JPH044244B2 - - Google Patents

Info

Publication number
JPH044244B2
JPH044244B2 JP60063707A JP6370785A JPH044244B2 JP H044244 B2 JPH044244 B2 JP H044244B2 JP 60063707 A JP60063707 A JP 60063707A JP 6370785 A JP6370785 A JP 6370785A JP H044244 B2 JPH044244 B2 JP H044244B2
Authority
JP
Japan
Prior art keywords
activated carbon
aqueous solution
porous
aromatic hydrocarbon
hydroxyl group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60063707A
Other languages
Japanese (ja)
Other versions
JPS61222916A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP60063707A priority Critical patent/JPS61222916A/en
Priority to US06/842,335 priority patent/US4753717A/en
Priority to EP92100194A priority patent/EP0480909B1/en
Priority to EP86104063A priority patent/EP0196055B1/en
Priority to DE86104063T priority patent/DE3689239T2/en
Priority to DE3650725T priority patent/DE3650725T2/en
Publication of JPS61222916A publication Critical patent/JPS61222916A/en
Publication of JPH044244B2 publication Critical patent/JPH044244B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は多孔性活性炭の製造法に関する。さら
に詳しくは極めて微細な連通気孔を有すると共
に、比表面積が少くとも600m2/gである比表面
積が極めて大きな多孔性活性炭の製造法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing porous activated carbon. More specifically, the present invention relates to a method for producing porous activated carbon having extremely fine communicating pores and having an extremely large specific surface area of at least 600 m 2 /g.

〔従来の技術〕[Conventional technology]

フエノール系樹脂を非酸化性雰囲気下で焼成し
て得られるグラツシーカーボンは、よく知られて
いるとおり、機械的強度及び耐薬品性に優れた炭
素材料である。そのため、グラツシーカーボンの
多孔体を得ようとする試みが世界各国で盛んであ
る。すなわち、グラツシーカーボンの優れた耐薬
品性、耐蝕性を利用して、グラツシーカーボンの
多孔体を各種の分離材、特に材として種々の工
業分野で好適に使用し得ることが確実であるから
である。
Grassy carbon, which is obtained by firing a phenolic resin in a non-oxidizing atmosphere, is a carbon material with excellent mechanical strength and chemical resistance, as is well known. Therefore, attempts to obtain porous bodies of glassy carbon are being actively made in various countries around the world. In other words, it is certain that by taking advantage of the excellent chemical resistance and corrosion resistance of Grassy Carbon, the porous body of Grassy Carbon can be suitably used in various industrial fields as various separation materials, especially as materials. It is.

従来、かかるグラツシーカーボン多孔体の製造
法としては、合成樹脂多孔体に、フエノール樹脂
の如き焼成した際にグラツシーカーボンに転化し
得る樹脂を含浸させた後、この含浸した樹脂を硬
化させ、次に非酸化雰囲気中にて焼成して上記含
浸した樹脂をグラツシーカーボンに変換し同時に
上記多孔体の合成樹脂を分解してグラツシーカー
ボンの多孔体を製造する方法が知られている(特
開昭51−70207号公報参照)。
Conventionally, the method for manufacturing such a glassy carbon porous body includes impregnating a synthetic resin porous body with a resin that can be converted into glassy carbon when fired, such as a phenolic resin, and then curing the impregnated resin. Next, a method is known in which the impregnated resin is converted into glassy carbon by firing in a non-oxidizing atmosphere, and at the same time, the synthetic resin of the porous body is decomposed to produce a glassy carbon porous body (especially (Refer to Publication No. 70207 of 1983).

このような含浸法によつて優れた性能を備えた
グラツシーカーボン多孔体を得るためには、含浸
する樹脂が合成樹脂多孔体の内部気孔にまで均一
に濡れ良く入り込み且つ該含浸する樹脂それ自体
で樹脂マトリツクスを形成する必要がある。なぜ
なら、上記したとおり、焼成によつて合成樹脂多
孔体は消滅しそして含浸した樹脂のみがグラツシ
ーカーボンに変換されるからである。
In order to obtain a glassy carbon porous body with excellent performance by such an impregnation method, it is necessary that the impregnated resin penetrates into the internal pores of the synthetic resin porous body uniformly and well, and that the impregnated resin itself It is necessary to form a resin matrix with This is because, as mentioned above, the synthetic resin porous body disappears upon firing, and only the impregnated resin is converted into glassy carbon.

しかしながら、含浸法によつては、使用しうる
合成樹脂多孔体について、濡れ等の表面特性、あ
るいは含浸する樹脂例えばフエノール樹脂の均一
含浸が可能な孔径等に限界があるため、例えば平
均径10μm以下のような微細な連通気孔を有する
グラツシーカーボン多孔体は得られていない。
However, depending on the impregnation method, there are limits to the surface properties such as wetting of the synthetic resin porous material that can be used, or the pore size that allows uniform impregnation of the impregnating resin, such as phenolic resin, so for example, the average diameter is less than 10 μm. Grassy carbon porous bodies having fine continuous pores have not been obtained.

一方、非表面積が大きく活性機能を有する活性
炭は、種々のガスあるいは液体中の様々な分子等
を吸着、分離する作用があるため、各種の分野で
利用されている。特にフエノール系樹脂から得ら
れる活性炭は非表面積が大きく活性能が高いた
め、優れた物性を有した活性炭である。
On the other hand, activated carbon, which has a large non-surface area and has an active function, is used in various fields because it has the ability to adsorb and separate various molecules in various gases or liquids. In particular, activated carbon obtained from phenolic resin has a large non-surface area and high activity, so it is an activated carbon with excellent physical properties.

それ故、機械的強度及び耐薬品性に優れ、流体
の出入りがスムーズな微細な連通気孔を有ししか
も大きい比表面積を有する活性炭があれあ、種々
の用途特に分離、吸着剤として好適に使用しうる
ため、そのような活性炭の開発が強く望まれてい
るが、今日そのような活性炭は未だ開発されてい
ない。
Therefore, activated carbon, which has excellent mechanical strength and chemical resistance, has fine communicating pores that allow fluid to flow in and out smoothly, and has a large specific surface area, is suitable for use in various applications, especially as a separation and adsorbent. Therefore, there is a strong desire to develop such activated carbon, but no such activated carbon has been developed yet.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は、微細な連続気孔を有し且つ大
きい比表面積を示す多孔性活性炭の製造法を提供
することにある。
An object of the present invention is to provide a method for producing porous activated carbon having fine continuous pores and exhibiting a large specific surface area.

本発明の他の目的は機械的強度、耐蝕性等に優
れた微細な連続気孔を持ち且つ大きい比表面積を
示す多孔性活性炭の製造法を提供することにあ
る。
Another object of the present invention is to provide a method for producing porous activated carbon that has fine continuous pores and exhibits a large specific surface area and has excellent mechanical strength and corrosion resistance.

本発明のさらに他の目的は気体あるいは液体の
通過あるいは出入りが円滑でありしかも大きい比
表面積を示すため、優れた活性能を示して各種の
化学反応や物理的吸着を生じ易い多孔性活性炭の
製造法を提供することにある。
Still another object of the present invention is to produce porous activated carbon that allows gas or liquid to pass through or come in and out smoothly, and has a large specific surface area, so it exhibits excellent activity and is susceptible to various chemical reactions and physical adsorption. It is about providing law.

本発明のさらに他の目的および利点は以下の説
明から明らかとなろう。
Further objects and advantages of the present invention will become apparent from the description below.

〔問題点を解決するための手段および作用〕[Means and actions for solving problems]

本発明によれば本発明の上記目的および利点
は、 (1) フエノール性水酸基を有する芳香族炭化水素
化合物とアルデヒド類の初期縮合物又はフエノ
ール性水酸基を有する芳香族炭化水素化合物と
フエノール性水酸基を有さない芳香族炭化水素
化合物とアルデヒド類の初期縮合物を準備し、 (2) この初期縮合物と無機塩とを含む水溶液を調
製し、 (3) この水溶液を適当な型に流し込み、 (4) 水の蒸発を抑止しつつ該水溶液を加熱して型
内で硬化させ、 (5) 得られた硬化体を非酸化性雰囲気中で焼成
し、次いで (6) 得られ焼成体を洗浄して焼成体中の無機塩を
除去する、 ことを特徴とする、平均孔径0.03〜10μmの連通
気孔を有し且つ少くとも600m2/gのBET法によ
る比表面積値を示す多孔性活性炭の製造法によつ
て達成される。
According to the present invention, the above objects and advantages of the present invention are as follows. (2) Prepare an aqueous solution containing this initial condensate and an inorganic salt, (3) Pour this aqueous solution into a suitable mold, ( 4) Curing the aqueous solution in a mold by heating it while suppressing water evaporation, (5) firing the resulting cured product in a non-oxidizing atmosphere, and then (6) washing the resulting fired product. A method for producing porous activated carbon having continuous pores with an average pore diameter of 0.03 to 10 μm and having a specific surface area value of at least 600 m 2 /g by the BET method, the method comprising: removing inorganic salts in the fired body by achieved by.

本発明において、フエノール樹脂とはフエノー
ル性水酸基を有する芳香族炭化水素化合物とアル
デヒド類との縮合物である。かかる芳香族炭化水
素化合物としては、例えばフエノール、クレゾー
ル、キシレノールの如きいわゆるフエノール類が
好適であるが、これらに限らない。例えば下記式 ここで、xおよびyはそれぞれ独立に、0、1
又は2である、 で表わされるメチレン−ビス・フエノール類であ
ることができ、あるいはヒドロキシ−ビフエニル
類、ヒドロキシナフタレン類であることもでき
る。これらのうち、実用的にはフエノール類特に
フエノールが好適である。
In the present invention, the phenolic resin is a condensate of an aromatic hydrocarbon compound having a phenolic hydroxyl group and an aldehyde. Suitable examples of such aromatic hydrocarbon compounds include so-called phenols such as phenol, cresol, and xylenol, but they are not limited thereto. For example, the following formula Here, x and y are each independently 0, 1
or 2, or hydroxy-biphenyls or hydroxynaphthalenes. Among these, phenols, particularly phenol, are preferred from a practical standpoint.

本発明におけるフエノール樹脂としては、さら
にフエノール性水酸基を有する芳香族炭化水素化
合物の1部をフエノール性水酸基を有さない芳香
族炭化水素化合物例えばキシレン、トルエン等で
置換した変性芳香族系ポリマー例えばフエノール
とキシレンとホルムアルデヒドとの縮合物である
変性芳香族系ポリマーを用いることもできる。ま
たアルデヒドとしてはホルムアルデヒドのみなら
ずアセトアルデヒド、フルフラールの如きその他
のアルデヒドを使用することができるが、ホルム
アルデヒドが好適である。フエノール・ホルムア
ルデヒド縮合物としては、ノボラツク型又はレゾ
ール型或はそれらの複合物のいずれであつてもよ
い。
The phenolic resin in the present invention further includes a modified aromatic polymer in which a part of the aromatic hydrocarbon compound having a phenolic hydroxyl group is substituted with an aromatic hydrocarbon compound not having a phenolic hydroxyl group, such as xylene, toluene, etc., such as phenol. A modified aromatic polymer which is a condensation product of xylene and formaldehyde can also be used. As the aldehyde, not only formaldehyde but also other aldehydes such as acetaldehyde and furfural can be used, but formaldehyde is preferred. The phenol-formaldehyde condensate may be a novolac type, a resol type, or a composite thereof.

初期縮合物と共に用いる上記無機塩は後の工程
で除去され活性炭に連通孔を付与するために用い
られる孔形成剤であり、例えば塩化亜鉛、塩化ス
ズ、塩化ナトリウム、リン酸ナトリウム、水酸化
カリウムあるいは硬化カリウム等である。これら
のうち塩化亜鉛が特に好ましく用いられる。無機
塩は、初期縮合物の例えば2.5〜10重量倍の量で
用いることができる。下限より少ない量では連通
孔を有する多孔性活性炭が得難くまた上限より多
い量では多孔性活性炭の機械的強度が低下する傾
向が大きくなり望ましくない。初期縮合物と無機
塩の水溶液は、使用する無機塩の種類によつても
異なるが例えば無機塩の0.1〜1重量倍の水を用
いて調製することができる。
The above-mentioned inorganic salt used together with the initial condensate is a pore-forming agent that is removed in a later step and used to provide communicating pores to the activated carbon, such as zinc chloride, tin chloride, sodium chloride, sodium phosphate, potassium hydroxide, or Hardened potassium, etc. Among these, zinc chloride is particularly preferably used. The inorganic salt can be used in an amount of, for example, 2.5 to 10 times the weight of the initial condensate. If the amount is less than the lower limit, it is difficult to obtain porous activated carbon having communicating pores, and if the amount is more than the upper limit, the mechanical strength of the porous activated carbon tends to decrease undesirably. The aqueous solution of the initial condensate and the inorganic salt can be prepared using, for example, water in an amount of 0.1 to 1 times the weight of the inorganic salt, although it varies depending on the type of inorganic salt used.

フエノール性樹脂の初期縮合物と無機塩の水溶
液は、例えば水溶性レゾールに塩化亜鉛水溶液を
加えた後、撹拌することにより、均一な溶液とし
て調製することができ、またレゾールのメタノー
ル溶液と塩化亜鉛水溶液を混合することにより粘
度の高いスラリー状に調製することもできる。そ
の際、該水溶液に他の添加物、例えば硬化フエノ
ール樹脂の粉体あるいは繊維、あるいはセルロー
スの微粒子等を混入しても良い。又、上記の如
く、メタノール、エタノール、アセトンの如き有
機溶媒を、均一な混合のために加えても良い。か
くして、例えば100000〜100センチポイズの粘度
を有する水溶液は適当な型に流し込まれ、例えば
50〜200℃の温度に加熱される。この加熱の際、
水溶液中の水分の蒸発を抑止するのが肝要であ
る。すなわち、水溶液中において初期縮合物は加
熱を受けて徐々に硬化し、塩化亜鉛の如き無機
塩、水と分離しながら3次元網目構造に成長する
ものと考えられる。
An aqueous solution of an initial condensate of a phenolic resin and an inorganic salt can be prepared as a homogeneous solution by, for example, adding an aqueous zinc chloride solution to a water-soluble resol and then stirring, or a methanol solution of a resol and a zinc chloride solution can be prepared. A highly viscous slurry can also be prepared by mixing an aqueous solution. At this time, other additives, such as hardened phenolic resin powder or fibers, or cellulose fine particles, may be mixed into the aqueous solution. Further, as mentioned above, an organic solvent such as methanol, ethanol, or acetone may be added for uniform mixing. Thus, an aqueous solution having a viscosity of e.g.
Heated to a temperature of 50-200°C. During this heating,
It is important to suppress evaporation of water in the aqueous solution. That is, it is thought that the initial condensate is heated in an aqueous solution and gradually hardens, growing into a three-dimensional network structure while separating from an inorganic salt such as zinc chloride and water.

得られた硬化体を非酸化性雰囲気中で焼成する
ことによつて該硬化体を炭素に変えることができ
る。焼成は通常800℃以上の温度に達するまで行
なわれる。焼成した際の好ましい昇温速度は使用
するフエノール系樹脂あるいはその形状等によつ
て多少相違するが、一般に室温から300℃程度の
温度までは比較的大きな昇温速度とすることが可
能であり、例えば100℃/時間の速度とすること
も可能である。300℃以上の温度になると、樹脂
の熱分解が開始し、水蒸気(H2O)、水素、メタ
ン、一酸化炭素の如きガスが発生し始めるため、
300℃に達したのちは充分に遅い速度で昇温せし
めるのが有利である。非酸化性雰囲気は、例えば
窒素、アルゴン、ヘリウム、ネオン、二酸化炭素
等であり、窒素が好ましく用いられる。かかる非
酸化性雰囲気は静止していても流動していてもさ
しつかえない。
By firing the obtained cured body in a non-oxidizing atmosphere, the cured body can be converted into carbon. Firing is usually carried out until a temperature of 800°C or higher is reached. The preferred rate of temperature increase during firing varies somewhat depending on the phenolic resin used or its shape, but generally it is possible to achieve a relatively high rate of temperature increase from room temperature to a temperature of about 300°C. For example, a rate of 100°C/hour is also possible. When the temperature exceeds 300℃, the resin starts to thermally decompose and gases such as water vapor (H 2 O), hydrogen, methane, and carbon monoxide begin to be generated.
After reaching 300°C, it is advantageous to raise the temperature at a sufficiently slow rate. Examples of the non-oxidizing atmosphere include nitrogen, argon, helium, neon, carbon dioxide, etc., and nitrogen is preferably used. Such a non-oxidizing atmosphere may be stationary or flowing.

得られた焼成体を水あるいは希塩酸等で十分に
洗浄することによつて、焼成体中に含まれる無機
塩を除去することができる。無機塩を除去したの
ち、必要により乾燥すると連通孔の発達した多孔
性活性炭を得ることができる。
Inorganic salts contained in the fired body can be removed by thoroughly washing the fired body with water, dilute hydrochloric acid, or the like. After removing the inorganic salt, if necessary, drying is performed to obtain porous activated carbon with developed communicating pores.

かくして得られる本発明の多孔性活性炭は機械
的強度、耐薬品性に優れており、またフイルム
状、板状、円筒状等の任意の形状とすることが可
能なため実用性の高い工業材料である。
The porous activated carbon of the present invention thus obtained has excellent mechanical strength and chemical resistance, and can be formed into any shape such as a film, plate, or cylinder, making it a highly practical industrial material. be.

本発明の多孔性活性炭は炭素部あるいは連通気
孔が3次元網目構造を採つているため、流体が細
部まで自由に出入りし易い連通気孔を有してい
る。平均孔径は0.03〜10μmと微細であり、孔径
の揃つたすなわち孔径分布のシヤープな多孔体で
ある。例えば、上記製造法において、無機塩を含
む未硬化フエノール樹脂水溶液の組成あるいは熱
硬化条件を選定することによつて、平均孔径が
0.03〜0.1μmと極めて微細な多孔体から平均孔径
が10μm程度の多孔体までを得ることができるた
め、用途に応じて使い分けることが可能である。
例えばコロイド状物質あるいは細菌の様な極めて
微細なものの分離を行う材にも応用し得る。
The porous activated carbon of the present invention has a three-dimensional network structure of carbon parts or communicating pores, so that it has communicating pores that allow fluid to freely enter and exit fine details. The average pore size is as fine as 0.03 to 10 μm, and the pore size is uniform, that is, the pore size distribution is sharp. For example, in the above production method, the average pore size can be adjusted by selecting the composition or heat curing conditions of the uncured phenolic resin aqueous solution containing an inorganic salt.
Porous bodies with extremely fine pores of 0.03 to 0.1 μm to porous bodies with an average pore diameter of about 10 μm can be obtained, so they can be used depending on the purpose.
For example, it can be applied to materials for separating extremely minute substances such as colloidal substances or bacteria.

本発明の多孔状活性炭のBET法による比表面
積値は少くとも600m2/gである。600m2/g未満
では活性能が低下するため好ましくない。本発明
の多孔状活性炭の微細な連通気孔と高い比表面積
値を利用して各種の物理的吸着をスムーズに均一
に、しかも大量に起こさせることができるため、
吸着材、分離材として好適である。
The porous activated carbon of the present invention has a specific surface area value of at least 600 m 2 /g by the BET method. If it is less than 600 m 2 /g, the activity ability will decrease, which is not preferable. Various types of physical adsorption can occur smoothly, uniformly, and in large quantities by utilizing the fine interconnected pores and high specific surface area of the porous activated carbon of the present invention.
Suitable as an adsorbent or a separation material.

本発明の多孔性活性炭の見掛け密度(嵩密度)
は通常0.2〜0.6g/cm3である。換言すれば、本発
明の多孔性活性炭には比較的気孔率の高い多孔体
から比較的気孔率の低い多孔体まで包含される。
多孔体の機械的強度は見掛け密度によつて変わる
ものであるが、例えば0.2g/cm3の本発明の多孔
体でも実用上、必要な強度を有している。
Apparent density (bulk density) of the porous activated carbon of the present invention
is usually 0.2 to 0.6 g/cm 3 . In other words, the porous activated carbon of the present invention includes porous bodies having a relatively high porosity to porous bodies having a relatively low porosity.
Although the mechanical strength of a porous body varies depending on its apparent density, for example, even the porous body of the present invention of 0.2 g/cm 3 has the strength required for practical use.

上記の様に本発明の多孔性活性炭は、微細な連
通気孔を有するため、流体の出入りがスムーズに
起こる多孔体であつて、しかも比表面積値が大き
いため優れた活性能を有する。また、機械的強度
に優れたフイルム状、板状、円筒状等の任意の形
状を採りうるため、多方面に応用出来る産業上有
用な材料である。
As described above, the porous activated carbon of the present invention has fine continuous pores, so it is a porous body through which fluid can smoothly flow in and out, and has a large specific surface area, so it has excellent activity. In addition, it is an industrially useful material that can be applied in many fields because it can take any shape such as a film, plate, or cylinder with excellent mechanical strength.

以下実施例により本発明をさらに詳述する。 The present invention will be explained in more detail with reference to Examples below.

なお、本明細書において、連通孔の平均孔径は
次のようにして測定されまた定義される。
In addition, in this specification, the average pore diameter of the communicating pores is measured and defined as follows.

試料について、例えば1000〜10000倍で電子顕
微鏡写真を撮影する。この写真に任意の直線を引
き、その直線と交叉する孔の数をnとすると、平
均孔径()は下記式により算出される。
An electron micrograph is taken of the sample at a magnification of, for example, 1000 to 10000 times. If an arbitrary straight line is drawn on this photograph and the number of holes that intersect with the straight line is n, then the average pore diameter () is calculated by the following formula.

ここで、liは直線が交叉する孔で切断される長
さであり、 oi=1 liはn個の孔についての該切断 される長さの和であり、nは該直線と交叉する孔
の数である。但しnは10以上の値をとるものとす
る。
Here, li is the length cut by the hole where the straight line intersects, oi=1 li is the sum of the cut length for n holes, and n is the length cut by the hole where the straight line intersects. It is the number of holes. However, n shall take a value of 10 or more.

実施例 1 水溶性レゾール(約60%濃度)/塩化亜鉛/水
を重量比で10/25/4の割合で混合した水溶液を
フイルムアプリケーターでガラス板上に成膜し
た。次に成膜した水溶液上にガラス板を被せ水分
が蒸発しない様にした後、約100℃の温度で1時
間加熱して硬化させた。
Example 1 An aqueous solution containing water-soluble resol (approximately 60% concentration)/zinc chloride/water mixed in a weight ratio of 10/25/4 was formed into a film on a glass plate using a film applicator. Next, a glass plate was placed over the formed aqueous solution to prevent moisture from evaporating, and then heated at a temperature of about 100° C. for 1 hour to cure it.

該フエノール樹脂複合体をシリコニツト電気炉
中に入れ窒素気流中で40℃/時間の速度で昇温し
て、900℃まで焼成した。次に該フイルム状熱処
理物を希塩酸で洗つた後水洗し乾燥した。
The phenolic resin composite was placed in a siliconite electric furnace and heated to 900°C in a nitrogen stream at a rate of 40°C/hour. Next, the heat-treated film was washed with dilute hydrochloric acid, water, and dried.

この様にして得られたフイルムは厚みが約
200μmであり、見掛け密度は約0.3g/cm3であつ
た。また活性炭とは思えない程機械的強度に優れ
ており、若干の可とう性まで有していた。次に
BET法によつて比表面積値を測定したところ
1800m2/gと極めて高い値であつた。
The film thus obtained has a thickness of approximately
200 μm, and the apparent density was about 0.3 g/cm 3 . It also had excellent mechanical strength, which was hard to believe for activated carbon, and even had some flexibility. next
Specific surface area value measured by BET method
The value was extremely high at 1800m 2 /g.

次に該フイルム状グラツシーカーボンの気孔状
態を観察するためにフイルム断面の電子顕微鏡写
真を撮つた。第1図に示す。付から明らかな様に
3次元網目状構造で10μm以下の微細な連通気孔
を有していた。
Next, in order to observe the state of the pores in the film-like glassy carbon, an electron micrograph of a cross section of the film was taken. Shown in Figure 1. As is clear from the figure, it had a three-dimensional network structure with fine interconnected pores of 10 μm or less.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の多孔性活性炭フイルムの断面
の粒子構造(多孔質構造)の電子顕微鏡写真であ
る。写真中、右下に示す棒線の長さは5μmであ
る。
FIG. 1 is an electron micrograph of the cross-sectional particle structure (porous structure) of the porous activated carbon film of the present invention. The length of the bar shown at the bottom right of the photo is 5 μm.

Claims (1)

【特許請求の範囲】 1 (1) フエノール性水酸基を有する芳香族炭化
水素化合物とアルデヒド類の初期縮合物又はフ
エノール性水酸基を有する芳香族炭化水素化合
物とフエノール性水酸基を有さない芳香族炭化
水素化合物とアルデヒド類の初期縮合物を準備
し、 (2) この初期縮合物と無機塩とを含む水溶液を調
製し、 (3) この水溶液を適当な型に流し込み、 (4) 水の蒸発を抑止しつつ該水溶液を加熱して型
内で硬化させ、 (5) 得られた硬化体を非酸化性雰囲気中で焼成
し、次いで (6) 得られた焼成体を洗浄して焼成体中の無機塩
を除去する、 ことを特徴とする、平均孔径0.03〜10μmの連通
気孔を有し且つ少くとも600m2/gのBET法によ
る比表面積値を示す多孔性活性炭の製造法。
[Scope of Claims] 1 (1) An initial condensate of an aromatic hydrocarbon compound having a phenolic hydroxyl group and an aldehyde, or an aromatic hydrocarbon compound having a phenolic hydroxyl group and an aromatic hydrocarbon not having a phenolic hydroxyl group Prepare an initial condensate of a compound and an aldehyde, (2) Prepare an aqueous solution containing this initial condensate and an inorganic salt, (3) Pour this aqueous solution into a suitable mold, (4) Prevent water evaporation. (5) The resulting cured product is fired in a non-oxidizing atmosphere, and (6) the resulting fired product is washed to remove inorganic matter in the fired product. A method for producing porous activated carbon having continuous pores with an average pore diameter of 0.03 to 10 μm and exhibiting a specific surface area value by BET method of at least 600 m 2 /g, the method comprising: removing salt.
JP60063707A 1985-03-25 1985-03-29 Porous activated carbon Granted JPS61222916A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP60063707A JPS61222916A (en) 1985-03-29 1985-03-29 Porous activated carbon
US06/842,335 US4753717A (en) 1985-03-25 1986-03-21 Porous article having open pores prepared from aromatic condensation polymer and use thereof
EP92100194A EP0480909B1 (en) 1985-03-25 1986-03-25 Porous active carbon prepared from aromatic condensation polymer and use thereof in electrodes for electrochemical cells
EP86104063A EP0196055B1 (en) 1985-03-25 1986-03-25 Porous article having open pores prepared from aromatic condensation polymer and use thereof
DE86104063T DE3689239T2 (en) 1985-03-25 1986-03-25 Porous article made of aromatic condensation polymers with open pores and its application.
DE3650725T DE3650725T2 (en) 1985-03-25 1986-03-25 Porous activated carbon made from aromatic condensation polymers and their application in electrodes for electrochemical cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60063707A JPS61222916A (en) 1985-03-29 1985-03-29 Porous activated carbon

Publications (2)

Publication Number Publication Date
JPS61222916A JPS61222916A (en) 1986-10-03
JPH044244B2 true JPH044244B2 (en) 1992-01-27

Family

ID=13237113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60063707A Granted JPS61222916A (en) 1985-03-25 1985-03-29 Porous activated carbon

Country Status (1)

Country Link
JP (1) JPS61222916A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL83310A (en) * 1987-07-24 1992-07-15 Israel Atomic Energy Comm Carbon membranes and their production
GB0019417D0 (en) * 2000-08-09 2000-09-27 Mat & Separations Tech Int Ltd Mesoporous carbons
US8252716B2 (en) * 2008-11-04 2012-08-28 Corning Incorporated Process for making porous activated carbon
CN109052731B (en) * 2018-09-14 2021-11-26 杭州开源环保工程有限公司 Method for efficiently removing antimony from printing and dyeing wastewater

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57118009A (en) * 1981-01-16 1982-07-22 Kanebo Ltd Manufacture of activated carbon having network structure
JPS6027375A (en) * 1983-07-21 1985-02-12 日本たばこ産業株式会社 Tobacco filter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57118009A (en) * 1981-01-16 1982-07-22 Kanebo Ltd Manufacture of activated carbon having network structure
JPS6027375A (en) * 1983-07-21 1985-02-12 日本たばこ産業株式会社 Tobacco filter

Also Published As

Publication number Publication date
JPS61222916A (en) 1986-10-03

Similar Documents

Publication Publication Date Title
Kyotani Control of pore structure in carbon
EP2909134B1 (en) Process for the preparation of hierarchically meso and macroporous structured materials
DE2946688C2 (en)
US5487917A (en) Carbon coated substrates
JP2003535998A (en) Activated organic coating on fiber substrate
EP2921468A1 (en) Process for the preparation of flexible meso and macroporous carbon foams
EP1155174A1 (en) Three-dimensional interpenetrating networks of macroscopic assemblages of randomly oriented carbon fibrils and organic polymers
WO2001010779A1 (en) Interpenetrating networks of carbon fibrils and polymers
EP0869932A1 (en) Synthesis of preceramic polymer-stabilized metal colloids and their conversion to microporous ceramics
JPH0386529A (en) Porous composite sheet and preparation thereof
JPH03329B2 (en)
JPH044244B2 (en)
JP4941922B2 (en) Porous clay film and method for producing the same
EP0365327B1 (en) Method of preparation of porous carbon material and material produced by the method
JPS605011A (en) Preparation of porous material of carbon having high strength
JP3130456B2 (en) Oxidation resistant carbon material and method for producing the same
DE102011108435A1 (en) Carbon-carbon composite, useful e.g. as electrode, catalyst support and adsorber, comprises large- and open porous support of carbon or organic precursor coated with nanoporous carbon material of high specific surface
JPS61223037A (en) Porous cured material of phenolic resin
JPH01283129A (en) Porous composite sheet and its manufacture
RU2291103C2 (en) Method of production of the open-porous glass-carbonic material
JPS61218640A (en) Porous organic semiconductor
JPH0655068A (en) Production of carbon covered inorganic support
JPH0543214A (en) Production of porous activated carbon structure
WO1999062616A1 (en) Carbon structure
JPH0381349A (en) Flame-retardant porous composite sheet and its preparation

Legal Events

Date Code Title Description
S202 Request for registration of non-exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R315201

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term