JPS614169A - Redox flow battery - Google Patents

Redox flow battery

Info

Publication number
JPS614169A
JPS614169A JP59125791A JP12579184A JPS614169A JP S614169 A JPS614169 A JP S614169A JP 59125791 A JP59125791 A JP 59125791A JP 12579184 A JP12579184 A JP 12579184A JP S614169 A JPS614169 A JP S614169A
Authority
JP
Japan
Prior art keywords
electrodes
redox flow
flow battery
current collecting
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59125791A
Other languages
Japanese (ja)
Inventor
Toshio Shigematsu
敏夫 重松
Mamoru Kondo
守 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP59125791A priority Critical patent/JPS614169A/en
Publication of JPS614169A publication Critical patent/JPS614169A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2455Grouping of fuel cells, e.g. stacking of fuel cells with liquid, solid or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To reduce contact resistance and eliminate unevenness of internal resistance by forming positive and negative poles constituting a cell of a redox flow battery by interposing expansive graphite layers between current collecting electrodes and reactive electrodes. CONSTITUTION:Reactive electrodes 16, 17 made of porous carbon electrode are disposed on both sides of a diaphragm 5 made of ion exchange film and expansive graphite layers 22, 23 of rich flexibility, restoration ability and sealing ability are provided on both the sides of the electrodes, and current collecting electrodes 18, 19 made of graphite plate are arranged on both the sides of the layers to form a cell 2, and plural cells are connected in series to form a cell stack of a redox flow battery. Then contact resistance between the reactive electrodes 16, 17 and current collecting electrodes 18, 19 can largely be reduced by using expansive graphite layers 22, 23 and unevenness of internal resistance among respective cells can be eliminated to obtain a battery of excellent power efficiency.

Description

【発明の詳細な説明】 11九1乱 技術分野 この発明は、電力貯蔵用レドックスフロー電池の構造の
改良に関し、特に電極構造が改良されたレドックスフロ
ー電池に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention This invention relates to an improvement in the structure of a redox flow battery for power storage, and more particularly to a redox flow battery with an improved electrode structure.

従来技術 電気エネルギは、そのままの形態では貯蔵が困難である
ため、貯蔵可能なエネルギ形態に変換しなければならな
い。他方、安定した電力供給を行なうには、電力需要に
合わせて供給すなわち発電を行なう必要がある。このた
め、電力会社は、常に最大需要に見合った発l!設備を
建設し、需要に即応して発電を行なっている。しかしな
がら、第3図に電力需要曲線へで示すように、昼間およ
び夜間では、電力の需要に大きな差が存在する。同様の
現象は、週、月および季節間でも生じている。
BACKGROUND OF THE INVENTION Electrical energy is difficult to store in its raw form and must be converted into a storable form of energy. On the other hand, in order to provide a stable power supply, it is necessary to supply or generate power in accordance with the power demand. For this reason, electric power companies always produce electricity that meets maximum demand! We are constructing facilities and generating electricity in response to demand. However, as shown by the power demand curve in FIG. 3, there is a large difference in power demand during the day and at night. Similar phenomena occur across weeks, months, and seasons.

そこで、電力を効率良く貯蔵することが可能であれば、
オフピーク時の余剰電力(第1図のXで示した部分に相
当する)を貯蔵し、ピーク時にこれを放出すれば第3図
のYで示した部分を賄うことができ、需要の変動に対応
することができ、常にほぼ一定の電力(第3図の破線Z
に相当する量)のみを発電すればよいことになる。この
ような口−ドレベリングを達成することができれば、発
電設備を軽減することが可能となり、かつエネルギの節
約ならびに石油等の燃料節減にも大きく寄与することが
できる。
Therefore, if it is possible to store electricity efficiently,
By storing surplus power during off-peak hours (corresponding to the portion indicated by power, which is always almost constant (as shown by the broken line Z in Figure 3).
Therefore, it is only necessary to generate electricity in an amount equivalent to . If such leveling can be achieved, the power generation equipment can be reduced, and it can greatly contribute to energy savings and fuel savings such as oil.

そこで、従来より種々の電力貯蔵法が提案されている。Therefore, various power storage methods have been proposed.

たとえば揚水発電が既に実施されているが、揚水発電で
は設備が消費地から遠く隔たったところに設置されてお
り、したがって送変電損失を伴うこと、ならびに環境面
でも立地に制約があることなどの問題がある。それゆえ
に、揚水発電に変わる新しい電力貯蔵技術の開発が望ま
れているが、この1つとしてレドックスフロー電池の開
発が進められている。
For example, pumped storage power generation has already been implemented, but with pumped storage power generation, the equipment is installed far away from the consumption area, resulting in transmission and substation losses, and there are also environmental restrictions on location. There is. Therefore, there is a desire to develop a new power storage technology to replace pumped storage power generation, and redox flow batteries are being developed as one of these technologies.

第4図は、レドックスフロー電池の一例の概略構成図を
示す。このレドックスフロー電池1は、セル2および正
極液タンク3および負極液タンク4を備え、2個のタン
ク3,4を用いるため2タンク方式と呼ばれているもの
である。セル2内は、たとえばイオン交換膜からなる隔
膜5により仕切られており、一方が正極セル2a、他方
側が負極ル2b内には、それぞれ電極として正極6およ
び負極7が配置されている。
FIG. 4 shows a schematic configuration diagram of an example of a redox flow battery. This redox flow battery 1 includes a cell 2, a positive electrode liquid tank 3, and a negative electrode liquid tank 4, and is called a two-tank system because it uses two tanks 3 and 4. The inside of the cell 2 is partitioned by a diaphragm 5 made of, for example, an ion exchange membrane, and a positive electrode 6 and a negative electrode 7 are arranged as electrodes in the positive electrode cell 2a on one side and the negative electrode cell 2b on the other side, respectively.

第4図に示したレドックスフロー電池1では、たとえば
鉄イオン、クロムイオンのような原子価が変化するイオ
ンの水溶液をタンク3,4に貯蔵し、これをポンプP 
7. P 2で流通型電解セル2に送液し、酸化還元反
応により充放電を行なう。
In the redox flow battery 1 shown in FIG. 4, an aqueous solution of ions whose valences change, such as iron ions and chromium ions, is stored in tanks 3 and 4, and pumped to the pump P.
7. At P2, the liquid is sent to the flow-through electrolytic cell 2, and charging and discharging are performed by an oxidation-reduction reaction.

たとえば、正極液としてFe 8 + / F e 2
+塩酸溶液、負極液としてOr 2” 10r 3+塩
酸溶液を用いると、各酸化還元系の両極6,7における
電池反応は、次式のようになり、起電力は約1vである
For example, Fe 8 + / Fe 2 as a catholyte
When +hydrochloric acid solution and Or2''10r3+hydrochloric acid solution are used as the negative electrode liquid, the battery reaction at both electrodes 6 and 7 of each redox system is as shown in the following equation, and the electromotive force is about 1V.

トコ口で、第4図に概略構成図で示したセル2は、実際
には、第5図に断面図で示すように、隔膜5により隔て
られた正極および負極の各反応電極16.17を両側か
ら集電電極18.19にて圧着挾持してなるセル構造を
有する。なお、第5図に示したセル2は、図示されてい
るように、集電電極18.19を介して複数個直列に接
続されているものである。
To begin with, the cell 2 shown in the schematic diagram in FIG. It has a cell structure in which current collecting electrodes 18 and 19 are clamped and clamped from both sides. Note that, as shown in the figure, a plurality of cells 2 shown in FIG. 5 are connected in series via current collecting electrodes 18 and 19.

ところで、第5図において20.21は多孔質カーボン
電極16.17の周囲に設けられたパツキンを示す。参
考として、第6図に、集電電極18および多孔質カーボ
ン電極16ならびにパツキン20の具体的構造を示す。
By the way, in FIG. 5, reference numeral 20.21 indicates a packing provided around the porous carbon electrode 16.17. For reference, FIG. 6 shows the specific structures of the current collecting electrode 18, the porous carbon electrode 16, and the packing 20.

第5図および第6図に示した従来のセル構造においては
、反応電極16.17としては、たとえば多孔質カーボ
ン電極が用いられており、また集電電極18.19とし
てはグラファイト板が用いられている。そして、このよ
うな材料からなる反応電極16.17とグラファイト板
からなる集電電極18.19は単に圧着により接触され
ているにすぎなかった。したがって、接触面における電
気的抵抗にばらつきが生じがち−であり、その結果台セ
ル毎に内部抵抗のばらつきが生じ、単一セルとしても、
ならびに直列接続したスタックセルにおいても、その性
能にばらつきが発生し、全体としての充放電電力効率が
低下するという欠点があった。
In the conventional cell structure shown in FIGS. 5 and 6, a porous carbon electrode, for example, is used as the reaction electrode 16.17, and a graphite plate is used as the current collecting electrode 18.19. ing. The reaction electrodes 16, 17 made of such materials and the current collecting electrodes 18, 19 made of graphite plates were simply contacted by pressure bonding. Therefore, the electrical resistance at the contact surface tends to vary, and as a result, the internal resistance varies from cell to cell, and even for a single cell,
Furthermore, stack cells connected in series also have the disadvantage that their performance varies and the overall charging/discharging power efficiency decreases.

、  発明が解決しようとする問題点 それゆえに、この発明の目的は、上述の欠点を解消し、
反応電極と集電電極との接触抵抗を軽減し、各セルの内
部抵抗のばらつきを効果的に解消し、電力効率に優れた
レドックスフロー電池を提供することにある。
, Problems to be Solved by the Invention Therefore, the object of the invention is to overcome the above-mentioned drawbacks and
The object of the present invention is to provide a redox flow battery that reduces contact resistance between a reaction electrode and a current collection electrode, effectively eliminates variations in internal resistance of each cell, and has excellent power efficiency.

11ユIJL 問題点を解決するための手段 この発明は、要約すれば、隔膜により隔てられた正極お
よび負極の反応電極を両側から集電電極にて圧着挾持し
てなるセル構造を有するレドックスフロー電池において
、集電電極と反応電極との間に膨張黒鉛層を設けたこと
を特徴とする、レドックスフロー電池である。
11 U IJL Means for Solving the Problems In summary, the present invention provides a redox flow battery having a cell structure in which positive and negative reaction electrodes separated by a diaphragm are clamped from both sides by current collecting electrodes. A redox flow battery is characterized in that an expanded graphite layer is provided between a current collecting electrode and a reaction electrode.

すなわち、この発明は、従来のセル構造に加えて、可撓
性、復元性およびシール性に富む膨張黒鉛を反応電極と
集電電極との間に介在させることにより、上記問題点を
解消しようとするものである。
That is, in addition to the conventional cell structure, this invention attempts to solve the above problems by interposing expanded graphite, which is highly flexible, resilient, and sealable, between the reaction electrode and the current collecting electrode. It is something to do.

実施例 第1図は、この発明の一実施例を示す断面図である。こ
の実施例では、セル2が複数個直列接続されており、し
たがってスタックセルを構成している。この実施例の特
徴は、グラファイト板よりなる集電電極1.8.19と
、多孔質カーボン電極よりなる反応電極16.17との
間に、膨張黒鉛層22.23が設けられていることにあ
る。膨張黒鉛層22.23は、上述したように、可撓性
、復元性およびシール性に富むものである。したがって
、集電電極18.19を両側から圧着することにより、
反応電極16.17と膨張黒鉛層22゜23、ならびに
集電電極18.19と膨張黒鉛層22.23は効果的に
密着される。なお、膨張黒鉛層は高導電性を有するもの
であることは言うまでもない。よって、反応電極16.
17と膨張黒(鉛層22・23との間の接触抵抗ならび
に膨張黒鉛層22.23と反応電極18.19の間の接
触抵抗は、極めて小さいことがわかる。したがって、第
1図に示したスタックセルにおける各セル2の内部抵抗
のばらつきを確実に低減することが可能とされている。
Embodiment FIG. 1 is a sectional view showing an embodiment of the present invention. In this embodiment, a plurality of cells 2 are connected in series, thus forming a stacked cell. The feature of this embodiment is that an expanded graphite layer 22.23 is provided between the current collecting electrode 1.8.19 made of a graphite plate and the reaction electrode 16.17 made of a porous carbon electrode. be. As described above, the expanded graphite layers 22 and 23 are highly flexible, resilient, and sealable. Therefore, by crimping the current collecting electrodes 18 and 19 from both sides,
The reaction electrode 16.17 and the expanded graphite layer 22.23, as well as the current collection electrode 18.19 and the expanded graphite layer 22.23 are effectively brought into close contact. It goes without saying that the expanded graphite layer has high conductivity. Therefore, the reaction electrode 16.
It can be seen that the contact resistance between 17 and the expanded graphite (lead layers 22 and 23) and the contact resistance between the expanded graphite layers 22 and 23 and the reaction electrodes 18 and 19 are extremely small. It is possible to reliably reduce variations in internal resistance of each cell 2 in a stacked cell.

次に、具体的実験例につき述べる。第2図に分解斜視図
で示すように、隔WA5の両側に、ゴムパツキン20.
21で囲まれたカーボン布からなる反応電極16.17
を配置し、さらその外側に膨張黒鉛層22.23を配置
し、さらにその外側にグラフフィト板よりなる集電電極
18.19を配置し、しかる後すべての腑を圧着し、セ
ルを構成した。なお、電極面積は1×100rr12で
ある。このようにして構成したセルを用いて充放電効率
を確かめたところ、同一構造のセルを5〜6個試作した
が、従来のような各セルごとの電力効率のばらつきは見
られず、さらに充放電効率は平均で少なくとも5%以上
向上することが確かめられた。
Next, specific experimental examples will be described. As shown in the exploded perspective view of FIG. 2, rubber gaskets 20.
Reaction electrode 16.17 consisting of carbon cloth surrounded by 21
was placed, expanded graphite layers 22 and 23 were placed on the outside thereof, and current collecting electrodes 18 and 19 made of graphite plates were placed on the outside thereof, and then all the pads were crimped to form a cell. . Note that the electrode area is 1×100rr12. When we checked the charge/discharge efficiency using the cells configured in this way, we found that although we made 5 to 6 prototype cells with the same structure, we did not see any variation in power efficiency among the cells, which was the case in the past. It was confirmed that the discharge efficiency was improved by at least 5% on average.

11悲IL 以上のように、この発明によれば、集電電極と反応電極
との間に膨張黒鉛層が設けられているため、集電電極に
てl1MII!Jにより隔てられた反応電極を該膨張黒
鉛層を介して圧着することによりセルがIIIJ成され
ているので、各セルごとの内部抵抗のばらつきを確実に
解滌することができ、したがって信頼性に優れたレドッ
クスフロー電池を実現することが可能となる。また、ス
タックセルに用いた場合には、充放電効率の向上をも図
ることが可能となる。
11.IL As described above, according to the present invention, since the expanded graphite layer is provided between the current collecting electrode and the reaction electrode, l1 MII! Since the cell is formed by crimping the reaction electrodes separated by J through the expanded graphite layer, it is possible to reliably eliminate variations in internal resistance for each cell, thereby improving reliability. It becomes possible to realize an excellent redox flow battery. Furthermore, when used in a stacked cell, it is possible to improve charging and discharging efficiency.

この発明は、図示したようなlI造のセルに限らず、電
力貯蔵用レドックスフロー電池一般に適用することが可
能である。
The present invention can be applied not only to the illustrated II cell but also to redox flow batteries for power storage in general.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の一実施例を示す断面図である。第
2図は、この発明の具体的実験例に使用したセルの分解
斜視図である。第3図は、電力需要曲線を示す図である
。第4図は、レドックスフロー電池の一例を示す概略構
成図である。第5図は、従来のレドックスフロー電池の
セル構造の一例を示す断面図である。第6図は、第5図
に示したセル構造に用いられる集電電極および反応電極
を示す斜視図である。 図において、5は隔膜、16.17は反応電極、18.
19は集N電極、22.23は膨張黒鉛層を示す。 沿1図 躬2図 第4−図
FIG. 1 is a sectional view showing an embodiment of the present invention. FIG. 2 is an exploded perspective view of a cell used in a specific experimental example of the present invention. FIG. 3 is a diagram showing a power demand curve. FIG. 4 is a schematic configuration diagram showing an example of a redox flow battery. FIG. 5 is a cross-sectional view showing an example of the cell structure of a conventional redox flow battery. 6 is a perspective view showing a current collecting electrode and a reaction electrode used in the cell structure shown in FIG. 5. FIG. In the figure, 5 is a diaphragm, 16.17 is a reaction electrode, 18.
Reference numeral 19 indicates an N-collecting electrode, and reference numerals 22 and 23 indicate expanded graphite layers. Figure 1 Figure 2 Figure 4

Claims (3)

【特許請求の範囲】[Claims] (1)隔膜により隔てられた正極および負極の各反応電
極を両側から集電電極にて圧着挾持してなるセル構造を
有するレドックスフロー電池において、 前記集電電極と反応電極との間に膨張黒鉛層を設けたこ
とを特徴とする、レドックスフロー電池。
(1) In a redox flow battery having a cell structure in which positive and negative reaction electrodes separated by a diaphragm are clamped from both sides by current collecting electrodes, expanded graphite is placed between the current collecting electrode and the reaction electrode. A redox flow battery characterized by having layers.
(2)前記反応電極は、多孔質カーボン電極である、特
許請求の範囲第1項記載のレドックスフロー電池。
(2) The redox flow battery according to claim 1, wherein the reaction electrode is a porous carbon electrode.
(3)前記集電電極はグラファイト板からなる、特許請
求の範囲第1項または第2項記載のレドックスフロー電
池。
(3) The redox flow battery according to claim 1 or 2, wherein the current collecting electrode is made of a graphite plate.
JP59125791A 1984-06-18 1984-06-18 Redox flow battery Pending JPS614169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59125791A JPS614169A (en) 1984-06-18 1984-06-18 Redox flow battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59125791A JPS614169A (en) 1984-06-18 1984-06-18 Redox flow battery

Publications (1)

Publication Number Publication Date
JPS614169A true JPS614169A (en) 1986-01-10

Family

ID=14918954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59125791A Pending JPS614169A (en) 1984-06-18 1984-06-18 Redox flow battery

Country Status (1)

Country Link
JP (1) JPS614169A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0807985A1 (en) * 1996-05-17 1997-11-19 Nisshinbo Industries, Inc. Current collector for molten salt battery, process for producing material for said current collector, and molten salt battery using current collector
EP0814527A2 (en) * 1996-06-19 1997-12-29 Kashima-Kita Electric Power Corporation A redox flow type battery
KR101370851B1 (en) * 2012-11-05 2014-03-07 한국과학기술원 Multi-layered electrode for redox flow battery and redox flow battery comprising said multi-layered electrode
CN113517452A (en) * 2020-04-10 2021-10-19 国家能源投资集团有限责任公司 Composite electrode for flow battery, flow battery and electric pile

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0807985A1 (en) * 1996-05-17 1997-11-19 Nisshinbo Industries, Inc. Current collector for molten salt battery, process for producing material for said current collector, and molten salt battery using current collector
EP0814527A2 (en) * 1996-06-19 1997-12-29 Kashima-Kita Electric Power Corporation A redox flow type battery
EP0814527A3 (en) * 1996-06-19 1999-03-31 Kashima-Kita Electric Power Corporation A redox flow type battery
KR101370851B1 (en) * 2012-11-05 2014-03-07 한국과학기술원 Multi-layered electrode for redox flow battery and redox flow battery comprising said multi-layered electrode
CN113517452A (en) * 2020-04-10 2021-10-19 国家能源投资集团有限责任公司 Composite electrode for flow battery, flow battery and electric pile

Similar Documents

Publication Publication Date Title
US4539268A (en) Sealed bipolar multi-cell battery
US4128701A (en) Hydrogen/chlorine regenerative fuel cell
EP0198483A2 (en) Planar multi-junction electrochemical cell
US20070072067A1 (en) Vanadium redox battery cell stack
EP0188873B1 (en) Lightweight bipolar metal-gas battery
KR940010444A (en) Membrane flow cell battery
KR20160055781A (en) Battery cell stack and redox flow battery
JPH10510664A (en) Structure of electrolyte fuel cell
JP2016535408A (en) New flow battery and its use
CN102867978B (en) Flow energy storage battery structure
Pan et al. Preliminary study of alkaline single flowing Zn–O2 battery
CN102593491A (en) Liquid flow cell stack and cell system comprising same
JP7128812B2 (en) Electrode structure of flow battery, flow battery stack and sealing structure of flow battery stack
MU¨ LLER et al. Development of a 100 W rechargeable bipolar zinc/oxygen battery
JPH0534784B2 (en)
AU2011232794A1 (en) Non-diffusion liquid energy storage device
JPS614169A (en) Redox flow battery
JPH08180885A (en) Solid electrolytic fuel cell improved in current collecting efficiency of air electrode
KR20080106839A (en) Powdered fuel cell
JPH0411340Y2 (en)
CN113948748A (en) Connecting plate and solid oxide fuel cell/electrolytic cell stack
JPH08138685A (en) Whole vanadium redox battery
CN202474107U (en) Redox flow cell stack and cell system comprising same
JP2998969B2 (en) Battery terminal structure
JPH0534785B2 (en)