JP2008041420A - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
JP2008041420A
JP2008041420A JP2006214084A JP2006214084A JP2008041420A JP 2008041420 A JP2008041420 A JP 2008041420A JP 2006214084 A JP2006214084 A JP 2006214084A JP 2006214084 A JP2006214084 A JP 2006214084A JP 2008041420 A JP2008041420 A JP 2008041420A
Authority
JP
Japan
Prior art keywords
electrode
secondary battery
negative electrode
positive electrode
phosphoric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006214084A
Other languages
Japanese (ja)
Inventor
Yasuyuki Nukina
康之 貫名
Shinichi Nakajima
信市 中島
Taketoshi Sato
武年 佐藤
Tomotaka Nobue
等隆 信江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006214084A priority Critical patent/JP2008041420A/en
Publication of JP2008041420A publication Critical patent/JP2008041420A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a secondary battery with high economic efficiency. <P>SOLUTION: The secondary battery is provided with a battery part 12 including a positive electrode 2, a negative electrode 1, and a diaphragm 3 provided between the positive electrode 2 and negative electrode 1, and the same phosphoric acid solutions are filled between the positive electrode 2 and diaphragm 3 and between the negative electrode 1 and diaphragm 3 of the battery part 12, respectively. Thereby, the phosphoric acid solution as an electrolyte solution can be varied in valency greatly without solubility limitation, has large energy density, is inexpensive, and provides high economic efficiency. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電力エネルギーを貯留する二次電池に関するものである。   The present invention relates to a secondary battery that stores electric power energy.

二次電池の一つにレドックスフロー電池がある。レドックスフロー電池とは、鉄の2価と3価の陽イオンのように複数のイオン価をもち、異なる酸化還元状態をとる、所謂レドックスイオンの溶液を電解質溶液として、貯留槽から流通型電解槽に送り込んで使用するものを言う。レドックスイオンとしては鉄、クロム、バナジウム、チタンなどが検討され、そのうちバナジウムでは大型の装置が実用化された。通常、多くの二次電池の電極活物質が固体で電池内に封入されるのに対し、レドックスフロー電池の電極活物質は液体である電解質溶液である。   One of the secondary batteries is a redox flow battery. A redox flow battery is a so-called redox ion solution having a plurality of ionic valences, such as iron divalent and trivalent cations, and taking different oxidation-reduction states, as an electrolytic solution from a storage tank to a flow-through electrolytic tank. Say what you use. As redox ions, iron, chromium, vanadium, titanium, and the like have been studied. Among them, a large apparatus has been put to practical use in vanadium. Usually, the electrode active material of many secondary batteries is solid and enclosed in the battery, whereas the electrode active material of a redox flow battery is a liquid electrolyte solution.

従来から知られているオールバナジウムレドックスフロー電池(例えば、特許文献1参照)を図3に例示した。   A conventionally known albanadium redox flow battery (see, for example, Patent Document 1) is illustrated in FIG.

これは、図のように、正極30と負極31は、等しい電荷の授受を行うものである。従って、充電時、正極30側の電解質溶液ではバナジウムは4価から5価となり、これと同時に負極31側の電解質溶液ではバナジウムは3価から2価となる。また、放電時、正極30側の電解質溶液ではバナジウムは5価から4価となり、これと同時に負極31側の電解質溶液ではバナジウムは2価から3価となる。さらに、正極30側と負極31側の電解質溶液はイオン交換膜32で仕切られ、両側の電解質溶液が混合して、価数が中和されて電力が失われることを防止している。また、貯留槽33、34、ポンプ36、37を設けており、貯留槽33、34を大きく設定して巨大な電力を蓄えることができ、単純な構成ゆえにサイクル寿命が長くまた保守管理が容易であるなどの優れた特長がある。
特開平6−188005号公報
As shown in the figure, the positive electrode 30 and the negative electrode 31 transfer and receive equal charges. Therefore, at the time of charging, vanadium is changed from tetravalent to pentavalent in the electrolyte solution on the positive electrode 30 side, and at the same time, vanadium is changed from trivalent to divalent in the electrolyte solution on the negative electrode 31 side. Further, at the time of discharge, vanadium becomes pentavalent to tetravalent in the electrolyte solution on the positive electrode 30 side, and at the same time, vanadium becomes divalent to trivalent in the electrolyte solution on the negative electrode 31 side. Further, the electrolyte solution on the positive electrode 30 side and the negative electrode 31 side is partitioned by an ion exchange membrane 32, and the electrolyte solutions on both sides are mixed to prevent the valence from being neutralized and the loss of power. In addition, the storage tanks 33 and 34 and the pumps 36 and 37 are provided, and the storage tanks 33 and 34 can be set large to store a huge amount of electric power. Because of the simple configuration, the cycle life is long and maintenance management is easy. There are excellent features such as.
JP-A-6-188005

しかしながら、前記従来の構成では、バナジウムなどの電極活物質の溶解度制限があるためにエネルギー密度が低く大きな貯留槽33、34を要し、また電極反応が遅いために電池部35も大きくなり、さらに電解質のバナジウムは高価であり、決して十分な経済性を持つものではなかった。   However, in the conventional configuration, the solubility of the electrode active material such as vanadium is limited, so that the energy density is low and the large storage tanks 33 and 34 are required. Further, the electrode reaction is slow, and the battery unit 35 is also large. The electrolyte vanadium was expensive and never economically sufficient.

本発明は、前記従来の課題を解決するもので、高い経済性を持つことができる二次電池を提供することを目的とする。   The present invention solves the above-described conventional problems, and an object thereof is to provide a secondary battery that can have high economic efficiency.

前記従来の課題を解決するために、本発明の二次電池は、正極および負極と、正極、負極の間に設けた隔膜とを有する電池部を備え、この電池部の正極と隔膜の間、負極と隔膜の間にそれぞれ同一のりん酸溶液を充填したものである。   In order to solve the conventional problems, the secondary battery of the present invention includes a battery unit having a positive electrode and a negative electrode, and a diaphragm provided between the positive electrode and the negative electrode, and between the positive electrode and the diaphragm of the battery unit, The same phosphoric acid solution is filled between the negative electrode and the diaphragm.

これによって、電解質溶液としてのりん酸溶液は溶解度の制限がなく価数変化が大きくとれ、エネルギー密度の大きい、安価なものであり、高い経済性を持つことができる。   As a result, the phosphoric acid solution as the electrolyte solution is not limited in solubility, can have a large valence change, has a large energy density, is inexpensive, and can be highly economical.

本発明の二次電池は、電解質溶液としてりん酸溶液を用い高い経済性を持つものである。   The secondary battery of the present invention uses a phosphoric acid solution as an electrolyte solution and has high economic efficiency.

第1の発明は、正極および負極と、正極、負極の間に設けた隔膜とを有する電池部を備え、この電池部の正極と隔膜の間、負極と隔膜の間にそれぞれ同一のりん酸溶液を充填した二次電池とすることにより、電解質溶液としてのりん酸溶液は溶解度の制限がなく価数変化が大きくとれ、エネルギー密度の大きい、安価なものであり、高い経済性を持つことができる。   1st invention is equipped with the battery part which has a positive electrode and a negative electrode, and the diaphragm provided between the positive electrode and the negative electrode, and the same phosphoric acid solution between the positive electrode and diaphragm of this battery part, and between the negative electrode and the diaphragm, respectively By using a secondary battery filled with, the phosphoric acid solution as the electrolyte solution has no limitation on solubility, can have a large valence change, has a large energy density, is inexpensive, and can be highly economical. .

第2の発明は、特に、第1の発明において、電池部の外に貯留槽を設け、送液装置を用いて貯留槽と電池部の間でりん酸溶液を循環することにより、外部の蓄電容量を含めて大きな蓄電容量を実現することができる。   According to a second aspect of the invention, in particular, in the first aspect of the invention, a storage tank is provided outside the battery unit, and a phosphoric acid solution is circulated between the storage tank and the battery unit using a liquid delivery device, thereby allowing external power storage. A large storage capacity including the capacity can be realized.

第3の発明は、特に、第1の発明において、隔膜を陽イオン交換膜としたことにより、導電性を確保してイオン移動を容易にし、電極反応を促進することができる。   In the third invention, in particular, by using a cation exchange membrane as the diaphragm in the first invention, it is possible to ensure conductivity, facilitate ion movement, and promote an electrode reaction.

第4の発明は、特に、第1または第2の発明において、正極、負極を多孔質炭素電極とし、りん酸溶液を多孔質炭素電極内の間隙内に存在させることにより、りん酸溶液と電極との接触面積を大きくとり、反応面積を拡大して電極反応を促進することができる。   According to a fourth invention, in particular, in the first or second invention, the positive electrode and the negative electrode are porous carbon electrodes, and the phosphoric acid solution is present in the gap in the porous carbon electrode, whereby the phosphoric acid solution and the electrode The electrode contact can be increased by increasing the contact area with the electrode and expanding the reaction area.

第5の発明は、特に、第4の発明において、正極、負極の多孔質炭素電極をりん酸溶液中に加熱浸漬し、隔膜の陽イオン交換膜に圧着したことにより、多孔質炭素電極と陽イオン交換膜との間隙の導電性を確保してイオン移動を容易にし、電極反応を促進することができる。   In the fifth invention, in particular, in the fourth invention, the positive and negative porous carbon electrodes are heated and immersed in a phosphoric acid solution and bonded to the cation exchange membrane of the diaphragm, whereby the porous carbon electrode and the positive carbon electrode are positively bonded. The conductivity of the gap with the ion exchange membrane can be ensured to facilitate ion movement and promote the electrode reaction.

第6の発明は、特に、第1、第4、第5のいずれか1つの発明において、正極に金を添着したことにより、電極反応を促進することができる。   In the sixth invention, in particular, in any one of the first, fourth, and fifth inventions, the electrode reaction can be promoted by adding gold to the positive electrode.

第7の発明は、特に、第1、第4、第5のいずれか1つの発明において、負極に錫を添着したことにより、電極反応を促進することができる。   In the seventh invention, in particular, in any one of the first, fourth, and fifth inventions, the electrode reaction can be promoted by adding tin to the negative electrode.

第8の発明は、特に、第1、第2、第4〜第6のいずれか1つの発明において、正極、負極の多孔質炭素電極に磁性体を添着したことにより、イオン移動を容易にし、電極反応を促進することができる。   In an eighth aspect of the invention, in particular, in any one of the first, second, and fourth to sixth aspects of the invention, by attaching a magnetic substance to the positive and negative porous carbon electrodes, ion migration is facilitated, The electrode reaction can be promoted.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1における二次電池を示すものである。
(Embodiment 1)
FIG. 1 shows a secondary battery according to Embodiment 1 of the present invention.

図に示すように、多孔質炭素材料であるカーボンフェルト製の負極1と正極2は、負極1と正極2間に設けた陽イオン交換膜製の隔膜3を挟んで対向し、電池部12を構成する。負極1と正極2の多孔質炭素材料内の間隙は、初期状態においてりん酸と水の混合溶液が充填され、りん酸溶液は循環路4、5で連通して、それぞれ負極側電解質タンク6と正極側電解質タンク7とに接続され、負極側ポンプ8と正極側ポンプ9とにより電池部12の正極2と隔膜3の間、負極1と隔膜3の間にそれぞれ充填され、電極とタンクの間を循環する。なお、負極1と正極2にはそれぞれ集電体10、11を設けている。   As shown in the figure, a negative electrode 1 and a positive electrode 2 made of carbon felt, which are porous carbon materials, face each other with a diaphragm 3 made of a cation exchange membrane provided between the negative electrode 1 and the positive electrode 2, and the battery unit 12 is Constitute. The gap in the porous carbon material of the negative electrode 1 and the positive electrode 2 is filled with a mixed solution of phosphoric acid and water in the initial state, and the phosphoric acid solution is communicated with the circulation paths 4 and 5, respectively. The positive electrode side electrolyte tank 7 is connected, and the negative electrode side pump 8 and the positive electrode side pump 9 are filled between the positive electrode 2 and the diaphragm 3 of the battery unit 12 and between the negative electrode 1 and the diaphragm 3, respectively. Circulate. Note that current collectors 10 and 11 are provided on the negative electrode 1 and the positive electrode 2, respectively.

次に、二次電池の充放電時の動作について説明する。   Next, the operation during charging / discharging of the secondary battery will be described.

充電時には、負極1に負電位を、正極2に正電位を外部電源(図示せず)から印加する。これにより負極1の材質表面で、負極1から電子を与えて、(化1)に示すりん酸から亜りん酸の生成と、(化2)に示す亜りん酸から次亜りん酸の生成を行わせる。   During charging, a negative potential is applied to the negative electrode 1 and a positive potential is applied to the positive electrode 2 from an external power source (not shown). Thus, electrons are applied from the negative electrode 1 on the material surface of the negative electrode 1 to generate phosphorous acid from phosphoric acid shown in (Chemical Formula 1) and hypophosphorous acid from phosphorous acid shown in (Chemical Formula 2). Let it be done.

従って、負極1側の全反応は(化3)に示すようにりん酸から次亜りん酸が生成する。   Therefore, in the entire reaction on the negative electrode 1 side, hypophosphorous acid is generated from phosphoric acid as shown in (Chemical Formula 3).

正極2表面では、正極2が電子を受け取って(化4)に示すりん酸から過りん酸の生成を行わせる。正極2で(化4)に従い生成する水素イオンは、隔膜3を越えて負極1側に移行し(化1)、(化2)の反応により消費される。   On the surface of the positive electrode 2, the positive electrode 2 receives electrons and generates superphosphoric acid from phosphoric acid shown in (Chemical Formula 4). The hydrogen ions generated in accordance with (Chemical Formula 4) at the positive electrode 2 move to the negative electrode 1 side beyond the diaphragm 3 (Chemical Formula 1) and are consumed by the reaction of (Chemical Formula 2).

放電時には、負極1と正極2の間に外部負荷(図示せず)を接続する。これにより負極1表面で、(化5)に示す亜りん酸からりん酸の生成と、(化6)に示す次亜りん酸から亜りん酸の生成を行わせ負極1が電子を受け取る。   At the time of discharging, an external load (not shown) is connected between the negative electrode 1 and the positive electrode 2. Thereby, on the surface of the negative electrode 1, phosphoric acid is generated from phosphorous acid shown in (Chemical Formula 5) and phosphorous acid is generated from hypophosphorous acid shown in (Chemical Formula 6), and the negative electrode 1 receives electrons.

従って、負極1側の全反応は(化7)に示すように次亜りん酸からりん酸が生成し初期状態となる。   Therefore, the entire reaction on the negative electrode 1 side is in an initial state by generating phosphoric acid from hypophosphorous acid as shown in (Chemical Formula 7).

正極2表面では、(化8)に示す過りん酸からりん酸の生成を行わせ正極2から電子を与える。   On the surface of the positive electrode 2, phosphoric acid is generated from the superphosphoric acid shown in (Chemical Formula 8) and electrons are supplied from the positive electrode 2.

負極1で(化5)、(化6)に従い生成する水素イオンは、隔壁3を越えて正極2側に移行し、(化8)の反応により消費される。正極2、負極1で授受した電子は、外部の負荷回路を流れる。   Hydrogen ions generated in the negative electrode 1 according to (Chemical Formula 5) and (Chemical Formula 6) move to the positive electrode 2 side beyond the partition wall 3 and are consumed by the reaction of (Chemical Formula 8). Electrons exchanged at the positive electrode 2 and the negative electrode 1 flow through an external load circuit.

(化4)、(化8)の平衡電位が1.4V付近にある。また、(化1)、(化5)と(化2)、(化6)の平衡電位がそれぞれ−0.28Vと−0.5V付近にあり、通しで−0.39V程度であるので、1.8V付近で動作する二次電池である。これはオールバナジウムレドックスフロー電池の1.47Vよりも起電力的に有利である。   The equilibrium potential of (Chemical Formula 4) and (Chemical Formula 8) is around 1.4V. Further, since the equilibrium potentials of (Chemical Formula 1), (Chemical Formula 5), (Chemical Formula 2), and (Chemical Formula 6) are in the vicinity of −0.28V and −0.5V, respectively, and are approximately −0.39V, It is a secondary battery that operates near 1.8V. This is more advantageous in terms of electromotive force than 1.47V of the albanadium redox flow battery.

本実施の形態の二次電池では、常態が液体であるりん酸溶液を用いるために溶解度の制限がない。バナジウムの溶解度制限のあるオールバナジウムレドックスフロー電池に比較して、モル濃度で8倍程度の高濃度がとりえる。さらに、オールバナジウムレドックスフロー電池では、正極側、負極側のそれぞれでバナジウムは1価の変化であるが、本実施の形態の二次電池では、正極2側2価、負極1側4価の変化であり、正極、負極の平均で3倍の価数変化がある。両者を合わせて24倍程度、蓄電の電荷密度を高くとりえる。   In the secondary battery of this embodiment, there is no limitation on solubility because a phosphoric acid solution that is normally liquid is used. Compared with an all vanadium redox flow battery with limited solubility of vanadium, a high concentration of about 8 times in molar concentration can be taken. Further, in the allavana redox flow battery, vanadium has a monovalent change on each of the positive electrode side and the negative electrode side. However, in the secondary battery of the present embodiment, the positive electrode 2 side divalent and the negative electrode 1 side tetravalent change. There is a three-fold valence change on average for the positive and negative electrodes. Together, the charge density of the electricity storage can be increased by about 24 times.

このため、起電力と電荷密度の積で定まるエネルギー密度は大きくとれ、同じ充電容量では小さく安価な二次電池ができる。さらに、りんはバナジウムに比べ地殻の存在量が遥かに多い元素であり、流通量も多く安価である。   For this reason, the energy density determined by the product of the electromotive force and the charge density can be increased, and a small and inexpensive secondary battery can be produced with the same charge capacity. Furthermore, phosphorus is an element that has a much larger amount of crust than vanadium, and has a large circulation and is inexpensive.

このように、本実施の形態の二次電池は、高いエネルギー密度と経済性を得ることができるものである。   Thus, the secondary battery of this embodiment can obtain a high energy density and economy.

(実施の形態2)
次に、本発明の実施の形態2における二次電池について説明する。二次電池の構成については実施の形態1と同じであるのでその説明を省略する。
(Embodiment 2)
Next, the secondary battery according to Embodiment 2 of the present invention will be described. Since the configuration of the secondary battery is the same as that of Embodiment 1, the description thereof is omitted.

本実施の形態における二次電池の特徴は、電池部12の外に負極側電解質タンク6、正極側電解質タンク7である貯留槽を設け、負極側ポンプ8、正極側ポンプ9である送液装置を用いて、貯留槽と電池部12の間でりん酸溶液を循環するようにしたことである。   A feature of the secondary battery in the present embodiment is that a storage tank which is a negative electrode side electrolyte tank 6 and a positive electrode side electrolyte tank 7 is provided outside the battery unit 12, and a liquid feeding device which is a negative electrode side pump 8 and a positive electrode side pump 9. Is used to circulate the phosphoric acid solution between the storage tank and the battery unit 12.

このように、二次電池の電池部12の外に貯留槽を設け、送液装置を用いて、貯留槽と電池部の間でりん酸溶液を循環することにより、りん酸溶液の大きな蓄電容量が電池部12の外に増設され、外部の蓄電容量を含めて大きな蓄電容量を実現することができる。   As described above, a storage tank is provided outside the battery unit 12 of the secondary battery, and the phosphoric acid solution is circulated between the storage tank and the battery unit using the liquid feeding device, thereby providing a large storage capacity of the phosphoric acid solution. Is increased outside the battery unit 12, and a large storage capacity including the external storage capacity can be realized.

(実施の形態3)
次に、本発明の実施の形態3における二次電池について説明する。二次電池の構成については実施の形態1と同じであるのでその説明を省略する。
(Embodiment 3)
Next, the secondary battery according to Embodiment 3 of the present invention will be described. Since the configuration of the secondary battery is the same as that of Embodiment 1, the description thereof is omitted.

本実施の形態における二次電池の特徴は、隔膜3を陽イオン交換膜としたことである。   The feature of the secondary battery in the present embodiment is that the diaphragm 3 is a cation exchange membrane.

実施の形態1の(化1)〜(化8)に示すように、りん酸電解質の電極反応に従い、陽イオンである水素イオンが両極1、2間を往来する。陽イオン交換膜である隔膜3は、多孔質フィルムの隔膜に比して、陽イオンである水素イオンの透過性に優れる。りん酸溶液の電気抵抗は100マイクロメートル厚みで、1平方センチメートル当たり約20オームとかなり大きな抵抗を持つ。多孔質フィルムの隔膜では、十分な間隙率を持つ膜であっても、多孔質フィルムに含まれる、りん酸溶液の抵抗になり、大きな抵抗になる。   As shown in (Chemical Formula 1) to (Chemical Formula 8) of the first embodiment, hydrogen ions that are cations travel between the two electrodes 1 and 2 in accordance with the electrode reaction of the phosphate electrolyte. The diaphragm 3, which is a cation exchange membrane, is superior in permeability of hydrogen ions, which are cations, as compared to a porous film. The electrical resistance of the phosphoric acid solution is 100 micrometers thick and has a fairly large resistance of about 20 ohms per square centimeter. In the case of a porous film diaphragm, even a film having a sufficient porosity becomes the resistance of the phosphoric acid solution contained in the porous film, resulting in a large resistance.

このように、隔膜3を陽イオン交換膜としたことにより、1平方センチメートル当たり約0.2から1オームほどであり、導電性を確保してイオン移動を容易にし、電極反応を促進することができる。   Thus, by making the diaphragm 3 into a cation exchange membrane, it is about 0.2 to 1 ohm per 1 square centimeter, can ensure electroconductivity, facilitate ion movement, and can promote an electrode reaction. .

(実施の形態4)
次に、本発明の実施の形態4における二次電池について説明する。二次電池の構成については実施の形態1と同じであるのでその説明を省略する。
(Embodiment 4)
Next, a secondary battery according to Embodiment 4 of the present invention will be described. Since the configuration of the secondary battery is the same as that of Embodiment 1, the description thereof is omitted.

本実施の形態における二次電池の特徴は、正極2、負極1を多孔質炭素電極とし、りん酸溶液を多孔質炭素電極内の間隙内に存在させることである。   The feature of the secondary battery in the present embodiment is that the positive electrode 2 and the negative electrode 1 are porous carbon electrodes, and the phosphoric acid solution is present in the gaps in the porous carbon electrode.

このように、正極、負極を多孔質炭素電極とし、りん酸溶液を多孔質炭素電極内の間隙内に存在させることにより、板状の電極に比べてりん酸溶液と電極との接触面積を大きく取ることができる。このため電極反応面積が拡大して、電極反応を促進することができる。   Thus, by making the positive electrode and the negative electrode porous carbon electrodes and allowing the phosphoric acid solution to exist in the gaps in the porous carbon electrode, the contact area between the phosphoric acid solution and the electrode is larger than that of the plate-like electrode. Can be taken. For this reason, an electrode reaction area can be expanded and an electrode reaction can be promoted.

(実施の形態5)
次に、本発明の実施の形態5における二次電池について説明する。二次電池の構成については実施の形態1と同じであるのでその説明を省略する。
(Embodiment 5)
Next, a secondary battery according to Embodiment 5 of the present invention will be described. Since the configuration of the secondary battery is the same as that of Embodiment 1, the description thereof is omitted.

本実施の形態における二次電池の特徴は、正極2、負極1の多孔質炭素電極を予めりん酸溶液中に加熱浸漬し、230℃以下の条件で加熱の後、圧搾してりん酸を切る。その後、正極2、負極1の間に隔膜3の陽イオン交換膜を挟み、プレス機にかけて圧着したことである。   The feature of the secondary battery in the present embodiment is that the porous carbon electrodes of the positive electrode 2 and the negative electrode 1 are preliminarily heated and immersed in a phosphoric acid solution, heated under conditions of 230 ° C. or less, and then pressed to cut phosphoric acid. . After that, the cation exchange membrane of the diaphragm 3 was sandwiched between the positive electrode 2 and the negative electrode 1 and was pressed by a press machine.

このように、加熱浸漬、圧着により、多孔質炭素電極と陽イオン交換膜との間隙の導電性を確保してイオン移動を容易にし、電極反応を促進することができる。   Thus, heat immersion and pressure bonding ensure the conductivity of the gap between the porous carbon electrode and the cation exchange membrane, facilitate ion movement, and promote the electrode reaction.

(実施の形態6)
次に、本発明の実施の形態6における二次電池について説明する。二次電池の構成については実施の形態1と同じであるのでその説明を省略する。
(Embodiment 6)
Next, a secondary battery according to Embodiment 6 of the present invention will be described. Since the configuration of the secondary battery is the same as that of Embodiment 1, the description thereof is omitted.

本実施の形態における二次電池の特徴は、多孔質炭素電極である正極2に金を添着したことである。   The feature of the secondary battery in the present embodiment is that gold is attached to the positive electrode 2 which is a porous carbon electrode.

金は充電時の(化4)の反応、放電時の(化8)の反応に対し触媒的に働き、電極反応を促進する。さらに、金は酸素発生の過電圧が大きく、充電時の副反応である(化9)の水から酸素を発生する反応が実用的充電電圧では起きず、電力のロスが少ない。   Gold acts as a catalyst for the reaction of (Chemical Formula 4) at the time of charging and the reaction of (Chemical Formula 8) at the time of discharging, and promotes the electrode reaction. Furthermore, gold has a large overvoltage for oxygen generation, and a reaction for generating oxygen from water (chemical formula 9), which is a side reaction at the time of charging, does not occur at a practical charging voltage, and power loss is small.

多孔質炭素電極への金の添着には、各種の方法が可能である。四塩化金アルコール溶液をカーボンフェルトに吸わせ、空気を絶って加熱する方法、四塩化金を吸わせたカーボンフェルトにアルカリ性のホルムアルデヒド溶液を加えて、金を析出させる方法、四塩化金から電気メッキをする方法などである。   Various methods can be used to attach gold to the porous carbon electrode. A method of sucking gold tetrachloride alcohol solution into carbon felt and heating it out of air, a method of depositing gold by adding alkaline formaldehyde solution to carbon felt sucked with gold tetrachloride, electroplating from gold tetrachloride It is a method to do.

このように、正極2に金を添着したことにより、電極反応を促進することができる。   Thus, the electrode reaction can be promoted by attaching gold to the positive electrode 2.

(実施の形態7)
次に、本発明の実施の形態7における二次電池について説明する。二次電池の構成については実施の形態1と同じであるのでその説明を省略する。
(Embodiment 7)
Next, the secondary battery according to Embodiment 7 of the present invention will be described. Since the configuration of the secondary battery is the same as that of Embodiment 1, the description thereof is omitted.

本実施の形態における二次電池の特徴は、多孔質炭素電極である負極1に錫を添着したことである。   The feature of the secondary battery in the present embodiment is that tin is attached to the negative electrode 1 which is a porous carbon electrode.

錫は充電時の(化1)(化2)の反応、放電時の(化5)(化6)の反応に対し触媒的に働き、電極反応を促進する。さらに、錫は水素発生の過電圧が大きく、充電時の副反応である(化10)の水から水素の発生する反応が実用的充電電圧では起きず、電力のロスが少ない。   Tin acts catalytically with respect to the reactions of (Chemical Formula 1) and (Chemical Formula 2) at the time of charging and (Chemical Formula 5) and (Chemical Formula 6) at the time of discharge, and promotes the electrode reaction. Further, tin has a large hydrogen overvoltage, and the side reaction during charging (Chemical Formula 10) in which hydrogen is generated from water does not occur at a practical charging voltage, and power loss is small.

多孔質炭素電極への錫の添着には、錫塩から電気メッキをする方法などがある。   For the attachment of tin to the porous carbon electrode, there is a method of electroplating from a tin salt.

このように、負極1に錫を添着したことにより、電極反応を促進することができる。   Thus, the electrode reaction can be promoted by adding tin to the negative electrode 1.

(実施の形態8)
次に、本発明の実施の形態8における二次電池について説明する。二次電池の構成については実施の形態1と同じであるのでその説明を省略する。
(Embodiment 8)
Next, a secondary battery according to Embodiment 8 of the present invention will be described. Since the configuration of the secondary battery is the same as that of Embodiment 1, the description thereof is omitted.

本実施の形態における二次電池の特徴は、正極2、負極1の多孔質炭素電極に磁性体を添着したことである。   A feature of the secondary battery in the present embodiment is that a magnetic material is attached to the porous carbon electrodes of the positive electrode 2 and the negative electrode 1.

上記構成において、多孔質炭素電極中の電流の流れについて図2を用いて説明する。   In the above configuration, the flow of current in the porous carbon electrode will be described with reference to FIG.

図において、多孔質炭素電極中のカーボン繊維21の周囲はりん酸溶液22である。カーボン繊維21中を電子の流れ23が電流を運ぶ。この電子の流れ23に対して相補的にカーボン繊維21の表面付近のりん酸溶液22中では、水素イオンの流れ24が電流を運ぶ。この場合、電子の流れ23と水素イオンの流れ24を結びつけるものは、電流に対し右ネジ方向にできる磁場25である。   In the figure, the periphery of the carbon fiber 21 in the porous carbon electrode is a phosphoric acid solution 22. An electron flow 23 carries an electric current through the carbon fiber 21. In the phosphoric acid solution 22 near the surface of the carbon fiber 21 in a complementary manner to the electron flow 23, the hydrogen ion flow 24 carries an electric current. In this case, what connects the electron flow 23 and the hydrogen ion flow 24 is a magnetic field 25 that can be formed in a right-handed direction with respect to the current.

しかしながら、りん酸溶液22は小さな負の透磁率をもち、相補的な電流を誘起する効果はない。これに対し、本実施の形態では、多孔質炭素電極に磁性体を添着することにより、カーボン繊維21の周囲に大きな透磁率を持たせる。これにより、磁場25は強くなり、大きな水素イオンの流れ24を作り出すことができ、イオン移動が容易になり電極反応が促進される。   However, the phosphoric acid solution 22 has a small negative permeability and has no effect of inducing a complementary current. On the other hand, in the present embodiment, a magnetic material is attached to the porous carbon electrode to give a large magnetic permeability around the carbon fiber 21. As a result, the magnetic field 25 is strengthened, and a large flow 24 of hydrogen ions can be created, which facilitates ion movement and promotes the electrode reaction.

このように、正極2、負極1の多孔質炭素電極に磁性体を添着したことにより、イオン移動を容易にし、電極反応を促進することができ、電池部12の小型化がはかれるものである。   Thus, by attaching a magnetic substance to the porous carbon electrodes of the positive electrode 2 and the negative electrode 1, ion migration can be facilitated and the electrode reaction can be promoted, and the battery unit 12 can be reduced in size.

以上のように、本発明にかかる二次電池は、電解質溶液としてりん酸溶液を用い高い経済性を持つものであるので、各種の機器や装置に適用できるものである。   As described above, the secondary battery according to the present invention uses a phosphoric acid solution as an electrolyte solution and has high economic efficiency, and therefore can be applied to various devices and apparatuses.

本発明の実施の形態1〜8における二次電池の構成図Configuration diagram of secondary battery in Embodiments 1 to 8 of the present invention 本発明の実施の形態8における多孔質炭素電極中の電流流れの説明図Explanatory drawing of the electric current flow in the porous carbon electrode in Embodiment 8 of this invention 従来のオールバナジウムレドックスフロー電池の構成図Configuration of conventional albanadium redox flow battery

符号の説明Explanation of symbols

1 負極
2 正極
3 隔膜
4、5 循環路
6 負極側電解質タンク(貯留槽)
7 正極側電解質タンク(貯留槽)
8 負極側ポンプ(送液装置)
9 正極側ポンプ(送液装置)
12 電池部
DESCRIPTION OF SYMBOLS 1 Negative electrode 2 Positive electrode 3 Diaphragm 4, 5 Circulation path 6 Negative electrode side electrolyte tank (storage tank)
7 Positive electrolyte tank (storage tank)
8 Negative side pump (liquid feeding device)
9 Positive side pump (liquid feeding device)
12 Battery section

Claims (8)

正極および負極と、正極、負極の間に設けた隔膜とを有する電池部を備え、この電池部の正極と隔膜の間、負極と隔膜の間にそれぞれ同一のりん酸溶液を充填した二次電池。 A secondary battery comprising a battery part having a positive electrode and a negative electrode, and a diaphragm provided between the positive electrode and the negative electrode, the same phosphoric acid solution being filled between the positive electrode and the diaphragm of the battery part and between the negative electrode and the diaphragm, respectively. . 電池部の外に貯留槽を設け、送液装置を用いて貯留槽と電池部の間でりん酸溶液を循環する請求項1に記載の二次電池。 The secondary battery according to claim 1, wherein a storage tank is provided outside the battery part, and the phosphoric acid solution is circulated between the storage tank and the battery part using a liquid feeding device. 隔膜を陽イオン交換膜とした請求項1に記載の二次電池。 The secondary battery according to claim 1, wherein the diaphragm is a cation exchange membrane. 正極、負極を多孔質炭素電極とし、りん酸溶液を多孔質炭素電極内の間隙内に存在させる請求項1または2に記載の二次電池。 The secondary battery according to claim 1, wherein the positive electrode and the negative electrode are porous carbon electrodes, and the phosphoric acid solution is present in a gap in the porous carbon electrode. 正極、負極の多孔質炭素電極をりん酸溶液中に加熱浸漬し、隔膜の陽イオン交換膜に圧着した請求項4に記載の二次電池。 The secondary battery according to claim 4, wherein the porous carbon electrodes of the positive electrode and the negative electrode are heated and immersed in a phosphoric acid solution and pressure-bonded to the cation exchange membrane of the diaphragm. 正極に金を添着した請求項1、4、5のいずれか1項に記載の二次電池。 The secondary battery according to claim 1, wherein gold is attached to the positive electrode. 負極に錫を添着した請求項1、4、5のいずれか1項に記載の二次電池。 The secondary battery according to claim 1, wherein tin is attached to the negative electrode. 正極、負極の多孔質炭素電極に磁性体を添着した請求項1、2、4〜6のいずれか1項に記載の二次電池。 7. The secondary battery according to claim 1, wherein a magnetic material is attached to the porous carbon electrodes of the positive electrode and the negative electrode.
JP2006214084A 2006-08-07 2006-08-07 Secondary battery Pending JP2008041420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006214084A JP2008041420A (en) 2006-08-07 2006-08-07 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006214084A JP2008041420A (en) 2006-08-07 2006-08-07 Secondary battery

Publications (1)

Publication Number Publication Date
JP2008041420A true JP2008041420A (en) 2008-02-21

Family

ID=39176206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006214084A Pending JP2008041420A (en) 2006-08-07 2006-08-07 Secondary battery

Country Status (1)

Country Link
JP (1) JP2008041420A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013137958A (en) * 2011-12-28 2013-07-11 Asahi Kasei E-Materials Corp Redox flow secondary battery
JP2013137957A (en) * 2011-12-28 2013-07-11 Asahi Kasei E-Materials Corp Redox flow secondary battery
JP2015176648A (en) * 2014-03-13 2015-10-05 旭化成イーマテリアルズ株式会社 Electrode layer with resin, electrode composite body with resin, and redox flow secondary battery
JP2016188391A (en) * 2015-03-28 2016-11-04 国立大学法人秋田大学 MANUFACTURING METHOD OF GOLD NANOPARTICLE, GOLD NANOPARTICLE, MANUFACTURING METHOD OF CATHODE ACTIVE MATERIAL FOR Li ION BATTERY AND CATHODE ACTIVE MATERIAL FOR Li ION BATTERY
JP2017091617A (en) * 2015-11-02 2017-05-25 旭化成株式会社 Carbon felt, secondary battery, and method of producing carbon felt

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013137958A (en) * 2011-12-28 2013-07-11 Asahi Kasei E-Materials Corp Redox flow secondary battery
JP2013137957A (en) * 2011-12-28 2013-07-11 Asahi Kasei E-Materials Corp Redox flow secondary battery
JP2015176648A (en) * 2014-03-13 2015-10-05 旭化成イーマテリアルズ株式会社 Electrode layer with resin, electrode composite body with resin, and redox flow secondary battery
JP2016188391A (en) * 2015-03-28 2016-11-04 国立大学法人秋田大学 MANUFACTURING METHOD OF GOLD NANOPARTICLE, GOLD NANOPARTICLE, MANUFACTURING METHOD OF CATHODE ACTIVE MATERIAL FOR Li ION BATTERY AND CATHODE ACTIVE MATERIAL FOR Li ION BATTERY
JP2017091617A (en) * 2015-11-02 2017-05-25 旭化成株式会社 Carbon felt, secondary battery, and method of producing carbon felt

Similar Documents

Publication Publication Date Title
Han et al. Metal–air batteries: from static to flow system
FI108685B (en) Electrochemical apparatus for emitting electrical current using air electrode
CN102823046B (en) Flow battery group
US5422197A (en) Electrochemical energy storage and power delivery process utilizing iron-sulfur couple
EP0020664A1 (en) Catalytic surface for redox cell electrode.
CN102013536A (en) Liquid flow type lithium-air battery
EP2824745A1 (en) Rechargeable zinc-air flow battery
JP2008041420A (en) Secondary battery
JP2019003750A (en) Flow battery, flow battery system, and power generation system
JP2017010809A (en) Electrode for redox flow battery and redox flow battery
CN105810986B (en) Zinc iron-based ionic liquid flow battery
JP2017082268A (en) Cell stack set type electrolysis tank and cell stack set type battery
KR102379200B1 (en) Zinc-bromide flow battery comprising conductive interlayer
JP2008041421A (en) Secondary battery
CN103872370A (en) Flow battery
JP5864682B2 (en) Method for producing pasty vanadium electrolyte and method for producing vanadium redox battery
JPS61165959A (en) Passage-porous electrode
JP2018506138A (en) POLYMER ELECTROLYTE MEMBRANE, ELECTROCHEMICAL AND FLOW CELL CONTAINING THE SAME, METHOD FOR PRODUCING POLYMER ELECTROLYTE MEMBRANE, AND ELECTROLYTE SOLUTION FOR FLOW BATTERY
US20230261238A1 (en) Electrode assembly for a redox flow battery
US20230016796A1 (en) Electrolyte flow field for rebalancing cell of redox flow battery system
EP2795705B1 (en) Flow battery with enhanced durability
AU672049B2 (en) Electrochemical energy storage and power delivery process utilizing iron-sulfur couple
JP2017033880A (en) Power generator using circulation type magnesium air battery
KR101514881B1 (en) Method of manufacturing electrolyte for Vanadium secondary battery and apparatus thereof
EP3435455A1 (en) Graphite-containing electrode and method related thereto