JPH0339039B2 - - Google Patents

Info

Publication number
JPH0339039B2
JPH0339039B2 JP59104439A JP10443984A JPH0339039B2 JP H0339039 B2 JPH0339039 B2 JP H0339039B2 JP 59104439 A JP59104439 A JP 59104439A JP 10443984 A JP10443984 A JP 10443984A JP H0339039 B2 JPH0339039 B2 JP H0339039B2
Authority
JP
Japan
Prior art keywords
high dissociation
inner container
dissociation pressure
optical window
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59104439A
Other languages
Japanese (ja)
Other versions
JPS60251194A (en
Inventor
Koichi Sasaki
Kenji Tomizawa
Yasushi Shimanuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP10443984A priority Critical patent/JPS60251194A/en
Publication of JPS60251194A publication Critical patent/JPS60251194A/en
Publication of JPH0339039B2 publication Critical patent/JPH0339039B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/22Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal
    • C30B15/26Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal using television detectors; using photo or X-ray detectors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、超高速ICおよびレーザーのため
の例えば砒化ガリウム基板(GaAs基板)の如き
高解離圧化合物単結晶の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a method for producing single crystals of high dissociation pressure compounds, such as gallium arsenide substrates (GaAs substrates), for ultrahigh speed ICs and lasers.

従来の技術 超高速ICおよびレーザーのためのGaAs基板の
如き高解離圧化合物の製造方法としてチヨクラル
スキー(CZ)法は水平ブリツジマン(HB)法に
比し、容易に<100>方位の丸いインゴツトが得
られる特徴があり、重要視されている。しかし、
このCZ法は製品の格子欠陥密度の低減化とその
均一化のための結晶成長条件の最適化とその制御
性という点において、未解決の問題を残してい
る。
Conventional technology As a method for producing high dissociation pressure compounds such as GaAs substrates for ultra-high-speed ICs and lasers, the Czyochralski (CZ) method can easily produce round ingots with <100> orientation compared to the horizontal Bridgeman (HB) method. It has the characteristic of being able to obtain, and is regarded as important. but,
This CZ method leaves unresolved problems in terms of optimization and controllability of crystal growth conditions for reducing and uniformizing the lattice defect density in products.

この問題の一つは高解離圧成分である砒素の圧
力の最適化であり、他の一つは育成時の熱環境の
最適化である。
One of these issues is optimizing the pressure of arsenic, which is a high dissociation pressure component, and the other is optimizing the thermal environment during growth.

第1の問題について説明すると、従来は、酸化
ホウ素でGaAs融液表面を封止することにより砒
素の飛散を防ぐ液体封止チヨクラルスキー
(LEC)法が主流であつたが、これでは原料にお
ける元素配分以上の調整が出来ず、格子欠陥密度
をさらに低減するためにはより精度の高いストイ
キオメトリの制御が必要である。そのためには、
結晶の育成の際、常に融液面を一定の最適砒素圧
で覆い、融液のストイキオメトリを制御する必要
がある。
To explain the first problem, conventionally, the mainstream was the liquid encapsulation Czyochralski (LEC) method, which prevents arsenic from scattering by sealing the surface of the GaAs melt with boron oxide. Since it is not possible to make adjustments beyond the element distribution, more precise control of stoichiometry is required to further reduce the lattice defect density. for that purpose,
During crystal growth, it is necessary to always cover the melt surface with a constant optimum arsenic pressure and control the stoichiometry of the melt.

この目的のためには結晶育成する高温におい
て、安定な材料でつくつた容器で砒素雰囲気を密
封する必要があり、さらにこの密封容器は砒素圧
を精度よく制御するための砒素圧制御部を有し、
上下軸の回転に対し、砒素ガスを封止できるこ
と、および結晶取り出しのために容易に、しかも
何度でも切り離し可能であること、さらに結晶育
成中光学的に観察できること等の機能が必要であ
る。
For this purpose, it is necessary to seal the arsenic atmosphere in a container made of a material that is stable at the high temperatures used for crystal growth, and this sealed container must also have an arsenic pressure control section to accurately control the arsenic pressure. ,
It is necessary to have functions such as being able to seal in arsenic gas against rotation of the vertical axis, being able to be easily and repeatedly cut off to take out the crystal, and being able to optically observe the crystal during growth.

これらの条件を満足する結晶育成装置として、
本発明者らはさきに砒素化合物単結晶成長装置
(特願昭58−157883号)を提案している。
As a crystal growth device that satisfies these conditions,
The present inventors have previously proposed an apparatus for growing an arsenic compound single crystal (Japanese Patent Application No. 157883/1983).

第2の問題である育成時の熱条件の最適化には
成長界面の温度と温度勾配の制御が重要である。
成長界面の温度はストイキオメトリの精密な制御
のためには一定である必要があり、また温度勾配
は成長速度を決めるが固化の際の熱歪が格子欠陥
の原因となることから育成の間一定であることが
欠陥密度の均一な結晶の成長には必要である。
For the second problem, optimizing the thermal conditions during growth, it is important to control the temperature and temperature gradient at the growth interface.
The temperature at the growth interface needs to be constant for precise control of stoichiometry, and the temperature gradient determines the growth rate, but thermal strain during solidification causes lattice defects. A constant defect density is necessary for crystal growth with uniform defect density.

さらに転位密度を下げるために固液界面の温度
勾配を低くすることは大きな効果があるが、その
反面結晶成長のための適正な融液温度と引き上げ
速度の範囲がせまくなり、融液温度の精密な制御
なしには単結晶の育成は不可能である。
Furthermore, lowering the temperature gradient at the solid-liquid interface has a great effect on lowering the dislocation density, but on the other hand, the range of appropriate melt temperature and pulling rate for crystal growth becomes narrower, and the precision of melt temperature cannot be adjusted. Without proper control, single crystal growth is impossible.

従来、CZ法においては、熱条件の制御は盲点
になつていた。従来は、結晶育成と共に融液面位
置が低下してくる状況下で、固化の潜熱を補償し
て、固液界面、温度を一定に維持するためには、
ヒーターの温度を経験的に決められたプログラム
にしたがつて徐々に変化させることが行なわれて
きた。
Conventionally, control of thermal conditions has been a blind spot in the CZ method. Conventionally, in order to compensate for the latent heat of solidification and maintain the solid-liquid interface and temperature constant under conditions where the melt surface position decreases with crystal growth,
It has been practiced to gradually change the temperature of the heater according to an empirically determined program.

発明が解決しようとする問題点 しかし、上記のような方法では固液界面の熱環
境が一定になることは保障されず、結晶の品質向
上には充分ではなかつた。
Problems to be Solved by the Invention However, the above method does not guarantee that the thermal environment at the solid-liquid interface remains constant, and is not sufficient to improve the quality of crystals.

固液界面の熱環境の制御のために融液面位置を
一定に保つことは有効であるが、それだけでは融
液量の変化、結晶の成長とそれにともなう潜熱の
放出、又、ルツボ端位置の変化等のため、融液面
温度は一定に保てない。
It is effective to keep the melt surface position constant in order to control the thermal environment at the solid-liquid interface, but this alone may cause changes in the melt volume, crystal growth and the accompanying release of latent heat, and the crucible edge position. Due to changes, etc., the melt surface temperature cannot be kept constant.

このために、融液面の温度を直接検知し制御す
ることが必要となる。その方法として熱電対を使
用することが先ず考えられるが、熱電対を直接融
液に挿入することはルツボの回転にともなう融液
の動きに不要な撹乱を与えることになり、結晶育
成に付均一の要因を与える。その上温度勾配の強
い箇所の温度の読み取りは困難なうえ、操作も困
難である。
For this reason, it is necessary to directly detect and control the temperature of the melt surface. The first possible way to do this is to use a thermocouple, but inserting a thermocouple directly into the melt will cause unnecessary disturbance to the movement of the melt as the crucible rotates, resulting in uniform crystal growth. give the factors. Moreover, it is difficult to read the temperature in areas with strong temperature gradients, and it is also difficult to operate.

問題点を解決するための手段 この発明は、上記CZ法の熱環境の精密な制御
の困難を解決しようとするものであり、その構成
は、高解離圧成分ガスを密封し、その圧力を制御
しながら高解離圧化合物単結晶を引きあげる方法
において、前記高解離圧成分ガスを密封する内容
器を分割可能、かつ分割箇所を密封性良く固定出
来るように構成し、この内容器上部と内容器下部
にはそれぞれ、上、下の回転軸の回転および上下
動を可能にする軸受け部のための液体シール材を
有する回転シールを設け、更に内容器上部に密着
性よく接合された透光性材料からなる光学窓を通
して融液面の温度を光学的に検知し、その結果に
基づき加熱源を制御することを特徴とする高解離
圧化合物単結晶成長方法である。
Means for Solving the Problems This invention attempts to solve the difficulty in precisely controlling the thermal environment of the CZ method, and its configuration is to seal the high dissociation pressure component gas and control the pressure. In a method for pulling a single crystal of a high dissociation pressure compound, the inner container for sealing the high dissociation pressure component gas is constructed so that it can be divided and the divided portion can be fixed with good sealing, and the upper part of the inner container and the inner container are separated. At the bottom, rotary seals with liquid sealing material are provided for bearing parts that enable rotation and vertical movement of the upper and lower rotating shafts, and a translucent material is bonded to the upper part of the inner container with good adhesion. This is a method for growing single crystals of high dissociation pressure compounds, which is characterized by optically detecting the temperature of the melt surface through an optical window, and controlling the heating source based on the results.

特願昭58−157883号に述べた方法では、砒素化
合物単結晶の成長が砒素ガスを密封する容器の中
で行なわれるため、従来必要だつた酸化ホウ素に
よる封止が不要であり、密封容器を貫通する石英
ロツド、石英パイプあるいはグラスフアイバーの
如き光学窓を用いて融液面を直接観察できる。こ
の光学窓は他の透光性材料例えばサフアイヤでも
良く、又形状も板上のものを内容器に設けてもよ
い。内容器との接合は、砒素雰囲気を充分良く密
封しうる必要があり、この用途に用いられる接合
としてテーパジヨイント、膨脹黒鉛の如き固体ガ
スケツトを用いる例が挙げられる。かかる光学窓
を通して赤外線放射温度計を用い融液面の温度を
計測することができる。この際上記光学窓に
Ga2O3、GaAs、As等の凝縮が起きると、光の吸
収が起こり、計測を著しく妨げるが、これは以下
のような方法で回避できる。
In the method described in Japanese Patent Application No. 58-157883, the arsenic compound single crystal is grown in a container that seals arsenic gas, so there is no need to seal with boron oxide, which was required in the past, and it is not necessary to use a sealed container. The melt surface can be directly observed using a penetrating optical window such as a quartz rod, quartz pipe, or glass fiber. This optical window may be made of other light-transmitting material, such as sapphire, or may have a plate-like shape in the inner container. The joint with the inner container must be able to seal the arsenic atmosphere sufficiently well, and examples of joints used for this purpose include the use of a taper joint and a solid gasket such as expanded graphite. Through such an optical window, the temperature of the melt surface can be measured using an infrared radiation thermometer. At this time, the above optical window
When condensation of Ga 2 O 3 , GaAs, As, etc. occurs, light absorption occurs and significantly impedes measurement, but this can be avoided by the following method.

(1) 光学窓の先端の温度を610〜950℃または1080
〜1200℃の温度に保つこと。
(1) Set the temperature at the tip of the optical window to 610 to 950℃ or 1080℃.
Keep at a temperature of ~1200°C.

(2) 砒素雰囲気密封容器およびるつぼ材として石
英を使用せず、また残留酸素を減らし、Ga2O3
やGaAsの凝縮の原因となる酸素による反応を
抑制すること。
(2) Does not use quartz as the arsenic atmosphere sealed container or crucible material, reduces residual oxygen, and reduces Ga 2 O 3
To suppress reactions caused by oxygen that cause condensation of GaAs and GaAs.

(3) 赤外線放射温度計の使用波長を1μm前後と
し、二波長式とすることで曇りが起こつても一
定の温度支持を得ることができる。この波長域
の光を、砒素ガスと石英は吸収せず、この発明
の目的に適つている。
(3) By setting the wavelength of the infrared radiation thermometer used to be around 1 μm and using a dual-wavelength type, constant temperature support can be obtained even when cloudy weather occurs. Arsenic gas and quartz do not absorb light in this wavelength range, and are suitable for the purpose of this invention.

図面を参照して、この発明の実施例を具体的に
説明すると、第1図はこの発明を実施するに適し
た装置の概要を示す断面図である。不活性ガス導
入管13と排気管14を備えた外チヤンバー15
内に内チヤンバー蓋9を備えた内チヤンバー10
を設け、この内チヤンバーを囲むようにヒーター
5および主ヒーター6を設ける。内チヤンバー1
0内には外チヤンバー15および内チヤンバー1
0の壁を貫通し、上下動ができ、かつ、回転し得
る回転軸に支持されたPBN製のルツボ11があ
り、このルツボ内の原料融液から単結晶12を引
き上げるための上軸16は外チヤンバー15およ
び内チヤンバー蓋9を貫通し、上下動が可能でか
つ回転し得る。回転軸が内チヤンバー10および
内チヤンバー蓋9を貫通する箇所にはシール7が
あり、内チヤンバー蓋9には砒素圧制御炉4が設
けられている。
Embodiments of the present invention will be specifically described with reference to the drawings. FIG. 1 is a sectional view showing an outline of an apparatus suitable for carrying out the present invention. Outer chamber 15 with inert gas inlet pipe 13 and exhaust pipe 14
an inner chamber 10 with an inner chamber lid 9 therein;
A heater 5 and a main heater 6 are provided to surround the chamber. Inner chamber 1
0 contains outer chamber 15 and inner chamber 1.
There is a crucible 11 made of PBN supported by a rotating shaft that penetrates the wall of the crucible and can move up and down and rotate. It passes through the outer chamber 15 and the inner chamber lid 9 and can move up and down and rotate. A seal 7 is provided at a location where the rotating shaft passes through the inner chamber 10 and the inner chamber lid 9, and the inner chamber lid 9 is provided with an arsenic pressure controlled furnace 4.

そして光学窓として石英ロツド1を外チヤンバ
ー15および内チヤンバー蓋9を貫通して設けて
ある。内チヤンバー蓋との接合にはテーパジヨイ
ント17を用いた。これを通してるつぼ11内の
融液面の温度を検知する温度計として1μmと
0.85μmの波長を用いる二波長式赤外線放射高温
計2を採用する。
A quartz rod 1 is provided as an optical window passing through the outer chamber 15 and the inner chamber lid 9. A taper joint 17 was used to join the inner chamber lid. A thermometer with a diameter of 1 μm is used to detect the temperature of the melt surface in the crucible 11 through this.
A dual-wavelength infrared radiation pyrometer 2 using a wavelength of 0.85 μm is adopted.

この二波長式赤外線放射高温計2から得られる
アナログ信号とるつぼ加熱用主ヒーター6に接触
している熱電対8の対電力を用いて、ヒーターの
出力をカスケード温度制御器3によりカスケード
的に制御する。また、単結晶12を引き上げてい
る時間中、るつぼ11内の融液面を一定の高さに
保つために、引き上げ用の回転軸に結合した重量
式自動直径制御センサーの信号から液面の降下を
コンピユーターにより求め、自動的に補正する。
Using the analog signal obtained from this dual-wavelength infrared radiation pyrometer 2 and the power of the thermocouple 8 in contact with the main heater 6 for heating the crucible, the output of the heater is controlled in a cascade manner by the cascade temperature controller 3. do. In addition, in order to maintain the melt level in the crucible 11 at a constant height while the single crystal 12 is being pulled, a drop in the liquid level is detected based on a signal from a gravimetric automatic diameter control sensor connected to the pulling rotation shaft. is determined by a computer and automatically corrected.

なお、上記実施例では、光学窓1の接合をテー
パージヨイント17によつて行なつているが、第
2図に示すように膨脹黒鉛の如き固体ガスケツト
18を内チヤンバー蓋9にとりつけたネジ19に
よつて圧下することによつて行なつてもよい。こ
のような圧下機構は外チヤンバー15の貫通箇所
に設けてもよい。
In the above embodiment, the optical window 1 is joined by a tapered joint 17, but as shown in FIG. This may also be carried out by compressing the mixture by means of. Such a lowering mechanism may be provided at a penetration point of the outer chamber 15.

実施例 GaとAsを合計800grをるつぼ11内に装填し、
砒素ガス密封容器中で直接GaAsを合成した後、
GaAs単結晶を引き上げた。この間光学窓用石英
ロツド1の先端は、常に約850℃に保たれたが、
曇りは生じなかつた。二波長式放射高温計2の指
示は液面の温度のゆらぎを反映して、ピーク値で
約±5℃の変動を示したが、引き上げの開始後、
直胴部に入つた後の温度の平均値は±1℃に保た
れた。この結果、フロント部からバツク部にかけ
て、中心部約2.5cmφについてEPD2000cm-3以下
の均一な結晶(直径4.5cmφ、長さ7cm)が得ら
れた。
Example A total of 800 gr of Ga and As was loaded into the crucible 11,
After directly synthesizing GaAs in an arsenic gas sealed container,
GaAs single crystal was pulled. During this time, the tip of the quartz rod 1 for optical windows was always kept at about 850°C.
No clouding occurred. The indication from the dual-wavelength radiation pyrometer 2 reflected fluctuations in the temperature of the liquid surface, and showed fluctuations of approximately ±5°C at the peak value, but after the start of lifting,
The average temperature after entering the straight body was maintained at ±1°C. As a result, uniform crystals (diameter 4.5 cmφ, length 7 cm) with an EPD of 2000 cm -3 or less were obtained from the front part to the back part at a center area of about 2.5 cmφ.

本発明ではGaAsを例に説明したが、GaAsに
限定されるものではなく、例えばInAsの如き高
解離圧化合物に対しても適用可能である。
Although the present invention has been explained using GaAs as an example, it is not limited to GaAs, and can also be applied to high dissociation pressure compounds such as InAs.

効 果 以上説明したように、この発明によれば、転移
分布の縦方向の均一度が大いに改善された高解離
圧化合物単結晶をつくることができる。
Effects As explained above, according to the present invention, it is possible to produce a high dissociation pressure compound single crystal in which the longitudinal uniformity of the dislocation distribution is greatly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施に適した装置の一例を
示す断面図、第2図は光学窓の内容器との接合部
の他の実施例の詳細図である。 1……石英ロツド、2……二波式赤外線放射高
温計、3……カスケード温度制御器、4……砒素
圧制御炉、5……ヒーター、6……主ヒーター、
7……回転シール、8……熱電対、9……内チヤ
ンバー蓋、10……内チヤンバー、11……るつ
ぼ、12……単結晶、13……不活性ガス導入
管、14……排気管、15……外チヤンバー、1
6……引き上げ軸、17……テーパジヨイント、
18……固体ガスケツト、19……ネジ。
FIG. 1 is a sectional view showing an example of an apparatus suitable for carrying out the present invention, and FIG. 2 is a detailed view of another embodiment of the joint portion of the optical window with the inner container. 1... Quartz rod, 2... Two-wave infrared radiation pyrometer, 3... Cascade temperature controller, 4... Arsenic pressure control furnace, 5... Heater, 6... Main heater,
7... Rotating seal, 8... Thermocouple, 9... Inner chamber lid, 10... Inner chamber, 11... Crucible, 12... Single crystal, 13... Inert gas introduction pipe, 14... Exhaust pipe , 15...outer chamber, 1
6... Pulling shaft, 17... Taper joint,
18...solid gasket, 19...screw.

Claims (1)

【特許請求の範囲】 1 高解離圧成分ガスを密封し、その圧力を制御
しながら高解離圧化合物単結晶を引きあげる方法
において、前期高解離圧成分ガスを密封する内容
器を分割可能、かつ分割箇所を密封性良く固定出
来るように構成し、この内容器上部と内容器下部
にはそれぞれ、上、下の回転軸の回転および上下
動を可能にする軸受け部のための液体シール材を
有する回転シールを設け、更に内容器上部に密着
性よく接合された透光性材料からなる光学窓を通
して、融液面の温度を光学的に検知し、その結果
に加熱源を制御することを特徴とする高解離圧化
合物単結晶成長方法。 2 光学窓が内容器にテーパージヨイントをもつ
て接合されている特許請求の範囲第1項記載の高
解離圧化合物単結晶成長方法。 3 光学窓が内容器に固体ガスケツトを用いて接
合されている特許請求の範囲第1項記載の高解離
圧化合物単結晶成長方法。
[Claims] 1. A method for pulling a single crystal of a high dissociation pressure compound while sealing a high dissociation pressure component gas and controlling the pressure, in which the inner container for sealing the high dissociation pressure component gas is divisible, and The divided parts are configured to be fixed with good sealing performance, and the upper and lower parts of the inner container each have a liquid sealing material for a bearing part that enables the rotation and vertical movement of the upper and lower rotating shafts. A rotary seal is provided, and the temperature of the melt surface is optically detected through an optical window made of a translucent material bonded to the upper part of the inner container with good adhesion, and the heating source is controlled based on the results. A method for growing single crystals of high dissociation pressure compounds. 2. The high dissociation pressure compound single crystal growth method according to claim 1, wherein the optical window is joined to the inner container with a tapered joint. 3. The high dissociation pressure compound single crystal growth method according to claim 1, wherein the optical window is joined to the inner container using a solid gasket.
JP10443984A 1984-05-25 1984-05-25 Process for growing single crystal of compound having high dissociation pressure Granted JPS60251194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10443984A JPS60251194A (en) 1984-05-25 1984-05-25 Process for growing single crystal of compound having high dissociation pressure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10443984A JPS60251194A (en) 1984-05-25 1984-05-25 Process for growing single crystal of compound having high dissociation pressure

Publications (2)

Publication Number Publication Date
JPS60251194A JPS60251194A (en) 1985-12-11
JPH0339039B2 true JPH0339039B2 (en) 1991-06-12

Family

ID=14380693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10443984A Granted JPS60251194A (en) 1984-05-25 1984-05-25 Process for growing single crystal of compound having high dissociation pressure

Country Status (1)

Country Link
JP (1) JPS60251194A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4857278A (en) * 1987-07-13 1989-08-15 Massachusetts Institute Of Technology Control system for the czochralski process

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS515637A (en) * 1974-07-04 1976-01-17 Fujimori Sangyo ENTOTSU
JPS5913691A (en) * 1982-07-08 1984-01-24 Semiconductor Res Found Puliing device of gaas single crystal
JPS5926996A (en) * 1982-08-03 1984-02-13 Toshiba Corp Preparation of single crystal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS515637A (en) * 1974-07-04 1976-01-17 Fujimori Sangyo ENTOTSU
JPS5913691A (en) * 1982-07-08 1984-01-24 Semiconductor Res Found Puliing device of gaas single crystal
JPS5926996A (en) * 1982-08-03 1984-02-13 Toshiba Corp Preparation of single crystal

Also Published As

Publication number Publication date
JPS60251194A (en) 1985-12-11

Similar Documents

Publication Publication Date Title
JPS5854115B2 (en) How to use tankets
JPH0339039B2 (en)
Lee et al. Bridgman growth of strontium barium niobate single crystals
JPS58135626A (en) Manufacture of compound semiconductor single crystal and manufacturing device thereof
Fullmer et al. Crystal growth of the solid electrolyte RbAg4I5
JPH11147785A (en) Production of single crystal
Kremer et al. Composition gradients and segregation in Hg1− xMnxTe
Itoyama et al. Growth of βII-Li3VO4 single crystals by the floating zone technique with the aid of a heat reservoir
JP3991400B2 (en) Single crystal growth method and apparatus
JP2690420B2 (en) Single crystal manufacturing equipment
JP2755452B2 (en) Silicon single crystal pulling equipment
JP3134415B2 (en) Single crystal growth method
Ursu et al. Growth of large ultratransparent KCl single crystals
JP2612897B2 (en) Single crystal growing equipment
JP2543449B2 (en) Crystal growth method and apparatus
JPH0341432B2 (en)
JP3154351B2 (en) Single crystal growth method
RU1157889C (en) Method of growing crystals of zinc selenide
JPH07110797B2 (en) Method for producing compound semiconductor single crystal containing high vapor pressure component
CN111962139A (en) Method for preparing gallium arsenide crystal by VGF process
JPS62158186A (en) Production of single crystal of compound semiconductor
JP2943419B2 (en) Single crystal growth method
Jones Gold containers for single crystal growth: Production of lead germanate for infra-red detectors
JP3125313B2 (en) Single crystal growth method
JPH0559873B2 (en)