JPS60251194A - Process for growing single crystal of compound having high dissociation pressure - Google Patents

Process for growing single crystal of compound having high dissociation pressure

Info

Publication number
JPS60251194A
JPS60251194A JP10443984A JP10443984A JPS60251194A JP S60251194 A JPS60251194 A JP S60251194A JP 10443984 A JP10443984 A JP 10443984A JP 10443984 A JP10443984 A JP 10443984A JP S60251194 A JPS60251194 A JP S60251194A
Authority
JP
Japan
Prior art keywords
single crystal
high dissociation
dissociation pressure
optical window
gaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10443984A
Other languages
Japanese (ja)
Other versions
JPH0339039B2 (en
Inventor
Koichi Sasaki
佐々木 紘一
Kenji Tomizawa
富沢 憲治
Yasushi Shimanuki
島貫 康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Shingijutsu Kaihatsu Jigyodan
Original Assignee
Research Development Corp of Japan
Shingijutsu Kaihatsu Jigyodan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan, Shingijutsu Kaihatsu Jigyodan filed Critical Research Development Corp of Japan
Priority to JP10443984A priority Critical patent/JPS60251194A/en
Publication of JPS60251194A publication Critical patent/JPS60251194A/en
Publication of JPH0339039B2 publication Critical patent/JPH0339039B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/22Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal
    • C30B15/26Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal using television detectors; using photo or X-ray detectors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To enable precise control of thermal environment and to improve the quality of a single crystal of a compd. having high dissociation pressure by sensing the temp. of the surface of the melt optically through an optical window comprising a light transmittive material, and controlling a heating source basing on the sensed result. CONSTITUTION:GaAs is synthesized directly in a vessel contg. gaseous As sealed therein from Ga and As charged in a crucible 11. Then, a GaAs single crystal is pulled up. During this procedure, a tip of a quartz rod 1 for an optical window is held always at ca. 850 deg.C, and an clouding is caused on the rod. The indication of a two wavelength radiation pyrometer 2 shows maximally ca.+ or -5 deg.C variation influenced by the fluctuation of the temp. of the melt surface, but the mean value of the temp. after the pulling is commenced and the single crystal entering the straight barrel part, is held at + or -1 deg.C. As the result, a uniform crystal is obtd. The compd. having high dissociation pressure to be prepd. by this method is, for example, InAs, etc. in addition to the above descirbed GaAs.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、超高速ICおよびレーザーのための例えば
砒化ガリウム基板(Ga AS基板)の如き高解離圧化
合物単結晶の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention This invention relates to a method for producing single crystals of high dissociation pressure compounds, such as gallium arsenide substrates (Ga AS substrates), for ultrahigh speed ICs and lasers.

従来の技術 超高速ICおよびレーザーのための Ga 、As基板の如き高解離圧化合物の製造方法とし
てチョクラルスキー(CZ)法は水平ブリッジマン(H
B)法に比し、容易に< 100>方位の丸いインゴッ
トが得られる特徴があり、重要視されている。しかし、
このCZ法は製品の格子欠陥密度の低減化とその均一化
のための結晶成長条件の最適化とその制御性という点に
おいて、未解決の問題を残している。
Conventional technology The Czochralski (CZ) method is a method for producing high dissociation pressure compounds such as Ga and As substrates for ultra-high speed ICs and lasers.
Compared to the B) method, it has the advantage of being able to easily obtain round ingots with a <100> orientation, and is therefore regarded as important. but,
This CZ method leaves unresolved problems in terms of optimization and controllability of crystal growth conditions for reducing and making the lattice defect density uniform in products.

この問題の一つは高解離圧成分である砒素の圧力の最適
化であり、他の一つは育成時の熱環境の最適化である。
One of these issues is optimizing the pressure of arsenic, which is a high dissociation pressure component, and the other is optimizing the thermal environment during growth.

第1の問題について説明すると、従来は、酸化ホウ素で
QaAs融液表面を封止することにより砒素の飛散を防
ぐ液体封止チョクラルスキー(LEC)法が主流であっ
たが、これでは原料における元素配分以上の調整が出来
ず、格子欠陥密度をさらに低減するためにはより精度の
高いストイキオメトリの制御が必要である。そのために
は、結晶の育成の際、常に融液面を一定の最適砒素圧で
覆い、融液のストイキオメトリを制御する必要がある。
To explain the first problem, conventionally, the mainstream was the liquid encapsulation Czochralski (LEC) method, which prevents arsenic from scattering by sealing the surface of the QaAs melt with boron oxide. Since it is not possible to make adjustments beyond the element distribution, more precise control of stoichiometry is required to further reduce the lattice defect density. To this end, during crystal growth, it is necessary to always cover the melt surface with a constant optimum arsenic pressure and control the stoichiometry of the melt.

この目的のためには結晶育成する高温において、安定な
材料でつくった容器で砒素雰囲気を密封する必要があり
、さらにこの密封容器は砒素圧を精度よく制御するため
の砒素圧制胛部を有し、上下軸の回転に対し、砒素ガス
を封止できること、および結晶取り出しのために容易に
、しかも何痕でも切り離し可能であること、さらに結晶
育成中光学的に観察できること等の機能が必要である。
For this purpose, it is necessary to seal the arsenic atmosphere in a container made of a material that is stable at the high temperatures of crystal growth, and this sealed container must also have an arsenic pressure control part to precisely control the arsenic pressure. It is necessary to have functions such as being able to seal in arsenic gas against rotation of the vertical axis, being able to easily cut off any number of marks to take out the crystal, and being able to optically observe the crystal during crystal growth. .

これらの条件を満足する結晶育成装置として、本発明者
らはさきに砒素化合物単結晶成長装@(特願昭58−1
57883号)を提案している。
As a crystal growth device that satisfies these conditions, the present inventors have previously developed an arsenic compound single crystal growth device
No. 57883).

第2の問題である育成時の熱条件の最適化には成長界面
の温度と温度勾配の制御が重要である。成長界面の温度
はストイキオメトリの精密な制御のためには一定である
必要があり、また温度勾配は成長速度を決めるが固化の
際の熱歪が格子欠陥の原因となることから育成の間一定
であることが欠陥密度の均一な結晶の成長には必要であ
る。
For the second problem, optimizing the thermal conditions during growth, it is important to control the temperature and temperature gradient at the growth interface. The temperature at the growth interface needs to be constant for precise control of stoichiometry, and the temperature gradient determines the growth rate, but thermal strain during solidification causes lattice defects. A constant defect density is necessary for crystal growth with uniform defect density.

さらに転位密度を下げるために固液界面の温度勾配を低
くすることは大きな効果があるが、その反面結晶成長の
ための適正な融液温度と引き上げ速度の範囲がせまくな
り、融液温度の精密な制−なしには単結晶の育成は不可
能である。
Furthermore, lowering the temperature gradient at the solid-liquid interface has a great effect on lowering the dislocation density, but on the other hand, the range of appropriate melt temperature and pulling rate for crystal growth becomes narrower, and the precision of melt temperature cannot be adjusted. Without proper control, single crystal growth is impossible.

従来、CZ法においては、熱条件の制御は盲点になって
いた。従来は、結晶育成と共に融液面位置が低下してく
る状況下で、固化の潜熱を補償して、固液界面、温度を
一定に維持するためには、ヒーターの温度を経験的に決
められたプログラムにしたがって徐々に変化させること
が行なわれてきた。
Conventionally, control of thermal conditions has been a blind spot in the CZ method. Conventionally, in order to compensate for the latent heat of solidification and maintain a constant temperature at the solid-liquid interface under conditions where the melt surface position decreases with crystal growth, the temperature of the heater must be determined empirically. Gradual changes have been made in accordance with established programs.

明が 決しようとする問題。The problem that Ming is trying to decide.

しかし、上記のような方法では固液界面の熱環境が一定
になることは保障されず、結晶の品質向上には充分では
なかった。
However, the above method does not guarantee that the thermal environment at the solid-liquid interface remains constant, and is not sufficient to improve the quality of crystals.

固−液界面の熱環境の制御のだ、めに融液面位置を一定
に保つことは有効であるが、それだけでは融液量の変化
、結晶の成長とそれにともなう潜熱の放出、又、ルツボ
端位置の変化等のため、融液面温度は一定に保てない。
It is effective to keep the melt surface position constant in order to control the thermal environment at the solid-liquid interface, but this alone may cause changes in the melt volume, crystal growth and the release of latent heat associated with it, and the crucible. The melt surface temperature cannot be kept constant due to changes in the end position.

このために、融液面の湿度を直接検知し制御することが
必要となる。その方法として熱電対を使用することが先
ず考えられるが、熱雷対を直接融液に挿入することはル
ツボの回転にともなう融液の動きに不要な撹乱を与える
ことになり、結晶育成に不均一の要因を与える。その上
温度勾配の強い箇所の温度の読み取りは困難なうえ、操
作も困難である。
For this reason, it is necessary to directly detect and control the humidity at the surface of the melt. The first possible way to do this is to use a thermocouple, but inserting a thermocouple directly into the melt will cause unnecessary disturbance to the movement of the melt as the crucible rotates, which will hinder crystal growth. Give uniformity factor. Moreover, it is difficult to read the temperature in areas with strong temperature gradients, and it is also difficult to operate.

問題点を解決するための手段 この発明は、上記C7法の熱環境の精密な11i1J御
の困難を解決しようとするものであり、その構成は、高
解離圧成分ガスを密封し、その圧力を制御しながら高解
離圧化合物単結晶を引きあげる方法において、前記ガス
を密封する内容器に密着性よく接合された透光性材料か
らなる光学窓を通して融液面の温度を光学的に検知し、
その結果に基づき加熱源を制御することを特徴とする高
解離圧化合物単結晶成長方法である。
Means for Solving the Problems This invention attempts to solve the difficulty of precisely controlling the thermal environment of the C7 method, and its structure is to seal the high dissociation pressure component gas and reduce the pressure. In a method of pulling a single crystal of a high dissociation pressure compound in a controlled manner, the temperature of the melt surface is optically detected through an optical window made of a translucent material that is tightly bonded to the inner container that seals the gas;
This is a high dissociation pressure compound single crystal growth method characterized by controlling the heating source based on the results.

特願昭58−157883号に述べた方法では、砒素化
合物単結晶の成長が砒素ガスを密封する容器の中で行な
われるため、従来必要だった酸化ホウ素による封止が不
要であり、密封容器を貫通する石英ロッド、石英パイプ
あるいはグラスファイバーの如き光学窓を用いて融液面
を直接観察できる。この光学窓は他の透光性材料例えば
サファイヤでも良く、又形状も板状のものを内容器に設
けてもよい。内容器との接合は、砒素雰囲気を充分良く
密封しうる必要があり、この用途に用いられる接合とし
てテーパジヨイント、熱膨張性黒鉛の如き固体ガスケッ
トを用いる例が挙げられる。
In the method described in Japanese Patent Application No. 58-157883, the arsenic compound single crystal is grown in a container that seals arsenic gas, so there is no need for sealing with boron oxide, which was conventionally required, and it is not necessary to use a sealed container. The melt surface can be directly observed using a penetrating optical window such as a quartz rod, quartz pipe, or glass fiber. This optical window may be made of other light-transmitting material, such as sapphire, and may also have a plate-like shape provided in the inner container. The joint with the inner container must be able to seal the arsenic atmosphere sufficiently well, and examples of joints used for this purpose include the use of a taper joint and a solid gasket such as thermally expandable graphite.

かかる光学窓を通して赤外線放射温度計を用い融液面の
温度を計測することができる。この際上記光学窓にGa
 203、Ga As 。
Through such an optical window, the temperature of the melt surface can be measured using an infrared radiation thermometer. At this time, Ga is applied to the optical window.
203, GaAs.

As等の凝縮が起きると、光の吸収が起こり、計測を著
しく妨げるが、これは以下のような方法で回避できる。
When condensation of As or the like occurs, light absorption occurs and significantly impedes measurement, but this can be avoided by the following method.

1)光学窓の先端の温度、を610〜950℃または1
080〜1200℃の温度に保つこと。
1) Temperature at the tip of the optical window, 610-950℃ or 1
Maintain the temperature between 080 and 1200°C.

2)砒素雰囲気密封容器およびるつぼ材として石英を使
用せず、また残留酸素を減らし、Qa203やGaAS
の凝縮の原因となる酸素による反応を抑制すること。
2) Do not use quartz as the arsenic atmosphere sealed container or crucible material, reduce residual oxygen, and use Qa203 or GaAS.
To suppress reactions caused by oxygen that cause condensation.

3)赤外線放射温度計の使用波長を1μm前後とし、三
波長式とすることで曇りが起こっても一定の温度支持を
得ることができる。
3) By setting the wavelength used for the infrared radiation thermometer to around 1 μm and using a three-wavelength type, constant temperature support can be obtained even when cloudy weather occurs.

この波長域の光を、砒素ガスと石英は吸収せず、この発
明の目的に適っている。
Arsenic gas and quartz do not absorb light in this wavelength range, and are suitable for the purpose of this invention.

図面を参照して、この発明の実施例を具体的に説明する
と、第1図はこの発明を実施するに適した装置の概要を
示す断面図である。
Embodiments of the present invention will be specifically described with reference to the drawings. FIG. 1 is a sectional view showing an outline of an apparatus suitable for carrying out the present invention.

不活性ガス導入管13と排気管14を備えた外チャンバ
ー15内に内チャンバー蓋9を備えた内チヤンバ−10
を設け、この内チャンバーを囲むようにヒーター5およ
び主ヒータ−6を設ける。内チヤンバ−10内には外チ
ャンバー15および内チヤンバ−10の壁を貫通し、上
下動ができ、かつ、回転し得る回転軸に支持されたPB
N製のルツボ11があり、このルツボ内の原料融液から
単結晶12を引き上げるための上軸16は外チャンバー
15および内チャンバー蓋9を貴通し、上下動が可能で
かつ回転し得る。回転軸が内チヤンバ−10および内チ
ャンバー蓋9を貫通する箇所にはシール7があり、内チ
ャンバー蓋9には砒素圧制御炉4が設けられている。
An inner chamber 10 having an inner chamber lid 9 inside an outer chamber 15 having an inert gas introduction pipe 13 and an exhaust pipe 14.
A heater 5 and a main heater 6 are provided to surround the inner chamber. Inside the inner chamber 10, there is a PB supported by a rotating shaft that penetrates the walls of the outer chamber 15 and the inner chamber 10, can move up and down, and can rotate.
There is a crucible 11 made of N, and an upper shaft 16 for pulling up a single crystal 12 from a raw material melt in the crucible passes through an outer chamber 15 and an inner chamber lid 9, and can move up and down and rotate. A seal 7 is provided at a location where the rotating shaft passes through the inner chamber 10 and the inner chamber lid 9, and the inner chamber lid 9 is provided with an arsenic pressure controlled furnace 4.

そして光学窓として石英ロッド1を外チャンバー15お
よび内チャンバー蓋9を貫通して設けである。内チャン
バー蓋との接合にはテーバジヨイント17を用いた。こ
れを通してるつぼ11内の融液面の温度を検知する温度
計と ゛して1μmと0.85μ−の波長を用いる三波
長式赤外線放射高温計2を採用する。
A quartz rod 1 is provided as an optical window passing through the outer chamber 15 and the inner chamber lid 9. A tapered joint 17 was used to join the inner chamber lid. A three-wavelength infrared radiation pyrometer 2 using wavelengths of 1 μm and 0.85 μm is used as a thermometer to detect the temperature of the melt surface in the crucible 11 through this.

この三波長式赤外線放射高温計2から得られるアナログ
信号とるつぼ加熱用主ヒータ−6に接触している熱電対
8の起電力を用いて、ヒーターの出力をカスケード温度
制御器3によりカスケード的に制御する。また、単結晶
12を引き上げている時間中、るつぼ11内の融液面を
一定の高さに保つために、引き上げ用の回転軸に結合し
た重量式自動直径制御センサーの信号から液面の降下を
コンピューターによりめ、自動的に補正する。
Using the analog signal obtained from the three-wavelength infrared radiation pyrometer 2 and the electromotive force of the thermocouple 8 in contact with the main heater 6 for heating the crucible, the output of the heater is controlled in a cascade manner by the cascade temperature controller 3. Control. In addition, in order to maintain the melt level in the crucible 11 at a constant height while the single crystal 12 is being pulled, a drop in the liquid level is detected based on a signal from a gravimetric automatic diameter control sensor connected to the pulling rotation shaft. is determined by a computer and automatically corrected.

なお、上記実施例では、光学窓1の接合をテーパージヨ
イント17によって行なっているが、第2図に示すよう
に熱膨張性黒鉛の如き固体ガスケット18を内チヤンバ
−M9にとりつけたネジ19によって圧下することによ
って′行なってもよい。このような機構は外チャンバー
15の貫通箇所に設けてもよい。
In the above embodiment, the optical window 1 is joined by the taper joint 17, but as shown in FIG. This may also be done by pressing down. Such a mechanism may be provided at a penetration point of the outer chamber 15.

起施例 GaとAsを合計800grをるっぽ11内に装填し、
砒素ガス密封容器中で直接Ga Asを合成した後、G
a As単結晶を引き上げた。
Load a total of 800g of Ga and As into Ruppo 11,
After directly synthesizing GaAs in an arsenic gas-sealed container, G
a As single crystal was pulled up.

この間光学窓用石英ロッド1の先端は、常に約850℃
に保たれたが、曇りは生じなかった。
During this time, the tip of the quartz rod 1 for optical window is always kept at about 850°C.
cloudiness did not occur.

二波長式放射高温計2の指示は液面の温度のゆらぎを反
映して、ピーク値で約±5℃の変動を示したが、引き上
げの開始後、直胴部に入った後の温度の平均値は± 1
℃に保たれた。
The indication from the dual-wavelength radiation pyrometer 2 reflected fluctuations in the temperature of the liquid surface, and showed a fluctuation of approximately ±5°C at its peak value. Average value is ± 1
It was kept at ℃.

この結果、フロント部からバック部にかけて、中心部的
2.5cmφニツイテEPD2ooocI11−3以下
の均一な結晶(直径4.5cmφ、長さ7cI11)が
得られた。
As a result, a uniform crystal (diameter 4.5 cmφ, length 7cI11) with a central diameter of 2.5 cmφ (EPD2ooocI11-3 or less) was obtained from the front part to the back part.

本発明ではGaAsを例に説明したが、Ga ASに限
定されるものではなく、例えばInASの如き高解離圧
化合物に対しても適用可能である。
Although the present invention has been explained using GaAs as an example, it is not limited to Ga AS, and can also be applied to high dissociation pressure compounds such as InAS.

然−jL 以上説明したように、この発明によれば、転位分布の縦
方向の均一度が大いに改善された高解離圧化合物単結晶
をつくることができる。
As explained above, according to the present invention, it is possible to produce a high dissociation pressure compound single crystal in which the longitudinal uniformity of dislocation distribution is greatly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施に適した装置の一例を示す断面
図、第2図は光学窓の内容器との接合部の他の実施例の
詳細図である。 1・・・石英ロンド、 2・・・二波式赤外線放射高温計、 3・・・カスケード温度制御器、 4・・・砒素圧制御炉、5・・・ヒーター、6・・・主
ヒータ−,7・・・シール、8・・・熱電対、9・・・
内チャンバー蓋、10・・・内チヤンバ−,11・・・
るつぼ、12・・・単結晶、13・・・不活性ガス導入
管、14・・・排気管、15・・・外チャンバー、16
・・・引き上げ軸、11・・・テーバジヨイント、 18・・・固体ガスケット、19・・・ネジ、特許出願
人 新技術開発事業団 (外2名) 代理人 弁理士 小 松 秀 岳 ↑ 2 図 手続ネ甫正書(自発) 特許庁長官 志 賀 学 殿 1、事件の表示 昭和59年特許願第104439号2
、発明の名称 高解離圧化合物単結晶成長方法3、補正
をする者 事件との関係 特許出願人 名 称 新技術開発事業団 (ばか2名)7、補正の内
容 (1)明細書第7頁第2行の「熱膨張性」を「膨張」と
訂正する。 (2)第9頁第18行の「熱膨張性」を「膨張」と訂正
する。 (3)第10頁第1行の「このような機構は」を[この
ような圧下機構は]と訂正する。 4) 第11頁第14行の1シール」を「回転シール」
と訂正する。
FIG. 1 is a sectional view showing an example of an apparatus suitable for carrying out the present invention, and FIG. 2 is a detailed view of another embodiment of the joint portion of the optical window with the inner container. DESCRIPTION OF SYMBOLS 1... Quartz rond, 2... Two-wave infrared radiation pyrometer, 3... Cascade temperature controller, 4... Arsenic pressure control furnace, 5... Heater, 6... Main heater , 7... Seal, 8... Thermocouple, 9...
Inner chamber lid, 10... Inner chamber, 11...
Crucible, 12... Single crystal, 13... Inert gas introduction pipe, 14... Exhaust pipe, 15... Outer chamber, 16
... Pulling shaft, 11 ... Taper joint, 18 ... Solid gasket, 19 ... Screw, Patent applicant New Technology Development Corporation (2 others) Agent Patent attorney Hidetake Komatsu ↑ 2 Diagram procedure Neho Seisho (spontaneous) Manabu Shiga, Director General of the Patent Office 1, Indication of the case Patent Application No. 104439 of 1982 2
, Title of the invention Method for growing single crystals of high dissociation pressure compounds 3 Relationship with the case of the person making the amendment Name of the patent applicant New Technology Development Corporation (2 idiots) 7 Contents of the amendment (1) Specification page 7 Correct “thermal extensibility” in the second line to “expansion”. (2) "Thermal expandability" on page 9, line 18 is corrected to "expansion." (3) In the first line of page 10, "such a mechanism" is corrected to "such a rolling down mechanism". 4) “1 sticker” on page 11, line 14 is “rotating sticker”
I am corrected.

Claims (1)

【特許請求の範囲】 (1〕 高解離圧成分ガスを密封し、その圧力を制御し
ながら高解離圧化合物単結晶を引きあげる方法において
、前記ガスを密封する内容器に密着性よく接合された透
光性材料からなる光学窓を通して、融液面の温度を光学
的に検知し、その結果に基づき加熱源を制御することを
特徴とする高解離圧化合物単結晶成長方法。 (2)光学窓が内容器にテーパージヨイントをもって接
合されている特許請求の範囲(1)記載の高解離圧化合
物単結晶成長方法。 (3) 光学窓が内容器に固体ガスケットを用いて接合
されている特許請求の範囲(1)記載の高解離圧化合物
単結晶成長方法。
[Scope of Claims] (1) In a method for pulling a single crystal of a high dissociation pressure compound while sealing a high dissociation pressure component gas and controlling the pressure, the component gas is tightly bonded to an inner container that seals the gas. A high dissociation pressure compound single crystal growth method characterized by optically detecting the temperature of the melt surface through an optical window made of a translucent material and controlling the heating source based on the result. (2) Optical window A method for growing a single crystal of a high dissociation pressure compound according to claim (1), in which the optical window is joined to the inner container with a tapered joint. (3) A patent claim, in which the optical window is joined to the inner container using a solid gasket. A method for growing a single crystal of a high dissociation pressure compound according to scope (1).
JP10443984A 1984-05-25 1984-05-25 Process for growing single crystal of compound having high dissociation pressure Granted JPS60251194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10443984A JPS60251194A (en) 1984-05-25 1984-05-25 Process for growing single crystal of compound having high dissociation pressure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10443984A JPS60251194A (en) 1984-05-25 1984-05-25 Process for growing single crystal of compound having high dissociation pressure

Publications (2)

Publication Number Publication Date
JPS60251194A true JPS60251194A (en) 1985-12-11
JPH0339039B2 JPH0339039B2 (en) 1991-06-12

Family

ID=14380693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10443984A Granted JPS60251194A (en) 1984-05-25 1984-05-25 Process for growing single crystal of compound having high dissociation pressure

Country Status (1)

Country Link
JP (1) JPS60251194A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4857278A (en) * 1987-07-13 1989-08-15 Massachusetts Institute Of Technology Control system for the czochralski process

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS515637A (en) * 1974-07-04 1976-01-17 Fujimori Sangyo ENTOTSU
JPS5913691A (en) * 1982-07-08 1984-01-24 Semiconductor Res Found Puliing device of gaas single crystal
JPS5926996A (en) * 1982-08-03 1984-02-13 Toshiba Corp Preparation of single crystal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS515637A (en) * 1974-07-04 1976-01-17 Fujimori Sangyo ENTOTSU
JPS5913691A (en) * 1982-07-08 1984-01-24 Semiconductor Res Found Puliing device of gaas single crystal
JPS5926996A (en) * 1982-08-03 1984-02-13 Toshiba Corp Preparation of single crystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4857278A (en) * 1987-07-13 1989-08-15 Massachusetts Institute Of Technology Control system for the czochralski process

Also Published As

Publication number Publication date
JPH0339039B2 (en) 1991-06-12

Similar Documents

Publication Publication Date Title
JPS5854115B2 (en) How to use tankets
Lee et al. Bridgman growth of strontium barium niobate single crystals
JPS60251194A (en) Process for growing single crystal of compound having high dissociation pressure
JPS58135626A (en) Manufacture of compound semiconductor single crystal and manufacturing device thereof
US4567849A (en) Dipping liquid phase epitaxy for HgCdTe
US5240685A (en) Apparatus for growing a GaAs single crystal by pulling from GaAs melt
Kremer et al. Composition gradients and segregation in Hg1− xMnxTe
Su et al. Crystal Growth
Rosenberger et al. Low-stress physical vapor growth (PVT)
JP3991400B2 (en) Single crystal growth method and apparatus
EP0100453B1 (en) method for growing a gaas single crystal by pulling from gaas melt
JPH07133187A (en) Method for growing semiconductor single crystal
JP2690420B2 (en) Single crystal manufacturing equipment
Ursu et al. Growth of large ultratransparent KCl single crystals
JP2543449B2 (en) Crystal growth method and apparatus
JPS62288186A (en) Production of compound semiconductor single crystal containing high vapor pressure component
JP3154351B2 (en) Single crystal growth method
CN105803518A (en) Czochralski-method-like monocrystal growing device and method
JPS62148389A (en) Method for growing single crystal
RU1157889C (en) Method of growing crystals of zinc selenide
JPH08109094A (en) Production of compound semiconductor single crystal
JPS62158186A (en) Production of single crystal of compound semiconductor
JPH06157183A (en) Method and device for producing compound crystal
JPH0559873B2 (en)
JPS59116189A (en) Method for controlling shape of single crystal