uses not provided for elsewhere in C04B2111/00
- C04B2111/00853—Uses not provided for elsewhere in C04B2111/00 in electrochemical cells or batteries, e.g. fuel cells
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/48—Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5208—Fibers
- C04B2235/5216—Inorganic
- C04B2235/524—Non-oxidic, e.g. borides, carbides, silicides or nitrides
- C04B2235/5248—Carbon, e.g. graphite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5292—Flakes, platelets or plates
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the invention relates to a carbon-carbon ⁇ C / C) composite characterized in that a carrier material made of carbon is coated with a nanoporous carbon material having a high specific surface area, in which case pores smaller than 1 ⁇ m are to be understood as nanopores.
- a carbon support material e.g., charcoal, graphite, carbon and graphite felts, carbon foams, or the organic precursors of these types of materials
- the coating of the carrier material takes place via a liquid precursor in a sol-gel process, the coating initially being present as organic precursor (for example, porous duromer). Since the precursor of the C / C composite still contains organic components, the C / C composite is produced by carbonation in a pyrolysis step.
- Carbon-carbon (C / C) composite materials consisting of a carrier material of carbon and a pyrolytic carbon coating are known from various sources and state of the art.
- the pyrocarbon layer is characterized by a high structural order of the carbon atoms (graphitic) and an increased oxidation resistance.
- the specific surface of the coating is well below 10 m 2 / g and the Pyrokohlenstoffbeschich- tion has no significant Nanostruktu réelle and no nanoporosity (structures ⁇ 1 ⁇ ) on.
- the coating with pyrocarbon leads via chemical vapor deposition (CVD) to a C / C composite of very low specific surface area.
- CVD chemical vapor deposition
- the coating with pyrolytic carbon leads to a significant reduction specific surface area, whereby there are no micropore (definition of micropores in- Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, et al. Reporting physisorption data for gas / solid Systems with special refer- ence to the determination of surface area and porosity. Pure and Applied Chemistry 1985; 57: 603) are detected more.
- JP10045473AA and JP10045474AA a carbon fiber-reinforced carbon or graphite-based shaped body is subjected to a CVD treatment, wherein a coating with pyrocarbon takes place, which has a thickness of 10 pm - 150 ⁇ .
- the dense Pyrokohlenstoff für has low impurities and is increased oxidation resistant.
- JP61219708A describes the preparation of a graphite-based material which is coated with pyrolytic carbon via a CVD process. The coating is deposited with hydrocarbons or halogenated hydrocarbons as precursors at temperatures of 600 ° C to 2400 ° C on the base material.
- a macromolecular polymer is dissolved in a corresponding organic solvent whose boiling point is below the softening point of the macromolecular Polymers lies.
- the solution is mixed with graphite particles and the graphite coated by distillation and curing of the macromolecular polymer. Subsequently, a carbonization is carried out. The coating is smooth and the coated graphite particles do not agglomerate.
- an electrode for redox flow batteries which consists of conductive carbon fabric with homogeneously distributed activated carbon and is introduced into the cavity of a graphite plate.
- the carbon coating is exclusively smooth, highly graphitic carbon layers of low specific surface area without nanoporosity, usually referred to as pyrocarbon.
- pyrocarbon coatings serve as protection against thermal and oxidative influences and are unsuitable for use, for example, as an electrode material due to their low specific surface area.
- the object of the invention is, in a large and porous material made of carbon and its organic precursor while maintaining the large pores, the specific surface of the total material significantly, i. by at least an order of magnitude.
- an open-pore carrier material made of carbon or of an organic precursor, in particular charcoal, porous graphite plates or flakes, carbon or graphite fiber felts, carbon foams or their organic precursors, via the infiltration of a liquid phase in a sol-gel process with a carbon Precursor coated.
- the coating can be carried out, for example, by infiltrating the support material with a solution containing polymer constituents, the polymer constituents depositing on the support material in the wet-chemical reaction or during the subsequent removal of the solvent by drying and forming a polymeric precursor of the carbon coating.
- Decisive here is the formation of a polymeric nanostructured ⁇ e.g. nanoporous) layer via the sol-gel process on the inner surface of the support material.
- the resulting coated material remains open-pored.
- the carrier material While in the pyrocarbon deposition by thermal see decomposition of a carbonaceous gas on the surface of the carrier material directly a non-porous carbon layer is generated, in contrast, in the present invention, the carrier material is infiltrated or impregnated with a liquid.
- the fluid contains molecular carbonaceous constituents which, by polymerization at the surface or in the pores of the carrier material, result in a coating thereof.
- the polymer coating already exhibits essential structural properties which are characteristic of the C / C composite according to the invention, eg spherical components of the coating see Figure 1 (right) and Figure 3, as well as structural units in the range ⁇ 1 ⁇ (eg pores).
- furfuryl alcohol polyacrylonitrile (PAN), and combinations of hydroxybenzenes (e.g., phenol, resorcinol) with aldehydes ⁇ e.g. Formaldehyde, furfural) or melamine aldehydes which are dissolved in a solvent (e.g., water, alcohols, ketones) and mixed to accelerate the polymerization with a catalyst (base or acid) or a hardener (e.g., hexamethylenetetramine HMTA).
- a solvent e.g., water, alcohols, ketones
- a catalyst base or acid
- a hardener e.g., hexamethylenetetramine HMTA
- the remaining solvent is removed by drying from the coated omposit.
- the coating takes place via the attachment of the polymer building blocks to the inner surface of the support material.
- the decisive factor here is that in the composite actually comes exclusively to a coating of the carrier material, and the usual sol-gel process, which would lead to a filling of the interstices of the carrier material is prevented by a suitable choice of the process parameters.
- the carbon conversion takes place by thermal decomposition of the organic constituents at temperatures between 500 ° C. and 1100 ° C. under an oxygen-free atmosphere (pyrolysis ), producing the C / C composite.
- an activation step at 500 ° C - 1500 ° C (physically, eg with C0 2 or H 2 0 or chemically eg with alkali hydroxides / carbonates) can follow.
- a high-temperature treatment at temperatures above 1100 ° C offers.
- a combination of activation and high-temperature treatment may be required.
- the specific surface of the C / C composite would first be enlarged by an activation and then the electrical conductivity increased by a high-temperature treatment of the C / C composite. This is also possible in reverse order.
- This can be done by gas phase reactions at temperatures of 100-1000 ° C or from 100-700 ° C in air or under gas flow of defined composition (eg ammonia, oxygen, C0 2 , H 2 0 with or without chemically inert carrier gas ⁇ z.
- defined composition eg ammonia, oxygen, C0 2 , H 2 0 with or without chemically inert carrier gas ⁇ z.
- a corresponding treatment is the formation of polar surface groups, which on the one hand improve the wettability / hydrophilicity of the surface of the electrode and increase the contact area between an electrolyte or another liquid and the electrode surface.
- the reaction kinetics ie the exchange current density of the corresponding reaction at the electrode (eg for V + + 2 , V + 5 / + 4 , Fe + 3 / + 2 ) can be supported by the reaction process / the redox reaction by the functional surface groups increase.
- the large pore C / C composite of the invention has the entire inner surface of the original support material as a nanoporous carbon coating. If the pure support itself has only a small specific surface area (e.g., charcoal, compressed expanded graphite, graphite fiber felt or carbon foam), the C / C composite has a significantly increased specific surface area, the difference being several orders of magnitude. In addition to the increase in the specific surface area, which is mainly due to the microporosity (pores ⁇ 2 nm) of the carbon coating, the inner surface of the C / C composite also increases due to the spherical components of the carbon layer, as can be seen from RE images (see Figure 1, right and Figure 3).
- a small specific surface area e.g., charcoal, compressed expanded graphite, graphite fiber felt or carbon foam
- the large-pore C / C composite is characterized by low density, an open-pore superstructure with pores larger than 1 micrometer, a low flow resistance, a carrier carbon material with high electrical conductivity ⁇ > 0.1 S / cm, in particular> 1.0 S / cm) and a nanosized carbon coating with a high specific surface area.
- the inventive C / C composite for various applications, preferably as electrode material in electrochemical storage, especially in Redoxpound- batteries (eg in the systems vanadium / vanadium, vanadium / bromine, bromine / polysulfide and cerium / zinc, zinc / Bromine, etc.).
- a C / C composite made of an electrically highly conductive carbon high, easily accessible porosity, with large pores simultaneously in the range of 1 pm - 5 mm (eg graphite, pressed expanded graphite, carbon or graphite felt, carbon foam ) as carrier material important to allow high flow rates of the electrolyte through the electrode even at low pressure differences.
- ⁇ is the viscosity of the liquid.
- the materials used heretofore have a low mass and volume specific surface area, and thus also an electrolyte (e.g., vanadium ion) to low active surface area, which limits cell performance per volume.
- an electrolyte e.g., vanadium ion
- the nanoporous carbon coating which has a high specific surface area, increases over that Electrolyte active electrode surface significantly without significantly affecting the flow rate of the electrolyte through the electrode. Overall, this results in an increased power density per volume compared to an uncoated carbon electrode.
- the C / C composite also lends itself to use as electrode material in other electrochemical applications and other battery forms, for which a coarse and open porous electrode material with high conductivity and high surface area is advantageous, e.g. in metal-air batteries (Zn-air, Li-air).
- the C / C composite with its high specific surface area and large pores, which enable a good flow rate, is also ideal as an adsorber for filtration.
- aqueous 37% - formaldehyde solution stabilized with about 10% methanol
- deionized water deionized water
- 0, lN-Na 2 C0 3 solution mixed together in a beaker on a magnetic stirrer.
- the mass of resorcinol and formaldehyde in the total mass of the solution is 20%.
- the graphite compact is infiltrated in a desiccator with the resorcinol-formaldehyde solution by means of vacuum pressure infiltration.
- the sample is heated to 90 ° C. for 24 hours in order to achieve a coating of the carbonaceous material with resorcinol-formaldehyde polymers.
- the liquid is removed by convective drying.
- the sample is pyrolyzed under non-oxidizing atmosphere (argon) for one hour at S00 ° C.
- Figure 1 shows an SEM image of the pressed expanded graphite (left) with the coated sample, the C / C composite (right). The deposited nanoporous carbon material on the graphite surface can be clearly seen.
- the C / C composite has a density of 0.08 g / cm 3 .
- the specific surface determined by nitrogen sorption in accordance with DIN ISO 9277: 2003-05 has increased by about a factor of 10 to S BET - 458 m 2 / g.
- the microporous volume according to the t-plot method (DIN 66135-2) is 0.16 cm 3 / g, the external surface 39 m 2 / g.
- the significantly increased specific surface area of the carbon-coated C / C composite is evident also clearly in the adsorbed gas quantities of the nitrogen sorption isotherms at 77 K of pure carbon support aterial (pressed expanded graphite) and the C / C composite in Figure 2.
- Embodiment 2 is a diagrammatic representation of Embodiment 1:
- a graphite hard felt of density 0.1 g / cm 3 and a specific surface S BBT of 0.4 m 2 / g determined from nitrogen sorption according to DIN ISO 9277: 2003-05 with the dimensions 10 cm ⁇ 10 cm ⁇ 1 , 5 cm is soaked at room temperature and atmospheric pressure with a dilute polymer solution.
- This solution consists of 27.2 g of resorcinol, 39.5 g of an aqueous 7% formaldehyde solution (stabilized with about 10% methanol), 82.7 g of deionized water and 0.6 g of a 0, lN-Na 2 CO 3 - solution.
- the sample is heated to 85 ° C for 24 hours to coat the carbon support material with resorcin-formaldehyde polymers. Subsequently, the gel is dried convectively at 40 ° C in air at atmospheric pressure for 36 hours.
- the organic precursor of the C / C composite thus obtained has a density of 0.355 g / cm 3 .
- the organic precursor of the C / C composite is then pyrolyzed for 3 hours at 800 ° C under non-oxidizing atmosphere (argon).
- the C / C composite thus obtained has a density of 0.226 g / cm 3 and a BET surface area according to DIN ISO 9277: 2003-05 of 389 m 2 / g.
- micropore volume by t-plot method (DIN 66135-2) is 0.15 cm 3 / g, the external surface 2 m 2 / g.
- Figure 3 shows an SEM image of the coated C / C composite. The spherical structures of the nanoporous carbon coating with a high specific surface can be clearly seen.
- the permeability coefficient k is 7-10 "11 m 2 .
- the carbon carrier material used is pressed expanded graphite having a density of 0.03 g / cm 3 and a specific surface S BET of 45 m 2 / g determined from nitrogen sorption to DIN ISO 9277: 2003-05.
- Formaldehyde solution (stabilized with about 10% methanol), n-propanol and 37% HCl mixed together in a beaker on a magnetic stirrer.
- the mass of phenol and formaldehyde in the total mass of the solution is 15%.
- the graphite compact is placed in a desiccator with the phenolic Formaldehyde solution infiltrated.
- the sample is heated for 24 hours at 90 ° C to achieve a coating of the carbon support material with phenol-formaldehyde polymers. Subsequently, the liquid is removed by convective drying.
- the sample was pyrolysed under a non-oxidizing atmosphere (argon) for one hour at 800 ° C.
- the C / C composite has a density of 0.09 g / cm 3 .
- the specific surface determined by nitrogen sorption according to DIN ISO 9277: 2003-05 is S BET - 267 m 2 / g.
- graphite felt consisting of a predominantly amorphous carbon fibers (viscose-based) and partly from predominantly graphitic carbon fibers (PA-based).
- the felts are activated in hot concentrated sulfuric acid over 30 minutes. Both activation and beyond as a C / C composite increase the power density as measured in a vanadium redox battery test cell.
- the power density of the felts improved by the said treatment by 38% or 19% compared to the unactivated felt at a voltage efficiency of 90%.
- the corresponding C / C composite achieves an increase in power density of 25% from 0.086 W / cm 2 to 0.0108 W / cm 2 with a 90% voltage efficiency.
- Carrier material made of carbon
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Electrochemistry (AREA)
- Structural Engineering (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Dispersion Chemistry (AREA)
- Composite Materials (AREA)
- Nanotechnology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Combustion & Propulsion (AREA)
- Carbon And Carbon Compounds (AREA)
- Inert Electrodes (AREA)
Abstract
The invention relates to a carbon-carbon (C/C) composite, wherein the inner surface of the carbon carrier material is coated with a nanoporous carbon material having a high specific surface area. The C/C composite has large pores and open pores and has a high specific surface area as a result of the coating. The production process is distinguished by the infiltration of the carbon carrier material or of an organic precursor with a dilute polymer solution. In this process, firstly a polymer layer is accumulated on the inner surface of the carrier material via a sol-gel process with a subsequent drying step, and the C/C composite is produced by pyrolysis. The composite can be used for electrodes in particular in redox flow batteries, as a catalyst support or for filtration.
Description
[Patentanme1dung] [Patentanme1dung]
[Bezeichnung der Erfindung] [Description of the invention]
Groß- und offen-poriges C/C-Komposit mit hoher innerer Oberfläche, sowie Verfahren zur Herstellung desselben und dessen Anwendung
Large and open porous C / C composite with high internal surface, as well as methods of making the same and their use
[Beschreibung] [Description]
Die Erfindung betrifft ein Kohlenstoff-Kohlenstoff - {C/C- ) Komposit dadurch gekennzeichnet, dass ein Trägermateri- al aus Kohlenstoff mit einem nanoporösen Kohlenstoffmaterial hoher spezifischer Oberfläche beschichtet ist, dabei sind unter Nanoporen Poren kleiner als 1 um zu verstehen. The invention relates to a carbon-carbon {C / C) composite characterized in that a carrier material made of carbon is coated with a nanoporous carbon material having a high specific surface area, in which case pores smaller than 1 μm are to be understood as nanopores.
Für das Verfahren wird ein Trägermaterial aus Kohlenstoff (z.B. Holzkohle, Graphit, Kohlenstoff- und Graphitfilze, Kohlenstoff -Schäume oder die organischen Vorstufen dieser Materialientypen) gewählt. Die Beschichtung des Trägermaterials erfolgt über eine flüssige Vorstufe in einem Sol-Gel-Prozess, wobei die Beschichtung zunächst als organische Vorstufe (z.B. poröses Duromer) vorliegt. Da die Vorstufe des C/C-Komposits noch organische Komponenten enthält, wird mit einem Pyrolyseschritt das C/C-Komposit durch Karbonisierung erzeugt. For the process, a carbon support material (e.g., charcoal, graphite, carbon and graphite felts, carbon foams, or the organic precursors of these types of materials) is selected. The coating of the carrier material takes place via a liquid precursor in a sol-gel process, the coating initially being present as organic precursor (for example, porous duromer). Since the precursor of the C / C composite still contains organic components, the C / C composite is produced by carbonation in a pyrolysis step.
[Stand der Technik] [State of the art]
Kohlenstoff-Kohlenstoff- (C/C- ) Kompositmaterialien beste- hend aus einem Trägermaterial aus Kohlenstoff und einer Pyro- kohlenstoffbeschichtung sind aus verschiedenen Quellen bekannt und Stand der Technik. Die PyrokohlenstoffSchicht zeichnet sich durch eine hohe strukturelle Ordnung der Kohlenstoffatome (graphitisch) und eine erhöhte Oxidationsbe- ständigkeit aus. Die spezifische Oberfläche der Beschichtung liegt deutlich unter 10 m2/g und die Pyrokohlenstoffbeschich- tung weist keine signifikante Nanostruktu ierung und keine Nanoporosität (Strukturen < 1 μιη) auf. Außerdem führt die Beschichtung mit Pyrokohlenstoff über Gasphasenabscheidung (chemical vapor deposition (CVD) ) , zu einem C/C-Komposit sehr geringer spezifischer Oberfläche. Weist das Trägermaterial aus Kohlenstoff selbst eine hohe spezifische Oberfläche und relevante Mikroporosität (Poren < 2 nm) auf, so führt die Beschichtung mit Pyrokohlenstoff zu einer signifikanten Verrin-
gerung der spezifischen Oberfläche, wobei v.a. keine Mikropo- ren {Definition Mikroporen in-. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, et al . Reporting physisorption data for gas/solid Systems with special refer- ence to the determination of surface area and porosity. Pure and Applied Chemistry 1985; 57:603) mehr detektiert werden. Carbon-carbon (C / C) composite materials consisting of a carrier material of carbon and a pyrolytic carbon coating are known from various sources and state of the art. The pyrocarbon layer is characterized by a high structural order of the carbon atoms (graphitic) and an increased oxidation resistance. The specific surface of the coating is well below 10 m 2 / g and the Pyrokohlenstoffbeschich- tion has no significant Nanostruktu ierung and no nanoporosity (structures <1 μιη) on. In addition, the coating with pyrocarbon leads via chemical vapor deposition (CVD) to a C / C composite of very low specific surface area. If the carbon support material itself has a high specific surface area and relevant microporosity (pores <2 nm), then the coating with pyrolytic carbon leads to a significant reduction specific surface area, whereby there are no micropore (definition of micropores in- Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, et al. Reporting physisorption data for gas / solid Systems with special refer- ence to the determination of surface area and porosity. Pure and Applied Chemistry 1985; 57: 603) are detected more.
Aus JP6143469AA sind Kohlenstoff- und Graphitfaserformen bekannt, welche mit dichtem Graphit über einen CVD-Prozess beschichtet werden und dessen Schichtdicke 10 μιη - 1000 μτη beträgt . From JP6143469AA carbon and graphite fiber forms are known, which are coated with dense graphite via a CVD process and whose layer thickness is 10 μιη - 1000 μτη.
In JP10045473AA und JP10045474AA wird ein kohlefaserverstärkter Kohlenstoff oder auf Graphit basierter Formkörper einer CVD-Behandlung ausgesetzt, wobei eine Beschichtung mit Pyrokohlenstoff erfolgt, der eine Dicke von 10 pm - 150 μιτι aufweist. Die dichte Pyrokohlenstoffschicht weist geringe Verunreinigungen auf und ist erhöht oxidationsbestandig. In JP61219708A wird die Herstellung eines Graphitbasierten Materials beschrieben, welches mit Pyrokohlenstoff über einen CVD-Prozess beschichtet wird. Die Beschichtung wird mit Kohlenwasserstoffen oder halogenierten Kohlenwasserstoffen als Vorstufen bei Temperaturen von 600 °C bis 2400°C auf dem Basismaterial abgeschieden. In JP10045473AA and JP10045474AA a carbon fiber-reinforced carbon or graphite-based shaped body is subjected to a CVD treatment, wherein a coating with pyrocarbon takes place, which has a thickness of 10 pm - 150 μιτι. The dense Pyrokohlenstoffschicht has low impurities and is increased oxidation resistant. JP61219708A describes the preparation of a graphite-based material which is coated with pyrolytic carbon via a CVD process. The coating is deposited with hydrocarbons or halogenated hydrocarbons as precursors at temperatures of 600 ° C to 2400 ° C on the base material.
In EP1961701A1 werden Graphit -Partikel der Größe 5 m - 50 μπι über einen thermischen CVD-Prozess mit einer KohlenstoffSchicht versehen. Das Komposit weist eine spezifische Oberfläche kleiner 5 m2/g auf. In EP1961701A1 graphite particles of size 5 m - 50 μπι are provided via a thermal CVD process with a carbon layer. The composite has a specific surface area of less than 5 m 2 / g.
In CN101209837A wird ein makromolekulares Polymer in einem entsprechenden organischen Lösungsmittel gelöst, dessen Siedepunkt unterhalb des Erweichungspunkts des makromolekularen
Polymers liegt. Die Lösung wird mit Graphitpartikeln vermischt und der Graphit durch Destillation und Härtung des makromolekularen Polymers beschichtet. Anschließend wird eine Karbonisierung durchgeführt. Die Beschichtung ist glatt und die beschichteten Graphitpartikel agglomerieren nicht. In CN101209837A, a macromolecular polymer is dissolved in a corresponding organic solvent whose boiling point is below the softening point of the macromolecular Polymers lies. The solution is mixed with graphite particles and the graphite coated by distillation and curing of the macromolecular polymer. Subsequently, a carbonization is carried out. The coating is smooth and the coated graphite particles do not agglomerate.
Aus JP60025163A ist eine Elektrode für Redoxflussbatterien bekannt, die aus leitfähigem Kohlenstoffgewebe mit homogen verteilter Aktivkohle besteht und in die Höhlung einer Gra- phitplatte eingebracht ist. From JP60025163A an electrode for redox flow batteries is known which consists of conductive carbon fabric with homogeneously distributed activated carbon and is introduced into the cavity of a graphite plate.
In US005626977A werden dünne Kompositschichten dargestellt, wobei ein Kohlenstoffaerogel , basierend auf Resorzin- Formaldehyd als Bindermaterial für einen granulierten zweiten Kohlenstoff (Kohlenstoffschäum, -fasern, -aerogel) verwendet wird . In US005626977A thin composite layers are shown, wherein a carbon airgel based on resorcinol formaldehyde is used as binder material for a granulated second carbon (carbon foam, fibers, airgel).
Es existieren einige Kombinationen verschiedener Kohlenstoffe, allerdings ist kein groß- und offenporiges Trägerma- terial aus Kohlenstoff bekannt, bei dem die innere Oberfläche des Trägermaterials mit einer nanoporösen Kohlenstoff- oder kohlenstoffhaltigen Komponente beschichtet ist, die eine hohe spezifische Oberfläche aufweist. There are some combinations of different carbons, but no large- and open-pore carbon carrier material is known in which the inner surface of the carrier material is coated with a nanoporous carbon or carbon-containing component that has a high specific surface area.
Bei den aufgeführten Beispielen, in denen ein C/C-Komposit mittels einer Beschichtung hergestellt wurde, handelt es sich bei der Kohlenstoffbeschichtung ausschließlich um glatte, stark graphitische Kohlenstoffschichten geringer spezifischer Oberfläche ohne Nanoporosität , meist als Pyrokohlenstoff bezeichnet. Diese Pyrokohlenstoffbeschichtungen dienen als Schutz vor thermischen und oxidativen Einflüssen und sind für die Verwendung beispielsweise als Elektrodenmaterial aufgrund ihrer geringen spezifischen Oberfläche ungeeignet.
[Aufgabe der Erfindung] In the examples given, in which a C / C composite was produced by means of a coating, the carbon coating is exclusively smooth, highly graphitic carbon layers of low specific surface area without nanoporosity, usually referred to as pyrocarbon. These pyrocarbon coatings serve as protection against thermal and oxidative influences and are unsuitable for use, for example, as an electrode material due to their low specific surface area. OBJECT OF THE INVENTION
Aufgabe der Erfindung ist es, bei einem groß- und offenporigen Material aus Kohlenstoff und seiner organischen Vorstufe unter Erhalt der großen Poren die spezifische Oberfläche des Gesamtwerkstoffes deutlich, d.h. um mindestens eine Größenordnung, zu erhöhen. The object of the invention is, in a large and porous material made of carbon and its organic precursor while maintaining the large pores, the specific surface of the total material significantly, i. by at least an order of magnitude.
Hierzu wird zunächst ein offenporiges Trägermaterial aus Kohlenstoff oder aus einer organischen Vorstufe, insbesondere Holzkohle, poröse Graphitplatten oder -flocken, Kohlenstoff- oder Graphitfaserfilze, Kohlenstoffschäume oder deren organische Vorstufen, über die Infiltration einer flüssigen Phase in einem Sol-Gel-Verfahren mit einer Kohlenstoff-Vorstufe beschichtet. Die Beschichtung kann beispielsweise über die Infiltration des Trägermaterials mit einer Lösung mit Polymer- bestandteilen erfolgen, wobei sich die Polymerbestandteile in der nasschemischen Reaktion oder bei der anschließenden Entfernung des Lösungsmittels über Trocknung auf dem Trägermaterial abscheiden und eine polymere Vorstufe der Kohlenstoffbeschichtung bilden. Entscheidend ist dabei die Bildung einer polymeren, nanostrukturierten {z.B. nanoporösen) Schicht über den Sol-Gel-Prozess auf der inneren Oberfläche des Trägermaterials. Das resultierende beschichtete Material bleibt dabei nach wie vor offenporig. For this purpose, initially an open-pore carrier material made of carbon or of an organic precursor, in particular charcoal, porous graphite plates or flakes, carbon or graphite fiber felts, carbon foams or their organic precursors, via the infiltration of a liquid phase in a sol-gel process with a carbon Precursor coated. The coating can be carried out, for example, by infiltrating the support material with a solution containing polymer constituents, the polymer constituents depositing on the support material in the wet-chemical reaction or during the subsequent removal of the solvent by drying and forming a polymeric precursor of the carbon coating. Decisive here is the formation of a polymeric nanostructured {e.g. nanoporous) layer via the sol-gel process on the inner surface of the support material. The resulting coated material remains open-pored.
Während bei der Pyrokohlenstoffabscheidung durch thermi- sehe Zersetzung eines kohlenstoffhaltigen Gases an der Oberfläche des Trägermaterials direkt eine unporöse Kohlenstoffschicht erzeugt wird, wird im Gegensatz dazu in der vorliegenden Erfindung das Trägermaterial mit einer Flüssigkeit infiltriert oder getränkt. Die Flüssigkeit enthält molekulare kohlenstoffhaltige Bestandteile, die durch Polymerisation an der Oberfläche oder in den Poren des Trägermaterials zu einer Beschichtung desselben führen. Die Polymerbeschichtung weist bereits wesentliche strukturelle Eigenschaften, die kennzeichnend für das erfindungsgemäße C/C-Komposit sind, auf,
z.B. sphärische Bestandteile der Beschichtung siehe Abbildung 1 (rechts) und Abbildung 3, sowie strukturelle Einheiten im Bereich < 1 μκι (z.B. Poren) . While in the pyrocarbon deposition by thermal see decomposition of a carbonaceous gas on the surface of the carrier material directly a non-porous carbon layer is generated, in contrast, in the present invention, the carrier material is infiltrated or impregnated with a liquid. The fluid contains molecular carbonaceous constituents which, by polymerization at the surface or in the pores of the carrier material, result in a coating thereof. The polymer coating already exhibits essential structural properties which are characteristic of the C / C composite according to the invention, eg spherical components of the coating see Figure 1 (right) and Figure 3, as well as structural units in the range <1 μκι (eg pores).
Für die Beschichtung eignen sich beispielsweise Furfury- lalkohol, Polyacrylnitril (PAN) , sowie Kombinationen aus Hydroxybenzolen (z.B. Phenol, Resorzin) mit Aldehyden {z.B. Formaldehyd, Furfural) oder Melamin-Aldehyden, welche in einem Lösungsmittel (z.B. Wasser, Alkoholen, Ketonen) gelöst sind und zur Beschleunigung der Polymerisation mit einem Katalysator (Base oder Säure) oder einem Härter (z.B. Hexa- methylentetramin HMTA) gemischt werden. Das Trägermaterial wird dann mit der verdünnten Polymerlösung infiltriert; die Polymerisation kann thermisch oder chemisch kontrolliert werden bis sie abgeschlossen ist. For example, furfuryl alcohol, polyacrylonitrile (PAN), and combinations of hydroxybenzenes (e.g., phenol, resorcinol) with aldehydes {e.g. Formaldehyde, furfural) or melamine aldehydes which are dissolved in a solvent (e.g., water, alcohols, ketones) and mixed to accelerate the polymerization with a catalyst (base or acid) or a hardener (e.g., hexamethylenetetramine HMTA). The support material is then infiltrated with the diluted polymer solution; the polymerization can be thermally or chemically controlled until it is complete.
Nach Abschluss der Polymerisation wird das verbliebene Lösungsmittel durch Trocknung aus dem beschichteten omposit entfernt . After completion of the polymerization, the remaining solvent is removed by drying from the coated omposit.
Bei der Verwendung von Hydroxybenzolen und Aldehyden er- folgt die Beschichtung über die Anlagerung der Polymerbausteine an der inneren Oberfläche des Trägermaterials. Entscheidend hierbei ist, dass es im Komposit tatsächlich ausschließlich zu einer Beschichtung des Trägermaterials kommt, und der übliche Sol-Gel-Prozess , welcher zu einer Füllung der Zwischenräume des Trägermaterials führen würde, durch geeignete Wahl der Prozessparameter verhindert wird. When hydroxybenzenes and aldehydes are used, the coating takes place via the attachment of the polymer building blocks to the inner surface of the support material. The decisive factor here is that in the composite actually comes exclusively to a coating of the carrier material, and the usual sol-gel process, which would lead to a filling of the interstices of the carrier material is prevented by a suitable choice of the process parameters.
Da das Komposit noch organische Bestandteile (Polymere der Beschichtung und z.B. Polyacrylnitril ( AN) oder Pech basier- te Faserfilze) enthält, erfolgt die Kohlenstoffkonvertierung durch thermische Zersetzung der organischen Bestandteile bei Temperaturen zwischen 500°C und 1100 °C unter einer Sauerstofffreien Atmosphäre (Pyrolyse) , wodurch das C/C-Komposit erzeugt wird.
Zur weiteren Erhöhung der spezifischen Oberfläche des C/C- omposits, kann sich ein Aktivierungsschritt bei 500°C - 1500°C (physikalisch, z.B. mit C02 oder H20 oder chemisch z.B. mit Alkalihydroxiden/-karbonaten) anschließen. Zur Erhöhung der elektrischen Leitfähigkeit des C/C-Koraposits, insbesondere der Beschichtung bietet sich eine Hochtemperaturbehandlung bei Temperaturen oberhalb von 1100°C an. Für eine, abhängig von der Anwendung, optimale Kombination aus hoher spezifischer Oberfläche und guter elektrischer Leitfähigkeit kann auch eine Kombination von Aktivierung und Hochtemperaturbehandlung erforderlich sein. Hier würde beispielsweise die spezifische Oberfläche des C/C-Komposits zunächst durch eine Aktivierung vergrößert und anschließend die elektrische Leitfähigkeit durch eine Hochtemperaturbehandlung des C/C- Komposits erhöht. Dies ist auch in umgekehrter Reihenfolge möglich. Since the composite still contains organic constituents (polymers of the coating and, for example, polyacrylonitrile (AN) or pitch-based fiber felts), the carbon conversion takes place by thermal decomposition of the organic constituents at temperatures between 500 ° C. and 1100 ° C. under an oxygen-free atmosphere (pyrolysis ), producing the C / C composite. To further increase the specific surface area of the C / C composite, an activation step at 500 ° C - 1500 ° C (physically, eg with C0 2 or H 2 0 or chemically eg with alkali hydroxides / carbonates) can follow. To increase the electrical conductivity of the C / C coraposit, in particular the coating, a high-temperature treatment at temperatures above 1100 ° C offers. For a combination of high specific surface area and good electrical conductivity, depending on the application, a combination of activation and high-temperature treatment may be required. Here, for example, the specific surface of the C / C composite would first be enlarged by an activation and then the electrical conductivity increased by a high-temperature treatment of the C / C composite. This is also possible in reverse order.
Zur Verbesserung von Benetzbarkeit und Reaktivität der Elekt- rode kann die Kohlenstoff-Oberfläche mit f nktionellen Gruppen (z.B. -C-OH, -C=0, -C-OOH oder Oberflächengruppen, die Stickstoff enthalten, oder anderen polaren Oberflächengruppen) versehen werden. Dies kann geschehen durch Gasphasenreaktionen bei Temperaturen von 100 - 1000°C bzw. von 100 - 700°C an Luft oder unter Gasstrom mit definierter Zusammensetzung (z.B. Ammoniak, Sauerstoff, C02,H20 mit oder ohne chemisch inertem Trägergas {z. B. N2, Ar)) oder durch chemische Behandlung nach Immersion in entsprechende Lösung, die eine reaktive Komponente oder mehrere enthalten (z.B. KOH, NaOH, K2C03, Na2C03, ZnCl2 , oder H2S04, HN03) bei Raumtemperatur oder bei Temperaturen bis 200°C. Weiterhin ist eine elektrochemische Oxidation der Kohlenstoffelektrode in einer elektrochemischen Zelle und einem geeigneten Elektrolyten (z.B. H2S04 oder vorgenannte Chemikalien) einsetzbar, um die
Oberfläche der Kohlenstoffkomponente zu modifizieren. Außerdem ist eine direkte Behandlung der Oberfläche durch Sauerstoffplasma oder Ozon möglich, um oben genannten Effekt zu erzielen. Die BehandlungsZeiten reichen bei allen vorgenann- ten Methoden von einer Minute bis zu mehreren Stunden bzw. Tagen, insbesondere von 1 Minute zu 40 Stunden. To improve wettability and reactivity of the electrode, the carbon surface may be provided with functional groups (eg, -C-OH, -C = O, -C-OOH or surface groups containing nitrogen, or other polar surface groups). This can be done by gas phase reactions at temperatures of 100-1000 ° C or from 100-700 ° C in air or under gas flow of defined composition (eg ammonia, oxygen, C0 2 , H 2 0 with or without chemically inert carrier gas {z. B. N 2 , Ar)) or by chemical treatment after immersion in corresponding solution containing one or more reactive component (eg KOH, NaOH, K 2 CO 3 , Na 2 CO 3 , ZnCl 2 , or H 2 S0 4 , HN0 3 ) at room temperature or at Temperatures up to 200 ° C. Furthermore, an electrochemical oxidation of the carbon electrode in an electrochemical cell and a suitable electrolyte (eg, H 2 S0 4 or the aforementioned chemicals) can be used to the Surface of the carbon component to modify. In addition, a direct treatment of the surface by oxygen plasma or ozone is possible to achieve the above-mentioned effect. In all the above-mentioned methods, the treatment times range from one minute to several hours or days, in particular from 1 minute to 40 hours.
Die Folge einer entsprechenden Behandlung ist die Entstehung polarer Oberflächengruppen, die zum einen die Benetzbar- keit/Hydrophilie der Oberfläche der Elektrode verbessern und die Kontaktfläche zwischen einem Elektrolyt oder einer anderen Flüssigkeit und der Elektrodenoberfläche vergrößert. Zum anderen lässt sich die Reaktionskinetik, d.h. die Austauschstromdichte der entsprechenden Reaktion an der Elektrode (z.B. für V+ +2, V+5/+4, Fe+3/+2) durch eine Unterstützung des Reaktionsprozesses/der Redoxreaktion durch die funktionelle Oberflächengruppen erhöhen. The consequence of a corresponding treatment is the formation of polar surface groups, which on the one hand improve the wettability / hydrophilicity of the surface of the electrode and increase the contact area between an electrolyte or another liquid and the electrode surface. On the other hand, the reaction kinetics, ie the exchange current density of the corresponding reaction at the electrode (eg for V + + 2 , V + 5 / + 4 , Fe + 3 / + 2 ) can be supported by the reaction process / the redox reaction by the functional surface groups increase.
Das erfindungsgemäße großporige C/C-Komposit weist auf der gesamten inneren Oberfläche des ursprünglichen Trägermateri- als eine nanoporöse Kohlenstoffbeschichtung auf. Hat das reine Trägermaterial selbst nur eine geringe spezifische Oberfläche (z.B. Holzkohle, gepresster expandierter Graphit, Graphitfaserfilz oder Kohlenstoffschäum) , so weist das C/C- Komposit eine signifikant erhöhte spezifische Oberfläche auf, wobei der Unterschied durchaus mehrere Größenordnungen betragen kann. Neben der Vergrößerung der spezifischen Oberfläche, die vor allem durch die Mikroporosität {Poren < 2 nm) der Kohlenstoffbeschichtung bedingt ist, vergrößert sich die innere Oberfläche des C/C-Komposits auch durch die sphärischen Bestandteile der Kohlenstoffschicht, wie aus RE -Aufnahmen ersichtlich ist (siehe Abbildung 1 rechts und Abbildung 3) . The large pore C / C composite of the invention has the entire inner surface of the original support material as a nanoporous carbon coating. If the pure support itself has only a small specific surface area (e.g., charcoal, compressed expanded graphite, graphite fiber felt or carbon foam), the C / C composite has a significantly increased specific surface area, the difference being several orders of magnitude. In addition to the increase in the specific surface area, which is mainly due to the microporosity (pores <2 nm) of the carbon coating, the inner surface of the C / C composite also increases due to the spherical components of the carbon layer, as can be seen from RE images (see Figure 1, right and Figure 3).
Das großporige C/C-Komposit zeichnet sich z.B. durch geringe Dichte, eine offenporige Überstruktur mit Poren größer 1 Mikrometer, einen geringen Durchflusswiderstand, ein Trä-
germaterial aus Kohlenstoff mit hoher elektrischer Leitfähigkeit {> 0,1 S/cm, insbesondere > 1,0 S/cm), sowie eine nano- poröse Kohlenstoffbeschichtung mit hoher spezifischer Oberfläche aus. The large-pore C / C composite is characterized by low density, an open-pore superstructure with pores larger than 1 micrometer, a low flow resistance, a carrier carbon material with high electrical conductivity {> 0.1 S / cm, in particular> 1.0 S / cm) and a nanosized carbon coating with a high specific surface area.
Deshalb eignet sich das erfindungsgemäße C/C-Komposit für verschiedene Anwendungen, vorzugsweise als Elektrodenmaterial in elektrochemischen Speichern, insbesondere in Redoxfluss- batterien (z.B. in den Systemen Vanadium/Vanadium, Vanadi- um/Brom, Brom/Polysulfid sowie Cer/Zink, Zink/Brom u.a.). Hier ist ein C/C-Komposit aus einem elektrisch hoch leitenden Kohlenstoff hoher, gut zugänglicher Porosität, mit gleichzeitig großen Poren im Bereich von 1 pm - 5 mm (z.B. Graphit, gepresster expandierter Graphit, Kohlenstoff- oder Graphit a- serfilz, Kohlensto fschäum) als Trägermaterial wichtig um auch bei geringen Druckdifferenzen hohe Durchflussraten des Elektrolyten durch die Elektrode zu ermöglichen. Die Durchlässigkeit des Komposits für Flüssigkeiten lässt sich über den Permeabilitätskoeffizienten k quantifizieren: k = — Therefore, the inventive C / C composite for various applications, preferably as electrode material in electrochemical storage, especially in Redoxfluss- batteries (eg in the systems vanadium / vanadium, vanadium / bromine, bromine / polysulfide and cerium / zinc, zinc / Bromine, etc.). Here is a C / C composite made of an electrically highly conductive carbon high, easily accessible porosity, with large pores simultaneously in the range of 1 pm - 5 mm (eg graphite, pressed expanded graphite, carbon or graphite felt, carbon foam ) as carrier material important to allow high flow rates of the electrolyte through the electrode even at low pressure differences. The permeability of the composite for liquids can be quantified by the permeability coefficient k: k = -
Δρ■ A mit V dem pro Zeiteinheit durch das Komposit transportierte Flüssigkeitsvolumen bei einer Querschnittsfläche A senkrecht zum Volumenstrom und einem Druckabfall Δρ über der Dicke t des Komposits in Richtung des Stromes, η ist die Viskosität der Flüssigkeit. Δρ ■ A with V the volume of liquid transported through the composite per unit time at a cross-sectional area A perpendicular to the volume flow and a pressure drop Δρ over the thickness t of the composite in the direction of flow, η is the viscosity of the liquid.
Die bisher verwendeten Materialien weisen eine geringe massen- und volumenspezifische Oberfläche und damit auch eine dem Elektrolyten (z.B. Vanadium- Ionen) gegenüber geringe aktive Oberfläche auf, was die Leistung der Zelle pro Volumen beschränkt. The materials used heretofore have a low mass and volume specific surface area, and thus also an electrolyte (e.g., vanadium ion) to low active surface area, which limits cell performance per volume.
Die nanoporöse Kohlenstoffbeschichtung, welche eine hohe spezifische Oberfläche aufweist, erhöht die gegenüber dem
Elektrolyten aktive Elektrodenoberfläche erheblich, ohne die Durchflussrate des Elektrolyten durch die Elektrode wesentlich zu beeinträchtigen. Insgesamt führt dies zu einer gesteigerten Leistungsdichte pro Volumen im Vergleich zu einer Elektrode mit unbeschichtetem Kohlenstoff. The nanoporous carbon coating, which has a high specific surface area, increases over that Electrolyte active electrode surface significantly without significantly affecting the flow rate of the electrolyte through the electrode. Overall, this results in an increased power density per volume compared to an uncoated carbon electrode.
Das C/C-Komposit bietet sich auch für die Verwendung als Elektrodenmaterial in anderen elektrochemischen Anwendungen und anderen Batterieformen an, für die ein grob- und offenporöses Elektrodenmaterial mit hoher Leitfähigkeit und hoher spezifischer Oberfläche vorteilhaft ist, z.B. in Metall-Luft- Batterien (Zn-Luft, Li-Luft) . The C / C composite also lends itself to use as electrode material in other electrochemical applications and other battery forms, for which a coarse and open porous electrode material with high conductivity and high surface area is advantageous, e.g. in metal-air batteries (Zn-air, Li-air).
Daneben bietet sich die Verwendung des C/C-Komposits als Katalysatorträger an. In addition, the use of the C / C composite as a catalyst carrier offers.
Das C/C-Komposit mit hoher spezifischer Oberfläche und großen Poren, die eine gute Durchflussrate ermöglichen eignet sich zudem hervorragend als Adsorber zur Filtration. The C / C composite with its high specific surface area and large pores, which enable a good flow rate, is also ideal as an adsorber for filtration.
[Beispiele] [Examples]
Ausführungsbeispiel 1: Embodiment 1
Als Kohlenstoffträgermaterial dient gepresster expandierter Graphit mit einer Dichte von 0,03 g/cm3 und einer aus StickstoffSorption nach DIN ISO 9277:2003-05 bestimmten spe- zifischen Oberfläche SBET von 45 m2/g. Pressed expanded graphite with a density of 0.03 g / cm 3 and a specific surface area S BET of 45 m 2 / g, determined from nitrogen sorption according to DIN ISO 9277: 2003-05, serve as the carbon carrier material.
Für die Beschichtung wird Resorzin, wässrige 37%- Formaldehydlösung (mit ca. 10% Methanol stabilisiert) , deionisiertes Wasser und 0 , lN-Na2C03 -Lösung miteinander in einem Becherglas auf einem Magnetrührer vermischt. Das molare Ver- hältnis Formaldehyd zu Resorzin beträgt F/R = 2, das molare Verhältnis von Resorzin zum Katalysator (Na2C03) beträgt R/C = 1000 und die Masse von Resorzin und Formaldehyd an der Gesamtmasse der Lösung beträgt 20%.
Anschließend wird mit Hilfe von Vakuum-Druck- Infiltration der Graphitpressling in einem Exsikkator mit der Resorzin- Formaldehyd-Lösung infiltriert. Die Probe wird für 24 Stunden auf 90 °C aufgeheizt, um eine Beschichtung des Kohlenstof trä- germaterials mit Resorzin-Formaldehyd- Polymeren zu erreichen. Anschließend wird die Flüssigkeit durch konvektive Trocknung entfernt. Um die Polymerbeschichtung in eine Kohlenstoffbe- schichtung überzuführen, wird die Probe unter nicht- oxidierender Atmosphäre (Argon) für eine Stunde bei S00°C py- rolysiert. Abbildung 1 zeigt zum Vergleich eine REM-Aufnähme des gepressten expandierten Graphits (links) mit der beschichteten Probe, dem C/C-Komposit (rechts) . Das abgeschiedene nanoporöse Kohlenstoffmaterial auf der Graphitoberfläche ist deutlich zu erkennen. For the coating resorcinol, aqueous 37% - formaldehyde solution (stabilized with about 10% methanol), deionized water and 0, lN-Na 2 C0 3 solution mixed together in a beaker on a magnetic stirrer. The molar ratio of formaldehyde to resorcinol is F / R = 2, the molar ratio of resorcinol to the catalyst (Na 2 C0 3 ) is R / C = 1000 and the mass of resorcinol and formaldehyde in the total mass of the solution is 20%. Subsequently, the graphite compact is infiltrated in a desiccator with the resorcinol-formaldehyde solution by means of vacuum pressure infiltration. The sample is heated to 90 ° C. for 24 hours in order to achieve a coating of the carbonaceous material with resorcinol-formaldehyde polymers. Subsequently, the liquid is removed by convective drying. To convert the polymer coating into a carbon coating, the sample is pyrolyzed under non-oxidizing atmosphere (argon) for one hour at S00 ° C. For comparison, Figure 1 shows an SEM image of the pressed expanded graphite (left) with the coated sample, the C / C composite (right). The deposited nanoporous carbon material on the graphite surface can be clearly seen.
Das C/C-Komposit weist eine Dichte von 0,08 g/cm3 auf. Die durch Stickstoffsorption nach DIN ISO 9277:2003-05 bestimmte spezifische Oberfläche hat sich etwa um den Faktor 10 auf SBET - 458 m2/g erhöht. Das ikroporenvolumen nach t-plot- Verfahren (DIN 66135-2) beträgt 0,16 cm3/g, die externe Ober- fläche 39 m2/g- Die signifikant erhöhte spezifische Oberfläche des mit Kohlenstoff beschichteten C/C-Komposits zeigt sich auch deutlich in den adsorbierten Gasmengen der Stickstoff-Sorptionsisothermen bei 77 K von reinem Kohlenstoffträ- ger aterial (gepresster expandierter Graphit) und dem C/C- Komposit in Abbildung 2. The C / C composite has a density of 0.08 g / cm 3 . The specific surface determined by nitrogen sorption in accordance with DIN ISO 9277: 2003-05 has increased by about a factor of 10 to S BET - 458 m 2 / g. The microporous volume according to the t-plot method (DIN 66135-2) is 0.16 cm 3 / g, the external surface 39 m 2 / g. The significantly increased specific surface area of the carbon-coated C / C composite is evident also clearly in the adsorbed gas quantities of the nitrogen sorption isotherms at 77 K of pure carbon support aterial (pressed expanded graphite) and the C / C composite in Figure 2.
Ausführungsbeispiel 2: Embodiment 2:
Ein Graphit-Hartfilz der Dichte 0,1 g/cm3 und einer aus Stickstoffsorption nach DIN ISO 9277:2003-05 bestimmten spe- zifischen Oberfläche SBBT von 0,4 m2/g mit den Abmessungen 10 cm x 10 cm x 1,5 cm wird bei Raumtemperatur und Atmosphärendruck mit einer verdünnten Polymerlösung getränkt. Diese Lösung besteht aus 27,2 g Resorcin, 39,5 g einer wässrigen 7%- Formaldehydlösung (mit ca. 10% Methanol stabilisiert) ,
82,7 g deionisiertem Wasser und 0,6 g einer 0,lN-Na2CO3- Lösung. Die Probe wird für 24 Stunden auf 85°C aufgeheizt, um eine Beschichtung des Kohlenstoffträgermaterials mit Resor- zin-Formaldehyd-Polymeren zu erzielen. Anschließend wird das Gel bei 40°C konvektiv an Luft bei Atmosphärendruck für 36 Stunden getrocknet. Die so erhaltene organische Vorstufe des C/C- omposits hat eine Dichte von 0,355 g/cm3. Die organische Vorstufe des C/C-Komposits wird anschließend für 3 Stunden bei 800°C unter nicht-oxidierender Atmosphäre (Argon) pyroly- siert. Das so erhaltene C/C-Komposit weist eine Dichte von 0,226 g/cm3 und eine BET-Oberfläche nach DIN ISO 9277:2003-05 von 389 m2/g auf. Das Mikroporenvolumen nach t-plot-Verfahren (DIN 66135-2) beträgt 0,15 cm3/g, die externe Oberfläche 2 m2/g. Abbildung 3 zeigt eine REM-Aufnahme des beschichteten C/C-Komposits. Die sphärischen Strukturen der nanoporösen Kohlenstoffbeschichtung mit hoher spezifischer Oberfläche sind deutlich zu erkennen. Der Permeabilitätskoeffizient k liegt bei 7-10"11 m2. Ausführungsbeispiel 3: A graphite hard felt of density 0.1 g / cm 3 and a specific surface S BBT of 0.4 m 2 / g determined from nitrogen sorption according to DIN ISO 9277: 2003-05 with the dimensions 10 cm × 10 cm × 1 , 5 cm is soaked at room temperature and atmospheric pressure with a dilute polymer solution. This solution consists of 27.2 g of resorcinol, 39.5 g of an aqueous 7% formaldehyde solution (stabilized with about 10% methanol), 82.7 g of deionized water and 0.6 g of a 0, lN-Na 2 CO 3 - solution. The sample is heated to 85 ° C for 24 hours to coat the carbon support material with resorcin-formaldehyde polymers. Subsequently, the gel is dried convectively at 40 ° C in air at atmospheric pressure for 36 hours. The organic precursor of the C / C composite thus obtained has a density of 0.355 g / cm 3 . The organic precursor of the C / C composite is then pyrolyzed for 3 hours at 800 ° C under non-oxidizing atmosphere (argon). The C / C composite thus obtained has a density of 0.226 g / cm 3 and a BET surface area according to DIN ISO 9277: 2003-05 of 389 m 2 / g. The micropore volume by t-plot method (DIN 66135-2) is 0.15 cm 3 / g, the external surface 2 m 2 / g. Figure 3 shows an SEM image of the coated C / C composite. The spherical structures of the nanoporous carbon coating with a high specific surface can be clearly seen. The permeability coefficient k is 7-10 "11 m 2 .
Als Kohlenstoffträgermaterial dient gepresster expandierter Graphit mit einer Dichte von 0,03 g/cm3 und einer aus Stickstoffsorption nach DIN ISO 9277:2003-05 bestimmten spezifischen Oberfläche SBET von 45 m2/g. The carbon carrier material used is pressed expanded graphite having a density of 0.03 g / cm 3 and a specific surface S BET of 45 m 2 / g determined from nitrogen sorption to DIN ISO 9277: 2003-05.
Für die Beschichtung wird Phenol, wässrige 37%- For the coating, phenol, aqueous 37%
Formaldehydlösung (mit ca. 10% Methanol stabilisiert) , n- Propanol und 37%-HCl miteinander in einem Becherglas auf einem Magnetrührer vermischt. Das molare Verhältnis Formaldehyd zu Phenol beträgt F/P = 2, das molare Verhältnis von Phenol zum Katalysator (HCl) beträgt P/C = 3 und die Masse von Phenol und Formaldehyd an der Gesamtmasse der Lösung beträgt 15%. Formaldehyde solution (stabilized with about 10% methanol), n-propanol and 37% HCl mixed together in a beaker on a magnetic stirrer. The molar ratio of formaldehyde to phenol is F / P = 2, the molar ratio of phenol to the catalyst (HCl) is P / C = 3 and the mass of phenol and formaldehyde in the total mass of the solution is 15%.
Mit Hilfe von Vakuum-Druck- Infiltration wird der Graphitpressling in einem Exsikkator mit der Phenol-
Formaldehyd-Lösung infiltriert. Die Probe wird für 24 Stunden auf 90 °C aufgeheizt um eine Beschichtung des Kohlenstoffträgermaterials mit Phenol-Formaldehyd- Polymeren zu erreichen. Anschließend wird die Flüssigkeit durch konvektive Trocknung entfernt. Um die PolymerbeSchichtung in eine Kohlenstoffbe- schichtung überzuführen, wurde die Probe unter nicht- oxidierender Atmosphäre (Argon) für eine Stunde bei 800 °C py- rolysiert . With the help of vacuum pressure infiltration, the graphite compact is placed in a desiccator with the phenolic Formaldehyde solution infiltrated. The sample is heated for 24 hours at 90 ° C to achieve a coating of the carbon support material with phenol-formaldehyde polymers. Subsequently, the liquid is removed by convective drying. To convert the polymer coating into a carbon coating, the sample was pyrolysed under a non-oxidizing atmosphere (argon) for one hour at 800 ° C.
Das C/C-Komposit weist eine Dichte von 0,09 g/cm3 auf. Die durch Stickstoffsorption nach DIN ISO 9277:2003-05 bestimmte spezifische Oberfläche beträgt SBET - 267 m2/g. The C / C composite has a density of 0.09 g / cm 3 . The specific surface determined by nitrogen sorption according to DIN ISO 9277: 2003-05 is S BET - 267 m 2 / g.
Ausführungsbeispiel 4: Embodiment 4
Als Kohlenstoffträgermaterial dient Graphitfilz bestehend zum einen aus überwiegend amorphen Kohlenstofffasern (Viskose -basiert) und zum anderen aus überwiegend graphitischen Kohlenstofffasern (PA -basiert) . Die Aktivierung der Filze erfolgt in heißer konzentrierter Schwefelsäure über 30 Minuten. Sowohl durch die Aktivierung als auch darüber hinausge- hend durch die Ausführung als C/C-Komposit kommt es zu einer Steigerung der Leistungsdichte, gemessen in einer Vanadium- Redoxflussbatterie -Testzelle .Diese Behandlung führt zu einer Verbesserung der Benetzbarkeit {Tropfentest/Benetzungswinkel) . Die Leistungsdichte der Filze verbes- sert sich durch die genannte Behandlung um 38 % beziehungsweise um 19 % gegenüber dem unaktivierten Filz bei einem SpannungsWirkungsgrad von 90 %. As a carbon carrier material is used graphite felt consisting of a predominantly amorphous carbon fibers (viscose-based) and partly from predominantly graphitic carbon fibers (PA-based). The felts are activated in hot concentrated sulfuric acid over 30 minutes. Both activation and beyond as a C / C composite increase the power density as measured in a vanadium redox battery test cell. The power density of the felts improved by the said treatment by 38% or 19% compared to the unactivated felt at a voltage efficiency of 90%.
Gegenüber dem besten aktivierten Filz wird mit dem entsprechenden C/C-Komposit eine Steigerung der Leistungsdichte um 25 % von 0.086 W/cm2 auf 0.0108 W/cm2 bei einem Spannungswirkungsgrad von 90 % erreicht.
[Bezugszeichenliste] Compared to the best activated felt, the corresponding C / C composite achieves an increase in power density of 25% from 0.086 W / cm 2 to 0.0108 W / cm 2 with a 90% voltage efficiency. [REFERENCE LIST]
Trägermaterial aus Kohlenstoff Carrier material made of carbon
nanoporöser Kohlenstoff nanoporous carbon
große, offene Poren big, open pores
k Permeabilitätskoeffizient k permeability coefficient
V pro Zeiteinheit durch das Komposit transportiertes V per unit time transported through the composite
Flüssigkeitsvolumen liquid volume
A Querschnittsfläche senkrecht zum Voluraenstrom A cross-sectional area perpendicular to the volcano current
Δρ Druckabfall Δρ pressure drop
l Dicke des omposits in Richtung des Flüssigkeitstromes l Thickness of the composite in the direction of the liquid flow
η Viskosität der Flüssigkeit. η viscosity of the liquid.
SBET spezifische BET-Oberfläche S BET specific BET surface area
p/po relativer Druck p / p relative pressure
STP „Standard temperature and pressure"
STP "Standard temperature and pressure"
[Literatur] [Literature]
[Sing KSW, Everett DH, Haul RAW, oscou L, Pierotti RA, Rouquerol J, et al . Reportxng physisorption data for [Sing KSW, Everett DH, Haul RAW, Oscou L, Pierotti RA, Rouquerol J, et al. Report Physiorption data for
gas/solid Systems with special reference to the detertnination of surface area and porosity. Pure and Applied Cheraistry 1985; 57:603] gas / solid Systems with special reference to the detection of surface area and porosity. Pure and Applied Cheraistry 1985; 57: 603]
[JP6143469AA] [JP6143469AA]
[JP10045473AA] [JP10045473AA]
[JP10045474AA] [JP10045474AA]
[JP61219708A] [JP61219708A]
[EP1961701A1] [EP1961701A1]
[CN101209837A] [CN101209837A]
[JP60025163A] [JP60025163A]
[US005626977A] [US005626977A]
[DIN ISO 9277:2003-05] [DIN ISO 9277: 2003-05]
[DIN S6135-2]
[DIN S6135-2]
Claims
[Patentansprüche] [Claims]
1. Kohlenstoff-Kohlenstoff- (C/C- ) Komposit dadurch gekennzeichnet, dass ein groß- und offenporiges Trägermaterial aus Kohlenstoff oder einer organischen Vorstufe, insbeson- dere Holzkohle, poröse Graphitplatten oder -flocken, Kohlenstoff- oder Graphitfaserfilze, Kohlenstoffschäume oder deren organische Vorstufen, mit einem nanoporösen Kohlen- stoffmaterial hoher spezifischer Oberfläche beschichtet ist und dessen spezifische BET-Oberflache größer als 1. carbon-carbon (C / C) composite, characterized in that a large and open porous carrier material of carbon or an organic precursor, in particular charcoal, porous graphite plates or flakes, carbon or graphite fiber felts, carbon foams or their organic Precursors, coated with a nanoporous carbon material of high specific surface area and its BET specific surface area greater than
50 m2/g beträgt. 50 m 2 / g.
2. C/C-Komposit nach Anspruch 1 dadurch gekennzeichnet, dass es eine Porosität > 50% aufweist. 2. C / C composite according to claim 1, characterized in that it has a porosity> 50%.
3. C/C-Komposit nach einem der Ansprüche 1 oder 2 dadurch gekennzeichnet, dass es große, offene Poren im Bereich 1 pm - 5 mm mit einem Anteil an der Gesamtporosität von über 70% aufweist. 3. C / C composite according to one of claims 1 or 2, characterized in that it has large, open pores in the range 1 pm - 5 mm with a proportion of the total porosity of about 70%.
4. C/C-Komposit nach einem der Ansprüche 1, 2 oder 3 dadurch gekennzeichnet, dass es eine elektrische Leitf higkeit 4. C / C composite according to one of claims 1, 2 or 3 characterized in that it has an electrical conductivity Leitf
> 0,1 S/cm, insbesondere > 1,0 S/cm aufweist. > 0.1 S / cm, in particular> 1.0 S / cm.
5. C/C-Komposit nach einem der Ansprüche 1 bis 4 dadurch gekennzeichnet, dass das unbeschichtete Trägermaterial eine niedrige spezifische BET-Oberfläche kleiner als 50 m2/g aufweist . 5. C / C composite according to one of claims 1 to 4, characterized in that the uncoated carrier material has a low specific BET surface area less than 50 m 2 / g.
6. C/C-Komposit nach einem der Ansprüche 1 bis 4 dadurch ge- kennzeichnet, dass es einen Permeabilitätskoeffizient größer als 10"12 m2 aufweist. 6. C / C composite according to one of claims 1 to 4, characterized in that it has a permeability coefficient greater than 10 "12 m 2 .
7. C/C-Komposit nach einem der Ansprüche 1 bis 4 dadurch gekennzeichnet, dass die Reaktionsgeschwindigkeit der gewünschten Batterxereaktion/Redoxreaktxon erhöht ist durch Modifikation der Oberfläche des C/C-Komposits durch Gasphasen- oder Flüssigphasenreaktionen und/oder elektrochemisch unterstützte Reaktionen. 7. C / C composite according to one of claims 1 to 4, characterized in that the reaction rate of the desired battery reaction / Redoxreaktxon is increased by modification of the surface of the C / C composite by gas phase or liquid phase reactions and / or electrochemically assisted reactions.
8. C/C-Komposit nach einem der Ansprüche 1 bis 4 dadurch gekennzeichnet, dass die Benetzbarkeit, Hydrophilie oder/und
Polarität oder/und katalytische Aktivität der Elektrodenoberfläche erhöht ist durch Modifikation der Oberfläche des C/C-Komposits durch Gasphasen- oder Flüssigphasenreak- tionen und/oder elektrochemisch unterstützte Reaktionen. 8. C / C composite according to one of claims 1 to 4, characterized in that the wettability, hydrophilicity and / or Polarity and / or catalytic activity of the electrode surface is increased by modification of the surface of the C / C composite by gas-phase or liquid-phase reactions and / or electrochemically assisted reactions.
. Verfahren zur Herstellung eines erfindungsgemäßen Kompo- sits nach einem der Ansprüche 1 bis 6 entsprechend dadurch gekennzeichnet, dass , Process for producing a composite according to the invention according to one of claims 1 to 6, correspondingly characterized in that
i. ein Trägermaterial aus Kohlenstoff oder einer organischen Vorstufe, insbesondere Holzkohle, poröse Graphitplatten oder -flocken, Kohlenstoff- oder Graphitfaserfilze, Kohlenstoffschäume oder deren organische Vorstufen, insbesondere Polyacrylonitril (PAN) oder Pech basierte Fasern und Gewebe, i. a carrier material of carbon or an organic precursor, in particular charcoal, porous graphite plates or flakes, carbon or graphite fiber felts, carbon foams or their organic precursors, in particular polyacrylonitrile (PAN) or pitch-based fibers and fabrics,
ii. mit einer Flüssigkeit, welche Hydroxybenzol-Aldehyd, Furfurylalkohol , Polyacrylonitril (PAN) oder Mel- amin-Aldehyd, beinhaltet, getränkt wird, ii. is impregnated with a liquid which comprises hydroxybenzene-aldehyde, furfuryl alcohol, polyacrylonitrile (PAN) or melamine-aldehyde,
iii. über ein Sol-Gel-Verfahren hergestellt wird, iii. produced via a sol-gel process,
iv. getrocknet und bei Temperaturen über 500 °C pyroly- siert wird. iv. dried and pyrolyzed at temperatures above 500 ° C.
0. Verfahren nach Anspruch 9 dadurch gekennzeichnet, dass die Trocknung unterkritsch erfolgt, insbesondere bei Temperaturen zwischen 0°C und 120°C an Luft bei Atmosphärendruck (ca. 1013 mbar) . 0. The method of claim 9, characterized in that the drying takes place sub-critical, in particular at temperatures between 0 ° C and 120 ° C in air at atmospheric pressure (about 1013 mbar).
1. Verfahren nach einem der Ansprüche 9 bis 10 dadurch gekennzeichnet, dass das C/C-Komposit physikalisch, insbesondere mit einem sauerstoffhaltigen Gas, oder chemisch, insbesondere mit einem Alkalihydroxid oder Alkalikarbonat, aktiviert wird. 1. The method according to any one of claims 9 to 10, characterized in that the C / C composite physically, in particular with an oxygen-containing gas, or chemically, in particular with an alkali metal hydroxide or alkali carbonate, is activated.
2. Verfahren nach einem der Ansprüche 9 bis 11 dadurch gekennzeichnet, dass das C/C-Komposit einer Hochtemperaturbehandlung bei Temperaturen oberhalb von 1100°C ausgesetzt wird . 2. The method according to any one of claims 9 to 11, characterized in that the C / C composite is subjected to a high-temperature treatment at temperatures above 1100 ° C.
3. Verfahren nach einem der Ansprüche 9 bis 11 dadurch gekennzeichnet, dass die Oberfläche des C/C-Komposits durch
Gasphasen- oder Flüssigphasenreaktionen und/oder elektrochemisch unterstützte Reaktionen modifiziert wird. 3. The method according to any one of claims 9 to 11, characterized in that the surface of the C / C composite by Gas phase or liquid phase reactions and / or electrochemically assisted reactions is modified.
14. Verwendung eines erfindungsgemäßen C/C-Komposits nach einem der oben genannten Ansprüche als Elektrode, Vorzugs- weise in Metall-Luft-Batterien oder in Redoxflussbatte- rien, insbesondere in Vanadium-Redoxflussbatterien. 14. Use of a C / C composite according to one of the above claims as an electrode, preferably in metal-air batteries or in redox flow batteries, in particular in vanadium redox flow batteries.
15. Verwendung eines erfindungsgemäßen C/C-Komposits nach einem der oben genannten Ansprüche als Katalysatorträger. 15. Use of a C / C composite according to the invention according to one of the above claims as a catalyst support.
16. Verwendung eines erfindungsgemäßen C/C-Komposits nach einem der oben genannten Ansprüche als Adsorber, insbesondere zur Filtration.
16. Use of a C / C composite according to the invention according to one of the above claims as adsorber, in particular for filtration.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102010033380.8 | 2010-08-04 | ||
DE102010033380A DE102010033380A1 (en) | 2010-08-04 | 2010-08-04 | Large and open porous C / C composite with high internal surface, as well as methods of making the same and their use |
DE102011108435.9 | 2011-07-26 | ||
DE102011108435A DE102011108435A1 (en) | 2011-07-26 | 2011-07-26 | Carbon-carbon composite, useful e.g. as electrode, catalyst support and adsorber, comprises large- and open porous support of carbon or organic precursor coated with nanoporous carbon material of high specific surface |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012051973A1 true WO2012051973A1 (en) | 2012-04-26 |
Family
ID=45974718
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE2011/001535 WO2012051973A1 (en) | 2010-08-04 | 2011-07-28 | Large-pore and open-pore c/c composite having a high inner surface area, and process for producing it and use thereof |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2012051973A1 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8785023B2 (en) | 2008-07-07 | 2014-07-22 | Enervault Corparation | Cascade redox flow battery systems |
US8906529B2 (en) | 2008-07-07 | 2014-12-09 | Enervault Corporation | Redox flow battery system for distributed energy storage |
US8916281B2 (en) | 2011-03-29 | 2014-12-23 | Enervault Corporation | Rebalancing electrolytes in redox flow battery systems |
US8980484B2 (en) | 2011-03-29 | 2015-03-17 | Enervault Corporation | Monitoring electrolyte concentrations in redox flow battery systems |
CN105272330A (en) * | 2015-10-22 | 2016-01-27 | 苏州泛珉复合材料科技有限公司 | Method for quickly preparing carbon/carbon composite with high thermal conductivity |
WO2017083439A1 (en) | 2015-11-13 | 2017-05-18 | Avalon Battery (Canada) Corporation | Improved electrode for redox flow battery |
CN107379660A (en) * | 2016-05-16 | 2017-11-24 | 张跃 | A kind of carbon base body composite material hollow structural slab and manufacture method |
CN108840698A (en) * | 2018-07-19 | 2018-11-20 | 航天特种材料及工艺技术研究所 | A kind of porous C/C composite and preparation method |
CN109817994A (en) * | 2019-01-23 | 2019-05-28 | 成都新柯力化工科技有限公司 | A kind of method that multilayer extrusion prepares fuel cell gradient gas diffusion layer carbon film |
CN111715209A (en) * | 2020-05-18 | 2020-09-29 | 浙江工业大学 | Gas phase preparation method of tungsten trioxide/graphite felt composite material |
CN112919922A (en) * | 2021-04-13 | 2021-06-08 | 西北工业大学 | Chemical vapor infiltration method for preparing pyrolytic carbon with external biomass catalyst |
CN113522262A (en) * | 2021-07-15 | 2021-10-22 | 陕西科技大学 | Recyclable flexible titanium dioxide/pyrolytic carbon/carbon fiber felt composite photocatalytic material and preparation method and application thereof |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6025163A (en) | 1983-07-20 | 1985-02-07 | Sumitomo Electric Ind Ltd | Electrode for redox flow battery |
JPS61219708A (en) | 1985-03-22 | 1986-09-30 | Hitachi Chem Co Ltd | Preparation of graphite article coated with pyrolytically prepared carbon |
JPH06143469A (en) | 1992-11-11 | 1994-05-24 | Japan Atom Energy Res Inst | Carbon composite heat inulating material and production thereof |
US5626977A (en) | 1995-02-21 | 1997-05-06 | Regents Of The University Of California | Composite carbon foam electrode |
JPH1045474A (en) | 1996-08-01 | 1998-02-17 | Toyo Tanso Kk | Production of graphite material coated with pyrolyzed carbon |
JPH1045473A (en) | 1996-08-01 | 1998-02-17 | Toyo Tanso Kk | Graphite material coated with thermally decomposed carbon excellent in oxidation resistance |
US5744510A (en) * | 1995-04-25 | 1998-04-28 | Regents Of The University Of California | Organic carbon aerogels from the sol-gel polymerization of phenolic-furfural mixtures |
US5827355A (en) * | 1997-01-31 | 1998-10-27 | Lockheed Martin Energy Research Corporation | Carbon fiber composite molecular sieve electrically regenerable air filter media |
US5945084A (en) * | 1997-07-05 | 1999-08-31 | Ocellus, Inc. | Low density open cell organic foams, low density open cell carbon foams, and methods for preparing same |
CN101209837A (en) | 2006-12-27 | 2008-07-02 | 宁波杉杉新材料科技有限公司 | Modification method of graphite and modified graphite |
EP1961701A1 (en) | 2005-12-14 | 2008-08-27 | Mitsui Mining Co., Ltd. | Graphite particle, carbon-graphite composite particle and their production processes |
-
2011
- 2011-07-28 WO PCT/DE2011/001535 patent/WO2012051973A1/en active Application Filing
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6025163A (en) | 1983-07-20 | 1985-02-07 | Sumitomo Electric Ind Ltd | Electrode for redox flow battery |
JPS61219708A (en) | 1985-03-22 | 1986-09-30 | Hitachi Chem Co Ltd | Preparation of graphite article coated with pyrolytically prepared carbon |
JPH06143469A (en) | 1992-11-11 | 1994-05-24 | Japan Atom Energy Res Inst | Carbon composite heat inulating material and production thereof |
US5626977A (en) | 1995-02-21 | 1997-05-06 | Regents Of The University Of California | Composite carbon foam electrode |
US5744510A (en) * | 1995-04-25 | 1998-04-28 | Regents Of The University Of California | Organic carbon aerogels from the sol-gel polymerization of phenolic-furfural mixtures |
JPH1045474A (en) | 1996-08-01 | 1998-02-17 | Toyo Tanso Kk | Production of graphite material coated with pyrolyzed carbon |
JPH1045473A (en) | 1996-08-01 | 1998-02-17 | Toyo Tanso Kk | Graphite material coated with thermally decomposed carbon excellent in oxidation resistance |
US5827355A (en) * | 1997-01-31 | 1998-10-27 | Lockheed Martin Energy Research Corporation | Carbon fiber composite molecular sieve electrically regenerable air filter media |
US5945084A (en) * | 1997-07-05 | 1999-08-31 | Ocellus, Inc. | Low density open cell organic foams, low density open cell carbon foams, and methods for preparing same |
EP1961701A1 (en) | 2005-12-14 | 2008-08-27 | Mitsui Mining Co., Ltd. | Graphite particle, carbon-graphite composite particle and their production processes |
CN101209837A (en) | 2006-12-27 | 2008-07-02 | 宁波杉杉新材料科技有限公司 | Modification method of graphite and modified graphite |
Non-Patent Citations (2)
Title |
---|
MOSCOU L; PIEROTTI RA; ROUQUEROL J ET AL.: "Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity", PURE AND APPLIED CHEMISTRY, vol. 57, 1985, pages 603, XP001181366 |
SING KSW; EVERETT DH; HAUL RAW; MOSCOU L; PIEROTTI RA; ROUQUEROL J ET AL.: "Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity", PURE AND APPLIED CHEMISTRY, vol. 57, 1985, pages 603, XP001181366 |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8906529B2 (en) | 2008-07-07 | 2014-12-09 | Enervault Corporation | Redox flow battery system for distributed energy storage |
US8785023B2 (en) | 2008-07-07 | 2014-07-22 | Enervault Corparation | Cascade redox flow battery systems |
US8916281B2 (en) | 2011-03-29 | 2014-12-23 | Enervault Corporation | Rebalancing electrolytes in redox flow battery systems |
US8980484B2 (en) | 2011-03-29 | 2015-03-17 | Enervault Corporation | Monitoring electrolyte concentrations in redox flow battery systems |
CN105272330A (en) * | 2015-10-22 | 2016-01-27 | 苏州泛珉复合材料科技有限公司 | Method for quickly preparing carbon/carbon composite with high thermal conductivity |
AU2016352909B2 (en) * | 2015-11-13 | 2021-09-23 | Invinity Energy Systems (Canada) Corporation | Improved electrode for redox flow battery |
WO2017083439A1 (en) | 2015-11-13 | 2017-05-18 | Avalon Battery (Canada) Corporation | Improved electrode for redox flow battery |
CN108352507A (en) * | 2015-11-13 | 2018-07-31 | 阿瓦隆电池(加拿大)公司 | Modified electrode for redox flow batteries |
EP3375030A4 (en) * | 2015-11-13 | 2019-05-08 | Avalon Battery (Canada) Corporation | Improved electrode for redox flow battery |
CN107379660A (en) * | 2016-05-16 | 2017-11-24 | 张跃 | A kind of carbon base body composite material hollow structural slab and manufacture method |
CN108840698A (en) * | 2018-07-19 | 2018-11-20 | 航天特种材料及工艺技术研究所 | A kind of porous C/C composite and preparation method |
CN109817994B (en) * | 2019-01-23 | 2021-02-26 | 成都新柯力化工科技有限公司 | Method for preparing fuel cell gradient gas diffusion layer carbon film by multilayer extrusion |
CN109817994A (en) * | 2019-01-23 | 2019-05-28 | 成都新柯力化工科技有限公司 | A kind of method that multilayer extrusion prepares fuel cell gradient gas diffusion layer carbon film |
CN111715209A (en) * | 2020-05-18 | 2020-09-29 | 浙江工业大学 | Gas phase preparation method of tungsten trioxide/graphite felt composite material |
CN111715209B (en) * | 2020-05-18 | 2023-04-07 | 浙江工业大学 | Gas phase preparation method of tungsten trioxide/graphite felt composite material |
CN112919922A (en) * | 2021-04-13 | 2021-06-08 | 西北工业大学 | Chemical vapor infiltration method for preparing pyrolytic carbon with external biomass catalyst |
CN113522262A (en) * | 2021-07-15 | 2021-10-22 | 陕西科技大学 | Recyclable flexible titanium dioxide/pyrolytic carbon/carbon fiber felt composite photocatalytic material and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012051973A1 (en) | Large-pore and open-pore c/c composite having a high inner surface area, and process for producing it and use thereof | |
EP2812114B1 (en) | Use of mesoporous graphite particles for electrochemical applications | |
KR100805104B1 (en) | Carbonaceous material having high surface area and conductivity and method of preparing same | |
US7948739B2 (en) | Graphite-carbon composite electrode for supercapacitors | |
EP2065340A1 (en) | Porous material having a hollow capsule structure and method of preparing the same | |
DE102010049249A1 (en) | Porous carbon product, process for its production and use | |
WO2007137667A1 (en) | Method for the production of porous carbon molds | |
EP1345674A1 (en) | Cation-conducting or proton-conducting ceramic membrane based on a hydroxysilylic acid, method for the production thereof and use of the same | |
DE19919988A1 (en) | Proton conductive polymer-ceramic composite, for fuel cells, batteries, methane reforming, hydrogen production, gas sensors, medicine and electrocatalysis, includes water-containing oxide nanoparticles | |
KR20210067902A (en) | Mesoporous carbon and manufacturing method of the same, and polymer electrolyte fuel cell | |
DE10208279A1 (en) | Flexible electrolyte membrane based on a carrier comprising polymer fibers, process for their production and the use thereof | |
Ferrero et al. | Iron–nitrogen-doped dendritic carbon nanostructures for an efficient oxygen reduction reaction | |
DE102011108435A1 (en) | Carbon-carbon composite, useful e.g. as electrode, catalyst support and adsorber, comprises large- and open porous support of carbon or organic precursor coated with nanoporous carbon material of high specific surface | |
Luong et al. | The influence of monolayer and multilayer diazonium functionalities on the electrochemical oxidation of nanoporous carbons | |
EP2215641B1 (en) | Method for making a carbon composition, method for forming an electrode and electric double layer capacitor | |
EP3895240A1 (en) | Hybrid gas diffusion layer for electrochemical cells | |
EP1008199B1 (en) | Gas diffusion electrode and production thereof | |
US8437116B2 (en) | Electric double layer capacitors, capacitor materials and methods of making the same | |
DE102010033380A1 (en) | Large and open porous C / C composite with high internal surface, as well as methods of making the same and their use | |
TWI566819B (en) | Making carbon articles from coated particles | |
Zhang et al. | Reversible Constrained Dissociation and Reassembly of MXene Films | |
KR101074949B1 (en) | Method for fabricating carbon-metal composites, method for fabricating electrode using the composites, and electrochemical capacitor and fuel cell having the electrode | |
DE10205849A1 (en) | Proton-conducting ceramic membranes based on zirconium phosphates, processes for their production and their use in MEAs and fuel cells | |
KR100874459B1 (en) | Carbonaceous material having high surface area and conductivity | |
JPH044244B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11815433 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11815433 Country of ref document: EP Kind code of ref document: A1 |