JP2013137957A - Redox flow secondary battery - Google Patents

Redox flow secondary battery Download PDF

Info

Publication number
JP2013137957A
JP2013137957A JP2011288813A JP2011288813A JP2013137957A JP 2013137957 A JP2013137957 A JP 2013137957A JP 2011288813 A JP2011288813 A JP 2011288813A JP 2011288813 A JP2011288813 A JP 2011288813A JP 2013137957 A JP2013137957 A JP 2013137957A
Authority
JP
Japan
Prior art keywords
carbon
redox flow
negative electrode
positive electrode
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011288813A
Other languages
Japanese (ja)
Inventor
Naoto Miyake
直人 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei E Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei E Materials Corp filed Critical Asahi Kasei E Materials Corp
Priority to JP2011288813A priority Critical patent/JP2013137957A/en
Publication of JP2013137957A publication Critical patent/JP2013137957A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high performance redox flow secondary battery in which the activity of oxidation-reduction reaction is remarkably enhanced.SOLUTION: A redox flow secondary battery comprises an electrolytic bath comprising: a positive electrode cell room including a positive electrode made of a carbon electrode; a negative electrode cell room including a negative electrode made of a carbon electrode; and an electrolyte membrane operative as a barrier membrane to seclude and separate the positive electrode cell room from the negative electrode cell room, the positive electrode cell room containing positive electrode electrolyte that contains an active material, the negative electrode cell room containing negative electrode electrolyte that contains an active material. The redox flow secondary battery charges/discharges in accordance with the change in valence of the active material in the electrolyte. The carbon electrodes comprises carbon particles and a binding agent.

Description

本発明は、レドックスフロー二次電池に関する。   The present invention relates to a redox flow secondary battery.

レドックスフロー二次電池とは、電気の備蓄、放電で、該使用量の平準化のために使用される大型の据え置き型電池に属するものであり、該電池の構成は陽極と該陽極活物質を含む電解液(陽極セル)と、陰極と該陰極活物質を含む陰極電解液(陰極セル)とを、隔膜で隔離して、両活物質の酸化還元反応を利用して充放電し、該両活物質を含む電解液を、備蓄タンクから、該電解層に流通させて電流を取り出し利用されるものである、電解液に含まれる活物質は、鉄−クロム系、クロム−臭素系、亜鉛−臭素系、バナジウム系などがある。   The redox flow secondary battery belongs to a large stationary battery used for leveling the amount of electricity used for storage and discharge of electricity, and the structure of the battery includes an anode and the anode active material. The electrolyte solution (anode cell) containing, the cathode and the cathode electrolyte solution (cathode cell) containing the cathode active material are separated by a diaphragm, and charged and discharged using the oxidation-reduction reaction of both active materials. The active material contained in the electrolytic solution, which is used by flowing the electrolytic solution containing the active material from the storage tank to the electrolytic layer and taking out the current, is iron-chromium, chromium-bromine, zinc- There are bromine and vanadium.

例えばバナジウム系の場合、隔膜の両側にて、2枚(陰極、陽極用)の集電板電極で、液透過性で多孔質の電極を隔膜の両側に配置し、押圧でそれらを挟み、該隔膜で仕切られた一方を正極セル室、他方を負極セル室とし、スペーサーで両セル屋の厚みを確保して、該正極セル室にはバナジウム4価(V4+)及び同5価(V5+)からなる硫酸電解液からなる正極電解液を、負極セル室にはバナジウム3価(V3+)及び同2価(V2+)からなる負極電解液を流通させ充電、放電がされる。充電時には正極セル室では、バナジウムイオンが電子を放出しV4+がV5+に酸化される。又、負極セル室では外路を通じて戻って来た電子でV3+がV2+に還元される。この酸化還元反応は隔膜に配置された多孔質電極で行われる。 For example, in the case of a vanadium system, liquid collector and porous electrodes are arranged on both sides of a diaphragm with two current collector plates (for cathode and anode) on both sides of the diaphragm, and sandwiched by pressing, One of the cells separated by the diaphragm is a positive electrode cell chamber and the other is a negative electrode cell chamber, and the thickness of both cell stores is secured by a spacer. The positive electrode cell chamber has vanadium tetravalent (V 4+ ) and pentavalent (V 5+ ), a positive electrode electrolyte made of a sulfuric acid electrolyte, and a negative electrode cell made of trivalent vanadium (V 3+ ) and divalent (V 2+ ) in the negative electrode cell chamber was circulated and charged and discharged. The At the time of charging, in the positive electrode cell chamber, vanadium ions emit electrons and V 4+ is oxidized to V 5+ . In the negative electrode cell chamber, V 3+ is reduced to V 2+ by the electrons returning through the outer path. This oxidation-reduction reaction is carried out with a porous electrode disposed on the diaphragm.

多孔質電極は、電解液中のバナジウムイオンがセル内を通過する際に酸化還元反応を生じる場を提供するのみで自ら反応せず、電解液の通過性に優れた構造、形態を有しており、極力表面積が広く、電気抵抗が低いことが重要である。一般に多孔質電極としては、通常カーボンフェルトと呼ばれるカーボン繊維からなる織布、不織布等が用いられている。また、通常カーボン材料は撥水性を示すが、酸化還元反応活性化の観点からは、電解液(水溶液)との親和性に優れていることが重要であり、さらに副反応となる水の分解を生じさせない観点から、水素過電圧、酸素過電圧の大きい特性が要求される。   The porous electrode has a structure and a form that are excellent in the ability to pass through the electrolytic solution, providing only a place for generating a redox reaction when vanadium ions in the electrolytic solution pass through the cell. Therefore, it is important that the surface area is as large as possible and the electrical resistance is low. In general, as the porous electrode, a woven fabric, a non-woven fabric, or the like made of carbon fibers usually called carbon felt is used. In addition, carbon materials usually exhibit water repellency, but from the viewpoint of redox reaction activation, it is important to have good affinity with the electrolyte solution (aqueous solution), and water decomposition as a side reaction is also important. From the standpoint of not generating it, characteristics with high hydrogen overvoltage and oxygen overvoltage are required.

大規模電力貯蔵用蓄電池 日刊工業新聞社 第3章 p.63〜72Large-scale power storage battery Nikkan Kogyo Shimbun, Chapter 3 p. 63-72

しかしながら、カーボンフェルトを用いた場合、表面積を大きくするには限界があるのと同時に電解液(水溶液)との親和性を向上させるには限界があった。レドックスフロー二次電池のコストを下げるには、上記課題を解決し、電極の活性を上げて酸化還元反応の反応速度を速くする必要があった。また、カーボンフェルト自体が高価格であるという問題点もあった。
本発明は上記事情にかんがみてなされたものであり、酸化還元反応の活性を著しく向上させた、高性能なレドックスフロー二次電池を提供することを目的とする。
However, when carbon felt is used, there is a limit to increasing the surface area, and at the same time, there is a limit to improving the affinity with the electrolytic solution (aqueous solution). In order to reduce the cost of the redox flow secondary battery, it was necessary to solve the above problems and increase the activity of the electrode to increase the reaction rate of the oxidation-reduction reaction. Another problem is that the carbon felt itself is expensive.
The present invention has been made in view of the above circumstances, and an object thereof is to provide a high-performance redox flow secondary battery in which the activity of the oxidation-reduction reaction is remarkably improved.

本発明者らは、上記目的を達成するために鋭意検討した結果、炭素粒子と結着剤とを含む炭素電極、更には当該炭素電極を電解質膜に接合させることで、酸化還元反応の活性を著しく向上させ、高性能なレドックスフロー二次電池を得ることに成功し、本発明に至った。   As a result of intensive investigations to achieve the above object, the present inventors have found that a carbon electrode containing carbon particles and a binder, and further, by joining the carbon electrode to an electrolyte membrane, the activity of the oxidation-reduction reaction can be improved. Remarkably improved and succeeded in obtaining a high-performance redox flow secondary battery, leading to the present invention.

すなわち、本発明は以下の通りである。
[1]
炭素電極からなる正極を含む正極セル室と、
炭素電極からなる負極を含む負極セル室と、
前記正極セル室と、前記負極セル室とを隔離分離させる、隔膜としての電解質膜と、
を含む電解槽を有し、
前記正極セル室は活物質を含む正極電解液を、前記負極セル室は活物質を含む負極電解液を含み、
前記電解液中の活物質の価数変化に基づき充放電するレドックスフロー二次電池であって、
前記炭素電極が、炭素粒子と結着剤とを含むレドックスフロー二次電池。
[2]
前記炭素電極が、前記電解質膜に接合されている[1]記載のレドックスフロー二次電池。
That is, the present invention is as follows.
[1]
A positive electrode cell chamber including a positive electrode made of a carbon electrode;
A negative electrode cell chamber including a negative electrode made of a carbon electrode;
An electrolyte membrane as a diaphragm for separating and separating the positive electrode cell chamber and the negative electrode cell chamber;
Having an electrolytic cell containing
The positive electrode cell chamber contains a positive electrode electrolyte containing an active material, and the negative electrode cell chamber contains a negative electrode electrolyte containing an active material,
A redox flow secondary battery that charges and discharges based on a valence change of an active material in the electrolyte solution,
The redox flow secondary battery in which the carbon electrode includes carbon particles and a binder.
[2]
The redox flow secondary battery according to [1], wherein the carbon electrode is joined to the electrolyte membrane.

本発明によると、酸化還元反応の活性を著しく向上させ、高性能なレドックスフロー二次電池を提供することができる。   According to the present invention, the activity of the redox reaction can be remarkably improved, and a high-performance redox flow secondary battery can be provided.

以下、本発明を実施するための最良の形態(以下、「実施の形態」と略記する。)について詳細に説明する。尚、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。   The best mode for carrying out the present invention (hereinafter abbreviated as “embodiment”) will be described in detail below. In addition, this invention is not limited to the following embodiment, It can implement by changing variously within the range of the summary.

本発明のレドックスフロー二次電池は、
炭素電極からなる正極を含む正極セル室と、
炭素電極からなる負極を含む負極セル室と、
前記正極セル室と、前記負極セル室とを隔離分離させる、隔膜としての電解質膜と、を含む電解槽を有し、
前記正極セル室は活物質を含む正極電解液を、前記負極セル室は活物質を含む負極電解液を含み、
前記電解液中の活物質の価数変化に基づき充放電するレドックスフロー二次電池であって、
前記炭素電極が、炭素粒子と結着剤とを含む。
The redox flow secondary battery of the present invention is
A positive electrode cell chamber including a positive electrode made of a carbon electrode;
A negative electrode cell chamber including a negative electrode made of a carbon electrode;
An electrolytic cell including an electrolyte membrane as a diaphragm for separating and separating the positive electrode cell chamber and the negative electrode cell chamber;
The positive electrode cell chamber contains a positive electrode electrolyte containing an active material, and the negative electrode cell chamber contains a negative electrode electrolyte containing an active material,
A redox flow secondary battery that charges and discharges based on a valence change of an active material in the electrolyte solution,
The carbon electrode includes carbon particles and a binder.

レドックスフロー二次電池は通常、流通型電解槽の形で使用され、一般にセルを複数積層したセルスタック構造の形態を有している。セルを構成する主要部材としては、電極、隔膜、双極板、及びフレームが挙げられる。
電極は、炭素粒子と結着剤とを含む。
A redox flow secondary battery is usually used in the form of a flow-type electrolytic cell, and generally has a cell stack structure in which a plurality of cells are stacked. The main members constituting the cell include an electrode, a diaphragm, a bipolar plate, and a frame.
The electrode includes carbon particles and a binder.

炭素粒子としては、特に限定はされないが、ピッチコークスやニードルコークスなどのコークス類、有機材料を700−1500℃程度の温度で焼成し炭素化して得られる難黒鉛化炭素類、メソカーボンマイクロビーズを代表とする球状黒鉛、繊維状黒鉛、カーボンファイバー、黒鉛類、カーボンブラック、アセチレンブラック、ファーネスブラック、チャンネルブラック、サーマルブラック、アセチレンブラック、黒鉛化カーボンブラックなどを用いることができる。
なお、炭素粒子の形状は特に限定されず、球状や破砕状、鱗片状、繊維状でも良い。また、複数種の炭素質材料を混合して用いてもよい。
The carbon particles are not particularly limited, but coke such as pitch coke and needle coke, non-graphitizable carbon obtained by firing and carbonizing an organic material at a temperature of about 700 to 1500 ° C., and mesocarbon microbeads. Representative spherical graphite, fibrous graphite, carbon fiber, graphite, carbon black, acetylene black, furnace black, channel black, thermal black, acetylene black, graphitized carbon black, and the like can be used.
The shape of the carbon particles is not particularly limited, and may be spherical, crushed, scaly, or fibrous. A plurality of types of carbonaceous materials may be mixed and used.

前記結着剤としては、例えば、ポリテトラフルオロエチレン、ポリトリフルオロエチレン、ポリエチレン、ニトリルゴム、ポリブタジエンゴム、ブチルゴム、ポリスチレン、スチレンブタジエンゴム、スチレンブタジエンラテックス、多硫化ゴム、ニトロセルロース、アクリロニトリルブタジエンゴム、ポリフッ化ビニル、フッ素ゴム、ポリフッ化ビニリデン、ヘキサフルオロプロピレン,テトラフルオロエチレン,トリフルオロモノクロルエチレン、及び無水マレイン酸よりなる群から選択される1種或いは2種以上と、フッ化ビニリデンとの共重合体が挙げられる。なお、前記共重合体は1種を単独で、又は2種以上を併用しても良い。   Examples of the binder include polytetrafluoroethylene, polytrifluoroethylene, polyethylene, nitrile rubber, polybutadiene rubber, butyl rubber, polystyrene, styrene butadiene rubber, styrene butadiene latex, polysulfide rubber, nitrocellulose, acrylonitrile butadiene rubber, Copolymerization of one or more selected from the group consisting of polyvinyl fluoride, fluororubber, polyvinylidene fluoride, hexafluoropropylene, tetrafluoroethylene, trifluoromonochloroethylene, and maleic anhydride and vinylidene fluoride Coalescence is mentioned. In addition, the said copolymer may be used individually by 1 type, or may use 2 or more types together.

炭素粒子と結着剤との配合比率としては、炭素粒子100質量部に対し、結着剤量が望ましく0.1〜50質量部であり、より望ましくは0.2〜20質量部であり、更に望ましくは0.5〜10質量部であり、最も望ましくは1〜5質量部である。
また、炭素粒子と結着剤との総量が炭素電極全体の中で占める割合としては、好ましくは50質量%以上、より好ましくは70質量%以上、更に好ましくは90質量%以上であり、100質量%であってもよい。
As a blending ratio of the carbon particles and the binder, the amount of the binder is desirably 0.1 to 50 parts by mass, more desirably 0.2 to 20 parts by mass with respect to 100 parts by mass of the carbon particles. More desirably, it is 0.5 to 10 parts by mass, and most desirably 1 to 5 parts by mass.
In addition, the proportion of the total amount of carbon particles and binder in the entire carbon electrode is preferably 50% by mass or more, more preferably 70% by mass or more, still more preferably 90% by mass or more, and 100% by mass. %.

前記炭素電極を形成する方法としては、例えば、炭素粒子と結着剤を混合して圧縮成型する方法、結着剤を含む溶液に炭素粒子を分散した後、塗布、乾燥、必要に応じて加圧する方法、結着剤の水性あるいは油性分散体に炭素粒子を分散した後、塗布、乾燥、必要に応じて加圧する方法などが好ましく適用される。   Examples of the method for forming the carbon electrode include a method in which carbon particles and a binder are mixed and compression-molded, and the carbon particles are dispersed in a solution containing the binder and then applied, dried, and added as necessary. A method of pressing, a method of coating, drying, pressurizing as necessary after dispersing carbon particles in an aqueous or oily binder dispersion are preferably applied.

ここで、湿式混合する場合、粘度安定性向上のために増粘安定剤が好ましく配合される。
増粘安定剤としては特に限定されないが、例えば、アルミナやボロンナイトライドといった無機粒子、アルギン酸ナトリウム、アルギン酸プロピレングリコールエステル、カルボキシメチルセルロースナトリウム、カルボキシメチルセルロースカルシウム、デンプングリコール酸ナトリウム、デンプンリン酸エステルナトリウム、ポリアクリル酸ナトリウム、メチルセルロース等の合成添加物、種子を原料とする多糖類(グアーガム、カジブビーンガム、タラガム、タマリンドシードガム等)、樹脂、樹液を原料とする多糖類(アラビアガム、トラガントガム、カラヤガム等)、海藻を原料とする多糖類(アルギン酸、カラギナン等)、発酵生産物多糖類(キサンタンガム、ジエランガム、カードラン等)、植物抽出物(ペリチン)、甲殻類抽出物(キチン、キトサン、キトサミン等)といった天然品の多糖類及び/又はその誘導体が挙げられる。また、ポリエーテル系粘弾性調整剤、アクリル系共重合体アルカリ増粘型エマルジョン、ポリアクリル酸系高分子型粘弾性調整剤、D−ソルビノールとベンズアルデヒドとの縮合反応誘導体等も挙げられる。
Here, when wet-mixing, a thickening stabilizer is preferably blended in order to improve viscosity stability.
The thickening stabilizer is not particularly limited. For example, inorganic particles such as alumina and boron nitride, sodium alginate, propylene glycol alginate, sodium carboxymethylcellulose, calcium carboxymethylcellulose, sodium starch glycolate, sodium starch phosphate, poly Synthetic additives such as sodium acrylate and methylcellulose, polysaccharides based on seeds (guar gum, kazib bean gum, tara gum, tamarind seed gum, etc.), resins, polysaccharides based on sap (arabic gum, tragacanth gum, karaya gum, etc.), Polysaccharides made from seaweed (alginic acid, carrageenan, etc.), fermentation product polysaccharides (xanthan gum, dielan gum, curdlan, etc.), plant extracts (peritin), crustaceans Distillate (chitin, chitosan, chitosamine, etc.), and the polysaccharide and / or a derivative of a natural product like. Moreover, a polyether-type viscoelasticity adjusting agent, an acrylic copolymer alkali thickening emulsion, a polyacrylic acid-based polymer-type viscoelasticity adjusting agent, a condensation reaction derivative of D-sorbinol and benzaldehyde, and the like are also included.

前記炭素電極は、前記隔膜に接合されていることが望ましい。炭素電極を隔膜に接合する方法としては、上述のように製造した炭素粒子と結着剤からなる炭素電極を隔膜に転写する方法、炭素粒子と結着剤を含有した溶液もしくは分散体を隔膜に直接塗布する方法等が挙げられる。   The carbon electrode is preferably joined to the diaphragm. As a method of joining the carbon electrode to the diaphragm, a method of transferring the carbon electrode comprising the carbon particles and the binder produced as described above to the diaphragm, a solution or dispersion containing the carbon particles and the binder is used as the diaphragm. The method of apply | coating directly etc. are mentioned.

前記隔膜としては、特に限定されないが、特開2005−158383号公報に記載されたPTFE多孔膜、ポリオレフィン系多孔膜、ポリオレフィン系不織布といった多孔膜系のもの、特公平6−105615号公報記載の多孔膜と含水性ポリマーとを組み合わせた複合膜、特公昭62−226580号公報に記載のセルロース又はエチレンービニルアルコール共重合体の膜、特開平6−188005号公報に記載のポリスルホン系膜陰イオン交換膜、特開平5−242905号公報に記載のフッ素系又はポリスルホン系イオン交換膜、特開平6−260183号公報に記載のポリプロピレンなどにより形成された多孔膜の孔に親水性樹脂を備えた膜、ポリプロピレン製多孔膜の両表面に薄く数μmのフッ素系イオン交換樹脂(デュポン製商標ナフィオン;後述のPFSAにおける「b=1,d=2」タイプ)を被覆した膜、特開平10−208767号公報に記載のピリジウム基を有する陰イオン交換型とスチレン系及びジビニルベンゼンとを共重合した架橋型重合体からなる膜、特開平11−260390号公報に記載のカチオン系イオン交換膜(フッ素系高分子又は炭化水素系高分子)とアニオン系イオン交換膜(ポリスルホン系高分子等)とを交互に積層した構造を有する膜、特開2000−235849号公報に記載の多孔質基材に2個以上の親水基有するビニル複素環化合物(アミン基を有する、ビニルピロリドン等)の繰り返し単位を有する架橋重合体を複合してなるアニオン交換膜、等が挙げられる。   Although it does not specifically limit as said diaphragm, The thing of porous membranes, such as PTFE porous film described in Unexamined-Japanese-Patent No. 2005-158383, a polyolefin-type porous film, and a polyolefin-type nonwoven fabric, The porous_hole | pipe of Japanese Patent Publication No. 6-105615 Composite membrane combining membrane and water-containing polymer, cellulose or ethylene-vinyl alcohol copolymer membrane described in JP-B-62-226580, polysulfone-based membrane anion exchange described in JP-A-6-188005 A membrane having a hydrophilic resin in the pores of a porous membrane formed of a fluorine-based or polysulfone-based ion exchange membrane described in JP-A-5-242905, a polypropylene described in JP-A-6-260183, Fluorine ion exchange resin (made by DuPont) that is thin and several μm on both surfaces of a polypropylene porous membrane A membrane coated with a standard Nafion (“b = 1, d = 2” type in PFSA described later), an anion exchange type having a pyridium group described in JP-A No. 10-208767, and styrene and divinylbenzene. A membrane comprising a polymerized crosslinked polymer, a cation ion exchange membrane (fluorine polymer or hydrocarbon polymer) and an anion ion exchange membrane (polysulfone polymer, etc.) described in JP-A No. 11-260390 A repeating unit of a vinyl heterocyclic compound (having an amine group, vinylpyrrolidone, etc.) having two or more hydrophilic groups on a porous substrate described in JP-A-2000-235849 An anion exchange membrane formed by combining a cross-linked polymer having

これらの中でも、下記式(1)で表されるフッ素系高分子電解質ポリマー(PFSA)をからなる隔膜が好ましい。
−[CF2CX12a−[CF2−CF((−O−CF2−CF(CF23))b−Oc−(CFR1d−(CFR2e−(CF)f−X4)]g− ・・・(1)
式(1)中、X1、X2及びX3はそれぞれ独立してハロゲン原子及び炭素数1〜3のパーフルオロアルキル基からなる群から選択され、ハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子である。X4はCOOZ、SO3Z、PO32又はPO3HZである。Zは水素原子、リチウム原子、ナトリウム原子もしくはカリウム原子等のアルカリ金属原子、カルシウム原子もしくはマグネシウム原子等のアルカリ土類金属原子又はアミン類(NH4、NH31、NH212、NHR123、NR1234)である。R1、R2、R3およびR4はそれぞれ独立してアルキル基およびアレーン基からなる群から選択される。X4がPO32である場合、Zは同じでも異なっていても良い。R1およびR2はそれぞれ独立してハロゲン原子、炭素数1〜10のパーフルオロアルキル基およびフルオロクロロアルキル基からなる群から選択され、ハロゲン原子としては、フッ素原子、塩素原子、臭素原子およびヨウ素原子である。aおよびgは0≦a<1、0<g≦1、a+g=1をみたす数である。
また、bは0〜8の整数である。cは0または1である。d、eおよびfはそれぞれ独立して0〜6の整数である(ただし、d、eおよびfは同時に0ではない)。
Among these, the diaphragm which consists of a fluorine-type polymer electrolyte polymer (PFSA) represented by following formula (1) is preferable.
- [CF 2 CX 1 X 2 ] a - [CF 2 -CF ((- O-CF 2 -CF (CF 2 X 3)) b -O c - (CFR 1) d - (CFR 2) e - ( CF) f -X 4 )] g- (1)
In the formula (1), X 1 , X 2 and X 3 are each independently selected from the group consisting of a halogen atom and a C 1 to C 3 perfluoroalkyl group, and the halogen atom includes a fluorine atom, a chlorine atom, Bromine atom and iodine atom. X 4 is COOZ, SO 3 Z, PO 3 Z 2 or PO 3 HZ. Z is a hydrogen atom, lithium atom, alkali metal atom such as sodium atom or potassium atom, alkaline earth metal atom such as calcium atom or magnesium atom, or amines (NH 4 , NH 3 R 1 , NH 2 R 1 R 2 , NHR 1 R 2 R 3 , NR 1 R 2 R 3 R 4 ). R 1 , R 2 , R 3 and R 4 are each independently selected from the group consisting of alkyl groups and arene groups. When X 4 is PO 3 Z 2 , Z may be the same or different. R 1 and R 2 are each independently selected from the group consisting of a halogen atom, a C 1-10 perfluoroalkyl group and a fluorochloroalkyl group, and the halogen atom includes a fluorine atom, a chlorine atom, a bromine atom and an iodine atom. Is an atom. a and g are numbers satisfying 0 ≦ a <1, 0 <g ≦ 1, and a + g = 1.
Moreover, b is an integer of 0-8. c is 0 or 1; d, e and f are each independently an integer of 0 to 6 (provided that d, e and f are not 0 at the same time).

更には、下記式(2)で表されるPFSAがより望ましい。
−[CF2CF2a−[CF2−CF((−O−(CF2m−X4)]g− ・・・(2)
ここで、式(2)中、mは1〜6の整数を表し、X4はSO3Hを表す。
Furthermore, PFSA represented by the following formula (2) is more desirable.
- [CF 2 CF 2] a - [CF 2 -CF ((- O- (CF 2) m -X 4)] g - ··· (2)
Here, in formula (2), m represents an integer of 1 to 6, and X 4 represents SO 3 H.

前記PFSA樹脂の当量質量EW(プロトン交換基1当量あたりのPFSA樹脂の乾燥質量グラム数)は、300〜1300に調整されているものが好ましい。本実施形態におけるPFSA樹脂の当量質量EWは、より好ましくは350〜1000、更に好ましくは400〜900、最も好ましくは450〜750である。   The equivalent mass EW of the PFSA resin (the dry mass in grams of PFSA resin per equivalent of proton exchange groups) is preferably adjusted to 300 to 1300. The equivalent mass EW of the PFSA resin in the present embodiment is more preferably 350 to 1000, still more preferably 400 to 900, and most preferably 450 to 750.

レドックスフロー二次電池に用いられる双極板としては、隣り合う正極と負極を電気的に接続すること、及び隣り合う正負極の電解液を混合させないことが求められ、電気抵抗が低く、電解液に対する耐食性、印加される電圧に対する耐酸化性を有する材料であればよく、代表例としては導電性プラスチックなどと称されるカーボンと樹脂の混合品が挙げられる。
レドックスフロー二次電池に用いられるフレームとしては、上記材料を収納し、電解液を各セルへと送排液させ、かつ外部及び正負極間の電解液シール機能を担う構造体として、セルを形成する枠状の部材であり、通常、耐酸性、製造時の加工性等を考慮し、塩化ビニルやポリエチレンなどの汎用プラスチック材料が代表例として挙げられる。
Bipolar plates used in redox flow secondary batteries are required to electrically connect adjacent positive and negative electrodes, and not to mix adjacent positive and negative electrode electrolytes. Any material that has corrosion resistance and oxidation resistance to an applied voltage may be used. A typical example is a mixture of carbon and resin called conductive plastic.
As a frame used for redox flow secondary batteries, the above materials are housed, the electrolyte is sent to and discharged from each cell, and the cell is formed as a structure that carries the electrolyte sealing function between the external and positive and negative electrodes Typical examples include general-purpose plastic materials such as vinyl chloride and polyethylene in consideration of acid resistance, processability during production, and the like.

このようにして得られる炭素粒子と結着剤から形成されている炭素電極、及び該炭素電極が接合された電解質膜をレドックスフロー二次電池に用いると、酸化還元反応の活性を著しく向上させ、高性能なレドックスフロー二次電池を得ることができ、電池をコストダウンすることができる。   When the carbon electrode formed from the carbon particles and the binder thus obtained and the electrolyte membrane to which the carbon electrode is joined are used in a redox flow secondary battery, the activity of the redox reaction is remarkably improved. A high-performance redox flow secondary battery can be obtained, and the cost of the battery can be reduced.

次に、実施例及び比較例を挙げて本実施の形態をより具体的に説明するが、本実施の形態はその要旨を超えない限り、以下の実施例に限定されるものではない。なお、実施例中の物性は以下の方法により測定した。
(1)電池効率(%)
電池効率(エネルギー効率)(%)は、放電電力量を充電電力量で除した比率(%)で表され、両電力量は、電池セルの内部抵抗と隔膜のイオン選択透過性及びその他電流損失に依存する。また、電流効率(%)は、放電電気量を充電電気量で除した比率(%)で表され、両電気量は、隔膜のイオン選択透過性及びその他電流損失に依存する。電池効率は、電流効率と電圧効率の積で表される。内部抵抗すなわちセル電気抵抗率の減少は電圧効率を向上させ、イオン選択透過性の向上及びその他電流損失の低減は、電流効率を向上させるので、レドックスフロー二次電池において、重要な指標となる。
Next, the present embodiment will be described more specifically with reference to examples and comparative examples. However, the present embodiment is not limited to the following examples unless it exceeds the gist. In addition, the physical property in an Example was measured with the following method.
(1) Battery efficiency (%)
Battery efficiency (energy efficiency) (%) is expressed as a ratio (%) obtained by dividing discharge energy by charge energy. Both energy values are the internal resistance of the battery cell, the ion selective permeability of the diaphragm, and other current losses. Depends on. The current efficiency (%) is expressed as a ratio (%) obtained by dividing the amount of discharged electricity by the amount of charged electricity, and both the amounts of electricity depend on the ion selective permeability of the diaphragm and other current losses. Battery efficiency is expressed as the product of current efficiency and voltage efficiency. A decrease in internal resistance, ie, cell electrical resistivity, improves voltage efficiency, and an improvement in ion selective permeability and other reductions in current loss improve current efficiency, and thus are important indicators in redox flow secondary batteries.

[実施例1]
炭素粒子としてライオン(株)社製ケッチェンブラックEC600JD、結着剤として旭化成ケミカルズ(株)社製スチレン/ブタジエンラテックスL-7063、隔膜としてデュポン(株)社製電解質膜NafionTMNRE-212CSを用いてレドックスフロー電池を作製した例について説明する。
ケッチェンブラックEC600JDを100質量部に対し、スチレン/ブタジエンラテックスL-7063(固形分48質量%)4質量部と、増粘剤としてカルボキシメチルセルロースナトリウム(第一工業製薬社製セロゲンTMBSH-12)を含む水溶液(固形分1質量%)85質量部とを加えて混合し、塗工液とした。この塗工液を隔膜の両面に塗工、乾燥させて、厚み1mm程度の電極を形成させた。
[Example 1]
Ketjen Black EC600JD manufactured by Lion Co., Ltd. as the carbon particles, styrene / butadiene latex L-7063 manufactured by Asahi Kasei Chemicals Co., Ltd., and electrolyte membrane Nafion NRE-212CS manufactured by DuPont Co., Ltd. as the diaphragm are used. An example of producing a redox flow battery will be described.
100 parts by mass of Ketjen Black EC600JD, 4 parts by mass of styrene / butadiene latex L-7063 (solid content 48% by mass), and sodium carboxymethylcellulose as a thickener (Serogen BSH-12 manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) An aqueous solution (solid content: 1% by mass) containing 85 parts by mass was added and mixed to obtain a coating solution. This coating solution was applied to both sides of the diaphragm and dried to form an electrode having a thickness of about 1 mm.

このようにして得た、隔膜の両面に電極が形成された接合体で仕切られた一方を正極セル室(厚み5mm)、他方を負極セル室(厚み5mm)とし、スペーサーで両セル屋の厚みを確保して、該正極セル室にはバナジウム4価(V4+)及び同5価(V5+)からなる硫酸電解液(バナジウム濃度2M、硫酸根濃度4M)を、負極セル室にはバナジウム3価(V3+)及び同2価(V2+)からなる硫酸電解液(バナジウム濃度2M、硫酸根濃度4M)を流通させ充電、放電を行った。 One of the cells separated by the joined body having electrodes formed on both surfaces of the diaphragm was defined as a positive electrode cell chamber (thickness 5 mm), the other as a negative electrode cell chamber (thickness 5 mm), and the thicknesses of both cell stores with a spacer. In the positive electrode cell chamber, a sulfuric acid electrolyte solution (vanadium concentration 2M, sulfate radical concentration 4M) composed of tetravalent vanadium (V 4+ ) and pentavalent (V 5+ ) is used in the negative electrode cell chamber. A sulfuric acid electrolyte solution (vanadium concentration 2M, sulfate radical concentration 4M) composed of vanadium trivalent (V 3+ ) and divalent (V 2+ ) was circulated and charged and discharged.

充電時に正極セル室では、バナジウムイオンが電子を放出しV4+がV5+に酸化され、又、負極セル室では、外路を通じて戻って来た電子でV3+がV2+に還元される。隔膜は正極セル室の過剰なプロトンを選択的に負極室に移動させ電気的中性が保たれる。放電時には、この逆の反応が進む。
本実施例では、電流密度80mA/cm2で充放電を行ったところ、電池効率81%と高い値が得られた。
At the time of charging, in the positive electrode cell chamber, vanadium ions release electrons and V 4+ is oxidized to V 5+ , and in the negative electrode cell chamber, V 3+ is reduced to V 2+ by electrons returning through the outer path. Is done. The diaphragm selectively moves excess protons in the positive electrode cell chamber to the negative electrode chamber, thereby maintaining electrical neutrality. The reverse reaction proceeds during discharge.
In this example, when charging / discharging was performed at a current density of 80 mA / cm 2 , a high battery efficiency of 81% was obtained.

[実施例2]
炭素粒子として電気化学工業(株)社製デンカブラックTM粉状品、結着剤として(株)クレハ社製クレハKFポリマー(ポリフッ化ビニリデン樹脂、以下PVdF)、隔膜としてデュポン(株)社製電解質膜NafionTMNRE-212CSを用いてレドックスフロー電池を作製した例について以下に示す。
[Example 2]
Denka Black TM powder manufactured by Denki Kagaku Kogyo Co., Ltd. as carbon particles, Kureha KF polymer (polyvinylidene fluoride resin, hereinafter referred to as PVdF) manufactured by Kureha Co., Ltd., and electrolyte manufactured by DuPont Co., Ltd. as a diaphragm. An example of producing a redox flow battery using the membrane Nafion NRE-212CS will be described below.

炭素粒子100質量部に対し、PVdFをN−メチル−2−ピロリドンに溶解した液(13質量%、以下PVdF溶液)を、PVdFが5質量部になるように添加し、N−メチル−2−ピロリドンを、固形分率((炭素材料質量+PVdFの質量)/総質量×100)が52wt%になるように添加し、混合、撹拌してスラリーを得て、このスラリーを隔膜の両面に塗工、乾燥させて厚み1mm程度の電極を形成させた。レドックスフロー電池の作製と評価については、実施例1と同様な方法で行ったところ、電池効率79%と高い値が得られた。   A solution obtained by dissolving PVdF in N-methyl-2-pyrrolidone (13% by mass, hereinafter referred to as a PVdF solution) is added to 100 parts by mass of the carbon particles so that PVdF becomes 5 parts by mass, and N-methyl-2- Pyrrolidone is added so that the solid content ratio ((mass of carbon material + mass of PVdF) / total mass × 100) is 52 wt%, mixed and stirred to obtain a slurry, and this slurry is applied to both sides of the diaphragm. Then, an electrode having a thickness of about 1 mm was formed by drying. Production and evaluation of the redox flow battery were performed in the same manner as in Example 1. As a result, a high battery efficiency of 79% was obtained.

[比較例1]
電極として炭素繊維からなる厚み5mmで嵩密度が約0.1g/cm3の多孔質状のフェルト、隔膜としてデュポン(株)社製電解質膜NafionTMNRE-212CSを用いて、隔膜の両側にフェルトを挟み込んで作製した事以外は、実施例1と同じようにレドックスフロー電池の作製と評価を行ったところ、電池効率68%と低い値しか得られなかった。
[Comparative Example 1]
A felt made of carbon fiber with a thickness of 5 mm and a bulk density of about 0.1 g / cm 3 as an electrode and an electrolyte membrane Nafion NRE-212CS manufactured by DuPont as a diaphragm, felt on both sides of the diaphragm. The redox flow battery was manufactured and evaluated in the same manner as in Example 1 except that the battery efficiency was not included. As a result, only a low battery efficiency of 68% was obtained.

上述の通り、本実施形態で得られたレドックスフロー二次電池は、酸化還元反応の活性を著しく向上させた、高性能なレドックスフロー二次電池である。   As described above, the redox flow secondary battery obtained in this embodiment is a high-performance redox flow secondary battery in which the activity of the oxidation-reduction reaction is remarkably improved.

Claims (2)

炭素電極からなる正極を含む正極セル室と、
炭素電極からなる負極を含む負極セル室と、
前記正極セル室と、前記負極セル室とを隔離分離させる、隔膜としての電解質膜と、
を含む電解槽を有し、
前記正極セル室は活物質を含む正極電解液を、前記負極セル室は活物質を含む負極電解液を含み、
前記電解液中の活物質の価数変化に基づき充放電するレドックスフロー二次電池であって、
前記炭素電極が、炭素粒子と結着剤とを含むレドックスフロー二次電池。
A positive electrode cell chamber including a positive electrode made of a carbon electrode;
A negative electrode cell chamber including a negative electrode made of a carbon electrode;
An electrolyte membrane as a diaphragm for separating and separating the positive electrode cell chamber and the negative electrode cell chamber;
Having an electrolytic cell containing
The positive electrode cell chamber contains a positive electrode electrolyte containing an active material, and the negative electrode cell chamber contains a negative electrode electrolyte containing an active material,
A redox flow secondary battery that charges and discharges based on a valence change of an active material in the electrolyte solution,
The redox flow secondary battery in which the carbon electrode includes carbon particles and a binder.
前記炭素電極が、前記電解質膜に接合されている請求項1記載のレドックスフロー二次電池。   The redox flow secondary battery according to claim 1, wherein the carbon electrode is bonded to the electrolyte membrane.
JP2011288813A 2011-12-28 2011-12-28 Redox flow secondary battery Pending JP2013137957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011288813A JP2013137957A (en) 2011-12-28 2011-12-28 Redox flow secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011288813A JP2013137957A (en) 2011-12-28 2011-12-28 Redox flow secondary battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015113431A Division JP2015213074A (en) 2015-06-03 2015-06-03 Redox flow secondary battery

Publications (1)

Publication Number Publication Date
JP2013137957A true JP2013137957A (en) 2013-07-11

Family

ID=48913504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011288813A Pending JP2013137957A (en) 2011-12-28 2011-12-28 Redox flow secondary battery

Country Status (1)

Country Link
JP (1) JP2013137957A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013137958A (en) * 2011-12-28 2013-07-11 Asahi Kasei E-Materials Corp Redox flow secondary battery
CN108701850A (en) * 2016-02-26 2018-10-23 日清纺控股株式会社 Redox flow batteries electrode C catalyst
US10903505B2 (en) 2016-02-26 2021-01-26 Nisshinbo Holdings Inc. Carbon catalyst for redox flow battery electrodes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6025163A (en) * 1983-07-20 1985-02-07 Sumitomo Electric Ind Ltd Electrode for redox flow battery
JPH0353459A (en) * 1989-07-20 1991-03-07 Kuraray Chem Corp Activated carbon electrode
JPH05242905A (en) * 1991-06-06 1993-09-21 Agency Of Ind Science & Technol Redox cell
JP2008041420A (en) * 2006-08-07 2008-02-21 Matsushita Electric Ind Co Ltd Secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6025163A (en) * 1983-07-20 1985-02-07 Sumitomo Electric Ind Ltd Electrode for redox flow battery
JPH0353459A (en) * 1989-07-20 1991-03-07 Kuraray Chem Corp Activated carbon electrode
JPH05242905A (en) * 1991-06-06 1993-09-21 Agency Of Ind Science & Technol Redox cell
JP2008041420A (en) * 2006-08-07 2008-02-21 Matsushita Electric Ind Co Ltd Secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013137958A (en) * 2011-12-28 2013-07-11 Asahi Kasei E-Materials Corp Redox flow secondary battery
CN108701850A (en) * 2016-02-26 2018-10-23 日清纺控股株式会社 Redox flow batteries electrode C catalyst
EP3422453A4 (en) * 2016-02-26 2019-10-02 Nisshinbo Holdings Inc. Carbon catalyst for redox flow battery electrodes
US10903504B2 (en) 2016-02-26 2021-01-26 Nisshinbo Holdings Inc. Carbon catalyst for redox flow battery electrodes
US10903505B2 (en) 2016-02-26 2021-01-26 Nisshinbo Holdings Inc. Carbon catalyst for redox flow battery electrodes

Similar Documents

Publication Publication Date Title
CN105489814B (en) A kind of preparation method of lithium-sulfur cell modified diaphragm, modified diaphragm and the lithium-sulfur cell with the multilayer modified diaphragm
CN108963317B (en) Mixed type all-solid-state battery
CN108183257A (en) Organogel electrolyte, application, sodium base double ion organic solid-state battery and preparation method thereof
CN109346767A (en) A kind of solid polymer electrolyte and its application in lithium metal battery
WO2012162390A1 (en) Flow battery and mn/v electrolyte system
CN108780917B (en) Rechargeable sodium cell for high energy density batteries
JP6279277B2 (en) Zinc negative electrode composition and zinc negative electrode
CN1930705A (en) Method for developing an electrochemical device
CN113937341A (en) Metal zinc secondary battery
JP6338896B2 (en) Electrode layer with resin, electrode composite with resin, and redox flow secondary battery
JP2013137957A (en) Redox flow secondary battery
WO2021203932A1 (en) Composite electrode for flow cell, flow cell, and pile
JP2015213074A (en) Redox flow secondary battery
Zheng et al. Cross-linking copolymers of acrylates’ gel electrolytes with high conductivity for lithium-ion batteries
US20150072261A1 (en) High power high efficiency flow type battery
JP5773863B2 (en) Redox flow secondary battery
CN111326778B (en) Neutral lithium-bromine flow battery
WO2014156595A1 (en) Vanadium solid-salt cell and method for manufacturing same
WO2021203935A1 (en) Composite electrode for flow cell, flow cell, and pile
CN108448110A (en) Positive electrode active materials, positive electrode, lithium ion battery and its preparation method and application
CN115394366A (en) Design method and application of vanadium battery electrolyte with high capacity retention rate
JP2016046116A (en) Zinc negative electrode
CN112029452B (en) Preparation method and application of adhesive capable of improving battery rate performance
Jiang et al. Novel strategy for cathode in iron-lead single-flow battery: Electrochemically modified porous graphite plate electrode
CN114430019A (en) Electrode plate and preparation method and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140317

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141015

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150303