JPS60248867A - Chain having >=70kg/mm2 tensile strength and excellent toughness and its production - Google Patents

Chain having >=70kg/mm2 tensile strength and excellent toughness and its production

Info

Publication number
JPS60248867A
JPS60248867A JP19258484A JP19258484A JPS60248867A JP S60248867 A JPS60248867 A JP S60248867A JP 19258484 A JP19258484 A JP 19258484A JP 19258484 A JP19258484 A JP 19258484A JP S60248867 A JPS60248867 A JP S60248867A
Authority
JP
Japan
Prior art keywords
chain
toughness
tensile strength
steel
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19258484A
Other languages
Japanese (ja)
Other versions
JPS617468B2 (en
Inventor
Toshimichi Mori
俊道 森
Takeo Harada
原田 武夫
Soichi Izumi
泉 総一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP19258484A priority Critical patent/JPS60248867A/en
Publication of JPS60248867A publication Critical patent/JPS60248867A/en
Publication of JPS617468B2 publication Critical patent/JPS617468B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To produce inexpensively a large-diameter chain having excellent toughness and high tensile strength by forming a steel material made of the specified compsn. consisting of C, Si, Mn, Cr, P, S, Ca, Al, N and Fe then normalizing the steel material at an adequate temp. and allowing the same to cool. CONSTITUTION:The steel material having the compsn. consisting of 0.25-0.45% C, 0.15-0.55% Si, 1.00-1.90% Mn, <=0.50% Cr, <=0.040% P, <=0.005% S, 0.0010- 0.0080% Ca, 0.025-0.080% sol. Al, 0.0060-0.0200% sol. N, 2-6 Al/N ratio by weight and the balance substantially Fe with inevitable impurities is formed to a chain and is then subjected to a normalizing treatment by heating the same to the AC3 transformation point or above -950 deg.C; thereafter the chain is allowed to cool or is cooled preferably at about 0.1-1.0 deg.C/sec cooling rate of the surface layer from the heating temp. down to the A1 transformation point. The large- diameter and long-sized chain having >=70kg/mm.<2> tensile strength and excellent toughness is thus obtd. at the low cost of the steel material.

Description

【発明の詳細な説明】 本発明は大径高張力チェーン、特に直径70mmφ〜1
60ff1mφ、引張強さが70Kg/mm’以上、0
°Cにおける母材の吸収エネルギーが6 kg−m以上
、溶接部の吸収エネルギーが5 kg−+n以上の特性
を有する引張強度および靭性に優れたチェーンおよびそ
の製造方法に関するものである。
Detailed Description of the Invention The present invention relates to a large-diameter high-tensile chain, especially a chain with a diameter of 70 mmφ to 1
60ff1mφ, tensile strength 70Kg/mm' or more, 0
The present invention relates to a chain with excellent tensile strength and toughness, and a method for manufacturing the same, which has characteristics in which the absorbed energy of the base material is 6 kg-m or more and the absorbed energy of the welded part is 5 kg-+n or more at °C.

上記チェーンはJIS G3105において3種チェー
ン(SBC?0 )として知られており、当規格は各国
における造船規格にも定められているものである。直径
70mmφ以上の大径3種チェーンは従来焼入・焼戻法
によって製造されているため、熱処理費用が極めて高く
、また焼入・焼戻方法はパッチ式で行なわれるため長尺
チェーンの製造は困難であった。これに対して近年の石
油事情から省エネルギーや製造コストの低減要求が強く
、また石油掘削事業や石油の海上備蓄計画の増加に伴な
い太径長尺チェーンの要求が切実なものとなっている。
The above-mentioned chain is known as a type 3 chain (SBC?0) in JIS G3105, and this standard is also stipulated in the shipbuilding standards of each country. Large-diameter 3-type chains with a diameter of 70 mm or more are conventionally manufactured using a quenching and tempering method, which requires extremely high heat treatment costs.Also, since the quenching and tempering method is performed using a patch method, it is difficult to manufacture long chains. It was difficult. On the other hand, due to the oil situation in recent years, there has been a strong demand for energy conservation and reduction in manufacturing costs, and with the increase in oil drilling projects and offshore oil stockpiling plans, there has been an urgent need for large diameter and long chains.

これら省エネルギーおよび長尺チェーン製造のための対
策として焼ならし熱処理による製造方法が試みられてい
るが、大径のチェーンにおいて所定強度を得るにはCや
Mn等の添加量を増さざるを得す、そのため靭性が低下
し前記規格を満足できなかった。またチェーンは焼なら
し処理前に丸鋼材を円環状に成形し端面をフラッシュバ
ット溶接して製造されるが、溶接部はオーステナイト結
晶粒力粗大化し、焼ならし処理後もそれの影響が残存し
著しい靭性の低下をきたし焼ならしによる大径長尺チェ
ーンの製造は困難であった。
As a measure to save energy and manufacture long chains, manufacturing methods using normalizing heat treatment have been attempted, but in order to obtain the specified strength for large-diameter chains, it is necessary to increase the amount of added C, Mn, etc. Therefore, the toughness decreased and the above specifications could not be satisfied. In addition, chains are manufactured by forming round steel into an annular shape and flash-butt welding the end faces before normalizing, but the austenite grain size becomes coarse in the weld, and this effect remains even after normalizing. However, the toughness significantly decreased, making it difficult to manufacture large-diameter long chains by normalizing.

本発明は高価な合金元素を使用しないで、すなわぢ従来
鋼並みの安価な鋼材コストで、規準による大径3種チェ
ーンの製造を可能としたもので、本発明の特徴とすると
ころは、A文およびNの組合せ添加によってオーステナ
イト結晶KMの粗大化をi且止し、これに鋼材中のS量
を低減し、ざらにCaを添加し、これらの組合せによっ
て高靭性化が達成出来ることにある。
The present invention makes it possible to manufacture three types of large-diameter chains according to standards without using expensive alloying elements, that is, at a steel material cost as low as that of conventional steel.The features of the present invention are as follows: By adding A and N in combination, the coarsening of austenite crystals KM can be stopped, and the amount of S in the steel can be reduced, and Ca can be roughly added to achieve high toughness. be.

鋼材に0.0IO%〜o、o3o%程度の少量のA丈を
添加し、不純物として鋼中に残存しているNとの結合に
よってA交Nを形成させ、これによって結晶粒を微細化
し靭性の向上を図ることは周知の技術である。しかしA
iNによる結晶粒の粗大化防止効果はせいぜい1000
°C以下の加熱温度においてのみ発揮されるもので、こ
れを超える高温に加熱するとA31Nはオーステナイト
中に固溶してしまい結晶粒の粗大化阻止の効果を失う。
Adding a small amount of A-length (approximately 0.0IO% to O, O3O%) to steel materials forms A-cross-N by bonding with N remaining in the steel as an impurity, thereby refining grains and improving toughness. It is a well-known technique to improve the However, A
The effect of iN on preventing coarsening of crystal grains is at most 1000
This effect is exhibited only at heating temperatures below .degree. C., and when heated to temperatures exceeding this temperature, A31N dissolves in solid solution in austenite and loses its effect of inhibiting crystal grain coarsening.

したがって焼ならしハイテンチェーンの場合は、母材部
の靭性改善には有効であるが、従来のA文およびNの添
加法では、大径チェーンの焼ならし後の規格を満足する
には至らなかった。またフラッシュバット溶接部のよう
に局部的には1500℃以上の溶融温度まで昇温される
場合は、A交Nによる結晶粒の微細化は達成できないた
め従来A文Nの利用はかえりみられなかった。
Therefore, in the case of normalized high-strength chains, it is effective in improving the toughness of the base metal, but the conventional A and N addition methods cannot meet the standards after normalizing for large diameter chains. There wasn't. Furthermore, in cases where the temperature is locally raised to a melting temperature of 1500°C or higher, such as in a flash butt weld, grain refinement by A/N cannot be achieved, so the use of A/N has not been seen in the past. .

しかし本発明者等は種々検討の結果、鋼中のNおよびA
文添加量を従来より増量しA交N量をふやすことによっ
て大径ハイテンチェーンの焼ならし後の靭性が改善出来
ることを見出した。またこれにSlの低減を組合せるこ
とによってさらに靭性が改善でき、特にS量を0.00
51以下にしCaを添加することによって著しい効果が
得られることを認めた。次にフランシュバット溶接部の
靭性について検討したところ、41′接ままでは結晶の
粗大化や溶接後の冷却による急冷組織の発生によって靭
性が著しく劣化するが、A文およびNを十分に含有せし
めしかもS量を低減し、溶接部を約850°Cに再加熱
し焼ならし処理することによって靭性が著しく回復する
ことが出来た。これは焼ならし処理によって鋼中に固溶
したA文およびNがAiNとして再析出し、これに低S
化およびCa添加による介在物の形態制御効果が相乗し
て靭性が回復するものである。この際多量に添加されて
いるNが十分にAiNとして析出しきれず固溶されたま
ま残存するとかえって靭性を害するので、(−分A、Q
−Nとして析出させるためにはA文添加量をやや過剰と
する必要があるが、多すぎるとまた靭性低下をきたすた
めANとN量の比は2〜6か適当である。
However, as a result of various studies, the present inventors found that N and A in steel
It has been found that the toughness of large-diameter high-strength chains after normalizing can be improved by increasing the amount of carbon added and increasing the amount of A/N. Furthermore, by combining this with a reduction in Sl, the toughness can be further improved, especially when the amount of S is reduced to 0.00.
It has been found that a significant effect can be obtained by reducing the value to 51 or less and adding Ca. Next, we examined the toughness of the Franchebutt weld and found that if the 41' weld is left in contact, the toughness deteriorates significantly due to the coarsening of crystals and the generation of a rapidly cooled structure due to cooling after welding, but it is possible to By reducing the amount of S and reheating the welded part to about 850°C and normalizing it, the toughness was able to be significantly recovered. This is because AiN and N dissolved in the steel during the normalizing treatment re-precipitate as AiN.
The effect of controlling the shape of inclusions by addition of Ca and Ca synergistically restores toughness. At this time, if the large amount of N added is not sufficiently precipitated as AiN and remains as a solid solution, it will actually impair the toughness.
In order to precipitate as -N, it is necessary to add a slightly excessive amount of A, but if it is too large, the toughness will also deteriorate, so the ratio of AN to N should be between 2 and 6, which is appropriate.

本発明は以上の新知見をもとになされたものであって、 (1) C: 0.25〜0.45% 、 S i:0
.15−0.55% 、 Mn:1.00〜1.90%
 、 Cr:0.50%以下、P、 : 0.040%
以下、S : 0.005%以下、Ca:o、0010
−0.0080y6、酸可溶性A見・0.025〜00
80%、酸可溶性N:0.00130〜0.0200χ
を含有し、そしてA文とNの重量比A交/Nが2〜6に
なるように調整し、残部は実質的にFeおよび不可避的
な不純物から成る引張強度?OKg#nm’以上の靭性
に優れたチェーン、(2) C: 0.25〜0.45
% 、 S i:0.]5500.55%、 Mn:1
.00〜1.H% 、 Cr:0.50%以下、P :
 0.040%以下、S : 0.005XJu下、C
a:0.o01cl〜0.0080%、酸可溶性A吏・
0.025〜0.080%、酸可溶性N:0.0060
− C’、0200χ、A交7’N:2〜6、残部は実
質的にFeおよび不可避的不純物の組成を有する鋼材を
チェーンに成形し、Ac3変態点以上950°C以下の
温度に加熱した後放冷することを特徴とする引張強度7
0Kg#nm’以上の靭性に優れたチェーンの製造方法
、 を要旨とするものである。
The present invention was made based on the above new findings, and includes: (1) C: 0.25-0.45%, Si: 0
.. 15-0.55%, Mn: 1.00-1.90%
, Cr: 0.50% or less, P: 0.040%
Below, S: 0.005% or less, Ca: o, 0010
-0.0080y6, acid soluble A-0.025-00
80%, acid soluble N: 0.00130-0.0200χ
and the weight ratio of A and N is adjusted so that the weight ratio A/N is 2 to 6, and the remainder consists essentially of Fe and unavoidable impurities. Chain with excellent toughness of OKg#nm' or more, (2) C: 0.25 to 0.45
%, Si:0. ]5500.55%, Mn:1
.. 00-1. H%, Cr: 0.50% or less, P:
0.040% or less, S: 0.005XJu or less, C
a:0. o01cl~0.0080%, acid soluble
0.025-0.080%, acid soluble N: 0.0060
- A steel material having a composition of C', 0200χ, A cross 7'N: 2 to 6, the remainder being substantially Fe and unavoidable impurities was formed into a chain and heated to a temperature of Ac3 transformation point or higher and 950°C or lower. Tensile strength 7 characterized by cooling afterwards
The gist of the present invention is a method for manufacturing a chain with excellent toughness of 0 kg#nm' or more.

以下に本発明の成分範囲限定理由を述べる。The reasons for limiting the range of components of the present invention will be described below.

Cヲ0.25〜0.45i量! (以下単にzと記す)
としたのは、0.25%:未満では空冷およびこれに準
する冷却によって、要求される引張強俄?OKg/mm
’以上を確保するのは困離となり、また0、45%超で
は靭性劣化が著しいことおよび溶接性の劣化を来たすか
らである。
Cwo 0.25-0.45i amount! (hereinafter simply written as z)
The reason for this is that if it is less than 0.25%, the required tensile strength can be increased by air cooling or similar cooling. OKg/mm
It is difficult to maintain a content of 0.45% or more, and if the content exceeds 0.45%, the toughness deteriorates significantly and the weldability deteriorates.

Slは引張強度の確保と合わせ、脱酸剤として使用して
いるもので、0.15%未満では強度確保および脱耐作
用共期特出来なくなる。また0、55%超では靭性の劣
化を来たすため0.55%以下とした。
Sl is used as a deoxidizing agent in addition to ensuring tensile strength, and if it is less than 0.15%, it will not be possible to ensure strength and prevent deoxidation. In addition, if it exceeds 0.55%, the toughness deteriorates, so the content is set at 0.55% or less.

Mnは靭性低下の少ない強化元素として使用するもので
あるが、1.0%未満では所要引張強度が得られなくな
ることから1.0%以上とし、また1、9(H超では焼
入性が過大となって、空冷またはこれに僧する冷却によ
ってもベーナイトあるいはマルテンサイトが生成し靭性
が著しく低下し、さらに溶接性も劣化することから1.
90X以下とした。
Mn is used as a reinforcing element with little deterioration in toughness, but if it is less than 1.0%, the required tensile strength cannot be obtained, so it should be 1.0% or more. If it becomes too large, bainite or martensite will be generated even by air cooling or other cooling, resulting in a significant decrease in toughness and further deterioration in weldability.1.
It was set to 90X or less.

CrはMn と共に靭性低下の少ない元素として使用す
るが、0.5% 超ではMn同様靭性を劣化させるため
0.50X以下とした。
Cr is used along with Mn as an element that causes less deterioration in toughness, but if it exceeds 0.5%, the toughness deteriorates like Mn, so it was set to 0.50X or less.

Pは0.040!超になると脆化をひき起し、強度およ
び靭性共劣化させるため0.040%以下とした。
P is 0.040! If the content exceeds this amount, it causes embrittlement and co-degrades strength and toughness, so the content was set at 0.040% or less.

Sは低減することによって延伸介在物量が低減し、靭性
が改善される傾向にあるが、特にSiを0.005%以
下とし、さらにA文Nの細粒効果と組合せることによっ
て靭性が著しく改善され、ハイテンチェーンの母材なら
びに溶接部の靭性の規格値を満足できるため、Sの上限
値を0.005%とした。
Reducing S tends to reduce the amount of drawn inclusions and improve toughness, but in particular, by reducing Si to 0.005% or less and combining it with the fine grain effect of A-FN, toughness is significantly improved. The upper limit of S was set at 0.005% to satisfy the standard values for the toughness of the base metal and welded part of high-tensile chain.

Caは本発明鋼ではAiと複合の形でSと作用し、非可
塑性の硫化物を生成し、延伸介在物生成量を減少させ、
靭性向上に寄与するもので硫化物形状制御元素として添
加するもので、Ca/S=0.2程度から効果が表われ
ることから0.0010%以上とし、通常の転炉操業に
おいて添加出来る量が0.0080Xであることから上
限を0.0080%とした。
In the steel of the present invention, Ca acts with S in a composite form with Ai to generate non-plastic sulfides and reduce the amount of elongated inclusions.
It contributes to improving toughness and is added as a sulfide shape control element.Since the effect appears from Ca/S = about 0.2, it should be set at 0.0010% or more, and the amount that can be added in normal converter operation is Since it is 0.0080X, the upper limit was set to 0.0080%.

Caの代りに希土類元素(REM)あるいはCeを用い
てもよい。
A rare earth element (REM) or Ce may be used instead of Ca.

酸可溶性A文を0.025%−0,080Xとしタノは
、Nと結合し結晶粒微細化作用をするもので通常の熱処
理を施す鋼材の場合は0.025%未満が一般的であル
カ、大径チェーンの靭性改善とくにフラッシュバット溶
接部を焼ならしによって靭性改善する場合には十分では
ない。一方、0.080%を超えると鋼中に過剰に固溶
すると同時にアルミナ系の介在物が多量に発生し、靭性
が劣化するためO’、080%を上限とした。
Acid soluble A is 0.025% - 0,080X. Tano combines with N and has a grain refining effect, and for steel materials subjected to normal heat treatment, it is generally less than 0.025%. However, it is not sufficient to improve the toughness of large diameter chains, especially when improving the toughness of flash butt welds by normalizing. On the other hand, if it exceeds 0.080%, an excessive amount of alumina-based inclusions will be formed in the steel and at the same time a large amount of alumina-based inclusions will be generated, resulting in deterioration of toughness.

通常の転炉鋼は、特に制御しなければN量を40〜60
pPm程度含有し、通常の熱処理鋼材にはそのまま利用
されている。本発明に係る鋼において酸可溶性Nを0.
0060$ カら0.020%としたのは、o、ooe
oz未満ではAiNによる結晶粒微細化作用が十分でな
く、また0、020!超では微細化作用が飽和に達する
ためである。An/N2〜6としたのは2未満ではAi
と結合しない固溶Nが増加し靭性を損なうからである。
Normal converter steel has a N content of 40 to 60 unless specially controlled.
It contains approximately ppm and is used as is in ordinary heat-treated steel materials. In the steel according to the present invention, acid-soluble N is 0.
0060$ to 0.020% is o, ooe
If it is less than 0.020 oz, the grain refining effect of AiN will not be sufficient, and 0.020! This is because the refinement effect reaches saturation at higher temperatures. An/N2~6 was set because Ai is less than 2.
This is because solid solute N that does not combine with the steel increases, impairing toughness.

一方6を超えるとA文Nとして析出しない固溶AMが増
大し靭性の低下を招くからである。
On the other hand, if it exceeds 6, solid solution AM that does not precipitate as A-N increases, leading to a decrease in toughness.

またチェーンの製造方法において、チェーンを成形後A
c3点以上に加熱するのは、成分元素を再固溶させ熱開
成形およびフラッシュバット溶接により粗大化した結晶
粒を細粒化させるための、規準処理を行なうためであり
、その上限温度を 950℃としたのはこれを超える温
度ではオーステナイト結晶粒が粗大化し靭性が劣化する
ためである。
In addition, in the chain manufacturing method, after forming the chain,
The purpose of heating above point c3 is to carry out standard treatment to redissolve the component elements into solid solution and refine the crystal grains that have become coarse due to thermal open forming and flash butt welding, and the upper limit temperature is set at 950°C. ℃ because at temperatures exceeding this temperature, austenite crystal grains become coarse and toughness deteriorates.

Ac3変態点以上850°C以下の温度に加熱した後の
放冷は室温中での冷却および通常のブロワ−による冷却
程度の冷却を意味し、この場合前記加熱温度からA1変
態点までの表面層の冷却速度は0.1’C/sec 〜
1.0 ′C/sec程度が適正な冷却速度範囲にある
Cooling after heating to a temperature above the Ac3 transformation point and below 850°C means cooling at room temperature and cooling to the level of cooling using a normal blower. In this case, the surface layer from the heating temperature to the A1 transformation point The cooling rate is 0.1'C/sec ~
Approximately 1.0'C/sec is within the appropriate cooling rate range.

この場合0.1°C/see未満の冷却速度では、冷却
時に結晶粒か成長粗大化し強度・靭性共低下するため0
.1°C/seC以上を有効な冷却速度とした。
In this case, if the cooling rate is less than 0.1°C/see, the crystal grains will grow and coarsen during cooling, reducing both strength and toughness.
.. An effective cooling rate of 1°C/secC or higher was defined as an effective cooling rate.

1.0℃/sec超になるとマルテンサイトまたはベー
ナイト組織が多量に出現し靭性が著しく低下するため、
冷却速度の上限は1.0℃/sec以下とするのがよい
。なお、前記冷却速度が0,1℃/se’cから1.0
°C/secの範囲においては靭性の低下なしに強度増
加が図れるので冷却速度は速い方が良い。
When the temperature exceeds 1.0°C/sec, a large amount of martensite or bainite structure appears and the toughness decreases significantly.
The upper limit of the cooling rate is preferably 1.0° C./sec or less. Note that the cooling rate is from 0.1°C/sec'c to 1.0°C/sec'c.
In the range of °C/sec, the strength can be increased without deteriorating the toughness, so the faster the cooling rate, the better.

次に本発明の実施例について述べる。Next, examples of the present invention will be described.

表1に供試鋼A、B、Cの化学組成を示す。Aは本発明
によるチェーン、B、Cは従来チェーンの化学組成を示
す。供試鋼Aは低SおよびCa含有鋼でありA文および
Nを増量したもの、供試鋼Bは従来から使用されている
SBC?0 、 Cは5AEI330鋼であり、現在は
短尺の3種チェーン用鋼として焼入・焼戻処理され使用
されているものであり、これら供試鋼を大径チェーンに
製造し緒特性をm査した。
Table 1 shows the chemical compositions of test steels A, B, and C. A shows the chemical composition of the chain according to the present invention, and B and C show the chemical composition of the conventional chain. Test steel A is a low S and Ca containing steel with increased amounts of A and N, and test steel B is a conventionally used SBC? 0 and C are 5AEI330 steels, which are currently quenched and tempered and used as steel for short Class 3 chains. did.

第1図は供試鋼を用いたチェーンの製造工程を示したも
のである。上記供試鋼を100mmφ棒銅に鍛造し、熱
間曲げ加工によりチェーンを形成し、フラッシュバット
溶接を行ない整理した。その後リングを採取して試験片
としこれを熱処理した。
Figure 1 shows the manufacturing process of a chain using the sample steel. The above-mentioned test steel was forged into a 100 mmφ copper rod, formed into a chain by hot bending, and then flash butt welded and arranged. Thereafter, the ring was collected and used as a test piece, which was then heat treated.

第2図は試験片の熱処理方法を示す。本発明によるAM
のチェーンおよび従来のB、C鋼のチェーン共820℃
に加熱後規準を行なった。この場合鋼材表面部の冷却速
度は第5図に示すとおり830°CからA1変態点(6
20°C)までの間で0.5〜0.6℃/seeであっ
た。表2に機械的性質を示す。
Figure 2 shows the method of heat treatment of the test piece. AM according to the invention
chain and conventional B and C steel chains at 820°C.
Standardization was carried out after heating. In this case, the cooling rate of the steel surface is from 830°C to the A1 transformation point (6
It was 0.5-0.6°C/see up to 20°C). Table 2 shows the mechanical properties.

本発明によるチェーンAは従来の成分系により製造した
チェーンB、Cに比較して引張強さおよび吸収エネルギ
ー共優れており、従来実施していた熱処理法である焼入
・焼戻処理を行なわすとも規準処理で3種チェーンの規
格値(引張強さ≧70kg/mm’ 、伸び≧17.%
 、絞り≧40%、0℃における母相の吸収エネルギー
≧6 kg−m、溶接部の吸収工2ルキー≧5 kg−
m)を十分満足することが判明した。
Chain A according to the present invention has superior tensile strength and absorbed energy compared to chains B and C manufactured using conventional component systems, and can be subjected to quenching and tempering, which are conventional heat treatment methods. Standard values for Type 3 chains (tensile strength ≧70 kg/mm', elongation ≧17.%)
, reduction of area ≧40%, absorbed energy of the matrix at 0°C ≧6 kg-m, absorption capacity of the weld zone ≧5 kg-m
It was found that m) was fully satisfied.

第3図はミクロ組織および結晶粒度を示すものであり、
組織はいずれもフェライト・パーライト組織となってい
る。本発明によるチェーンのフェライト結晶粒度はA文
およびN増量によりJIS粒度No8以上の微細粒にな
っているのに対し、従来成分系によるチェーンの粒度は
JIS粒度No7以上であり、本発明によるチェーンに
比較し粗粒となっている。
Figure 3 shows the microstructure and grain size;
All structures are ferrite/pearlite structures. The ferrite crystal grain size of the chain according to the present invention becomes a fine grain with JIS grain size No. 8 or more due to the A pattern and the increased amount of N, whereas the grain size of the chain with the conventional component system is JIS grain size No. 7 or more. The grains are coarse in comparison.

第4図は各チェー ンの代表的な介在物形態および清浄
度の代表例を示す。チェーンB、Cの介在物は延伸型介
在物が多く存在し、清浄度の悪いものであるが、本発明
によるチェーンAの介在物はS量の低減およびCa添加
により延伸性介在物は殆ど見られず粒状化されている。
Figure 4 shows typical inclusion forms and cleanliness of each chain. Chains B and C contain many elongated inclusions and have poor cleanliness, but chain A according to the present invention has almost no elongated inclusions due to the reduction in the amount of S and the addition of Ca. It is not grained and granulated.

清浄度C従来チェーンに比較し良好であることを確認し
ている。
Cleanliness C has been confirmed to be better than conventional chains.

以上の如く本発明は結晶粒度の微細化と高清浄度化の組
合せにより引張強度70Kg/mm’以上の靭性に優れ
たチェーンおよびチェーンの製造方法を発明したもので
あり、従来製造出来なかった大径高張力長尺チェーンの
製造を可能ならしめたものであるからその効果はきわめ
て大きなものがある。
As described above, the present invention has invented a chain and a method for manufacturing the chain that have excellent toughness with a tensile strength of 70 kg/mm' or more by combining fine grain size and high cleanliness, and has achieved a large scale that could not be manufactured conventionally. Since it has made it possible to manufacture long chains with high tension and diameter, its effects are extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はチェーンの製造工程、第2図は試験片の規準処
理方法を示す図、第3図は本発明鋼および従来鋼の組織
を示す顕微鏡写真図(X100)、第4図は本発明鋼お
よび従来鋼の介在物形状を示す顕微鏡写真図(X100
)、第5図は本発明鋼(100mmφチェーン)の冷却
速度を示すグラフである。 特許出願人 代理人 弁理士 矢 葺 知 之 (ほか1名) 第1図 鉛 2riJ !曵姥 9 手続補正書(方式) %式% 1、事件の表示 昭和59年特許願第192584号 2、発明の名称 引張強度70Kg/mm’以上の靭性に優れたチェーン
およびその製造方法 3、補正をする者 事件との関係 出願人 住所 東京都千代田区大手町二丁目6番3号名称 (6
65)新日本製鐵株式会社 4、代 理 人 5、補正命令の日付 昭和60年2月6日7、補正の内
容 (1)明細書第15頁5〜6行目の「第4図は・・・写
真図(X 100)、]を「第4図は本発明鋼(A)お
よび従来鋼(B 、 C)の介在物形状を示すスケッチ
図、」と補正する。 (2)添付図面の第4図を別紙の如く補正する。
Figure 1 shows the manufacturing process of the chain, Figure 2 shows the standard treatment method for test pieces, Figure 3 shows micrographs (X100) showing the structures of the steel of the invention and conventional steel, and Figure 4 shows the invention of the invention. Micrograph diagram showing the shape of inclusions in steel and conventional steel (X100
), FIG. 5 is a graph showing the cooling rate of the steel of the present invention (100 mmφ chain). Patent applicant Representative patent attorney Tomoyuki Yafuki (and 1 other person) Figure 1 Lead 2riJ! Hanba 9 Procedural amendment (method) % formula % 1. Indication of the case 1982 Patent Application No. 192584 2. Name of the invention A chain with excellent toughness having a tensile strength of 70 kg/mm' or more and its manufacturing method 3. Amendment Relationship with the case of a person who does
65) Nippon Steel Corporation 4, Agent 5, Date of amendment order: February 6, 1985 7, Contents of amendment (1) "Figure 4 is . . . photographic diagram (X 100),] is corrected to ``Figure 4 is a sketch diagram showing the shape of inclusions in the steel of the present invention (A) and the conventional steels (B, C).'' (2) Figure 4 of the attached drawings is amended as shown in the attached sheet.

Claims (1)

【特許請求の範囲】 (+) C: 0.25〜0.45X 、S i:0.
15〜0.55% 、 Mn:1.00〜1.90% 
、 Cr:o、50X以下、P : 0.040X以下
、S : 0.005%以下、Ca:o、0010〜0
.0080% 、 M可溶性A交: 0.025〜o、
oao%、酸可溶性N:o、ooeo−o、o2oox
 t−含有し、そしてAA、とNの重量比AfL/Nが
2〜6になるように調整し、残部は実質的にFeおよび
不可避的な不純物から成る引張強度70 K g / 
m rn’以上の靭性に優れたチェーン。 (2) C: 0.25−0.45% 、 S i:0
.15−0.551 、 Mn:i、oo〜1.80X
 、 Cr:0.5(H:以下、P : 0.040X
以下、S : 0.005%以下、Ca:o、0010
〜0.0080% 、酸可溶性Ai : 0.025〜
0.080%、酸可溶性N:0.0OeO−0,020
0% 、Ai/N : 2〜6、残部ハ実質的にFeお
よび不可避的不純物の組成を有する鋼材をチェーンに成
形し、Ac3変態点以上950℃以下の温度に加熱した
後放冷することを特徴とする引張強度70Kg/mtn
’以上の靭性に優れたチェーンの製造方法。
[Claims] (+) C: 0.25 to 0.45X, Si: 0.
15-0.55%, Mn: 1.00-1.90%
, Cr: o, 50X or less, P: 0.040X or less, S: 0.005% or less, Ca: o, 0010-0
.. 0080%, M soluble A cross: 0.025~o,
oao%, acid soluble N: o, ooeo-o, o2oox
The weight ratio AfL/N of AA and N is adjusted to be 2 to 6, and the remainder is substantially Fe and unavoidable impurities.The tensile strength is 70 K g /
A chain with excellent toughness exceeding m rn'. (2) C: 0.25-0.45%, Si: 0
.. 15-0.551, Mn:i, oo~1.80X
, Cr: 0.5 (H: below, P: 0.040X
Below, S: 0.005% or less, Ca: o, 0010
~0.0080%, acid soluble Ai: 0.025~
0.080%, acid soluble N: 0.0OeO-0,020
0%, Ai/N: 2 to 6, and the balance is formed into a chain by forming a steel material having a composition of substantially Fe and unavoidable impurities, heating it to a temperature above the Ac3 transformation point and below 950°C, and then allowing it to cool. Characteristic tensile strength 70Kg/mtn
A method for manufacturing chains with superior toughness.
JP19258484A 1984-09-17 1984-09-17 Chain having >=70kg/mm2 tensile strength and excellent toughness and its production Granted JPS60248867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19258484A JPS60248867A (en) 1984-09-17 1984-09-17 Chain having >=70kg/mm2 tensile strength and excellent toughness and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19258484A JPS60248867A (en) 1984-09-17 1984-09-17 Chain having >=70kg/mm2 tensile strength and excellent toughness and its production

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP16661280A Division JPS6033178B2 (en) 1980-11-28 1980-11-28 Chain with excellent toughness and tensile strength of 70Kg/mm↑2 or more and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS60248867A true JPS60248867A (en) 1985-12-09
JPS617468B2 JPS617468B2 (en) 1986-03-06

Family

ID=16293710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19258484A Granted JPS60248867A (en) 1984-09-17 1984-09-17 Chain having >=70kg/mm2 tensile strength and excellent toughness and its production

Country Status (1)

Country Link
JP (1) JPS60248867A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56169723A (en) * 1980-05-28 1981-12-26 Nippon Steel Corp Treatment of reheating-omit type hot forging bar steel
JPS61204353A (en) * 1985-03-07 1986-09-10 Nippon Steel Corp Steel material having superior strength and toughness in as warm forged state
JPS61204352A (en) * 1985-03-07 1986-09-10 Nippon Steel Corp High strength nontemper steel material as warm forged
US5711914A (en) * 1992-10-15 1998-01-27 Nmh Stahwerke Gmbh Rail steel
GB2406891A (en) * 2003-10-07 2005-04-13 Renold Plc A transmission chain

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56169723A (en) * 1980-05-28 1981-12-26 Nippon Steel Corp Treatment of reheating-omit type hot forging bar steel
JPS6045250B2 (en) * 1980-05-28 1985-10-08 新日本製鐵株式会社 Manufacturing method for non-thermal forged parts
JPS61204353A (en) * 1985-03-07 1986-09-10 Nippon Steel Corp Steel material having superior strength and toughness in as warm forged state
JPS61204352A (en) * 1985-03-07 1986-09-10 Nippon Steel Corp High strength nontemper steel material as warm forged
US5711914A (en) * 1992-10-15 1998-01-27 Nmh Stahwerke Gmbh Rail steel
GB2406891A (en) * 2003-10-07 2005-04-13 Renold Plc A transmission chain
GB2406891B (en) * 2003-10-07 2006-09-27 Renold Plc A transmission chain

Also Published As

Publication number Publication date
JPS617468B2 (en) 1986-03-06

Similar Documents

Publication Publication Date Title
JP3990724B2 (en) High strength secondary hardened steel with excellent toughness and weldability
JP2007231312A (en) High-tensile-strength steel and manufacturing method therefor
KR20070091368A (en) High tensile and fire-resistant steel excellent in weldability and gas cutting property and method for production thereof
JPS63169359A (en) Thick steel plate having high toughness and wear resistance
JP4507669B2 (en) Manufacturing method of low yield ratio steel for low temperature with excellent weld toughness
JP2000319726A (en) Manufacture of high strength steel plate excellent in weldability
JPS60248867A (en) Chain having &gt;=70kg/mm2 tensile strength and excellent toughness and its production
JPH06128631A (en) Production of high manganese ultrahigh tensile strength steel excellent in low temperature toughness
JPS60121228A (en) Manufacture of tempered high tension steel plate
KR102400036B1 (en) Steel sheet having excellent low temperature toughness and low yield ratio and method of manufacturing the same
JPS6362568B2 (en)
JPH11189840A (en) High strength steel plate for line pipe, excellent in hydrogen induced cracking resistance, and its production
KR100311791B1 (en) METHOD FOR MANUFACTURING QUENCHED AND TEMPERED STEEL WITH SUPERIOR TENSILE STRENGTH OF AROUND 600MPa AND IMPROVED TOUGHNESS IN WELDED PART
KR910003883B1 (en) Making process for high tension steel
JPH02129317A (en) Production of 80kgf/mm2 class high tension steel having excellent weldability
JP2743765B2 (en) Cr-Mo steel plate for pressure vessel and method for producing the same
JPS6033178B2 (en) Chain with excellent toughness and tensile strength of 70Kg/mm↑2 or more and its manufacturing method
JPS60149722A (en) Manufacture of cu added steel having superior toughness at low temperature in weld zone
JPS6256518A (en) Production of high strength steel sheet for high heat input welding
JPS6119733A (en) Preparation of super 70kg grade high strength hot rolled steel plate excellent in elongation flange property
JPH03207814A (en) Manufacture of low yield ratio high tensile strength steel plate
KR102475606B1 (en) Steel having excellent low-temperature fracture toughness and method of manufacturing the same
JPH04346636A (en) High manganese ultrahigh tensile strength steel excellent in toughness in weld heat affected zone
JPS6268694A (en) Production of heat-treated steel pipe
KR910006026B1 (en) High tension steel having a good weldability