JPS60245904A - Method and device for warming up steam turbine for driving boiler feed pump - Google Patents

Method and device for warming up steam turbine for driving boiler feed pump

Info

Publication number
JPS60245904A
JPS60245904A JP10055784A JP10055784A JPS60245904A JP S60245904 A JPS60245904 A JP S60245904A JP 10055784 A JP10055784 A JP 10055784A JP 10055784 A JP10055784 A JP 10055784A JP S60245904 A JPS60245904 A JP S60245904A
Authority
JP
Japan
Prior art keywords
steam
warm
turbine
pressure steam
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10055784A
Other languages
Japanese (ja)
Inventor
前田 高義
広野 正光
俊紀 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10055784A priority Critical patent/JPS60245904A/en
Publication of JPS60245904A publication Critical patent/JPS60245904A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、ボイラ給水ポンプ駆動用蒸気タービン(以下
、BFPタービンと略称)の暖機方法および装置に係シ
、さらに詳しくはBFPタービンへ動力用熱源としての
主蒸気を導く高圧蒸気導入部の暖機方法および装置に関
する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a warm-up method and apparatus for a steam turbine for driving a boiler feed water pump (hereinafter abbreviated as a BFP turbine), and more specifically, to a warm-up method and apparatus for a steam turbine for driving a boiler feed water pump (hereinafter referred to as a BFP turbine), and more specifically to a warm-up method and apparatus for a steam turbine for driving a boiler feedwater pump (hereinafter referred to as a BFP turbine). The present invention relates to a method and apparatus for warming up a high-pressure steam introduction section that introduces main steam as a heat source.

〔発明の背景〕[Background of the invention]

一般に、大容量の発電用蒸気タービンにおいては、発電
プラントの熱効率を高めるため、ボイラ給水ポンプをR
FPタービンによって駆動させる方式を採用している。
Generally, in large-capacity power generation steam turbines, the boiler feed water pump is operated in R to increase the thermal efficiency of the power generation plant.
A method of driving by an FP turbine is adopted.

また、RFPタービンは一般に主タービン1台につき、
50%容量のものが2台設けられている。
In addition, RFP turbines generally have one main turbine with
There are two units with 50% capacity.

前記RF P’メタ−ンの動力用蒸気源には、高圧蒸気
と低圧蒸気の2種類がある。高圧蒸気とはボイラからの
主蒸気を意味し、低圧蒸気とはキク・−ピンの適当な段
落、例えば中圧タービンの排気から抽出した比較的低温
低圧の蒸気を意味する。
There are two types of power steam sources for the RF P'methane: high pressure steam and low pressure steam. By high pressure steam we mean the main steam from the boiler, and by low pressure steam we mean relatively low temperature, low pressure steam extracted from the exhaust of a suitable stage of the pipe, for example an intermediate pressure turbine.

主タービンが高負荷で運転されている場合、主タービン
から抽出した低圧蒸気は、RFPタービンの要求する出
力をまかなうのに十分な熱エネルギーを有しているので
、高圧蒸気でおる主蒸気の導入は不要である。しかし、
主タービンの起動時、または主タービンが低負荷で運転
されている場合、BFPタービンへ流れる低圧蒸気の熱
エネルギーが低いため(主タービンの起動時にはゼロと
なる)、十分な駆動力が得られない。これを避けるだめ
には、RFPタービンへ高圧蒸気を導入する必要がある
。・ 高圧蒸気は前述のごとく主蒸気であり、その蒸気条件は
一般に圧力は169〜246 kglon”g %温度
は530〜566Cである。このような高温かつ高圧の
蒸気を使用する以上、BFPタービンの高圧蒸気導入部
の暖機を行うことは、過度の熱応力からRFPタービン
を保護するために不可欠である。なお、低圧蒸気は前述
のごとく、低温のため、暖機の必要はない。
When the main turbine is operating under high load, the low pressure steam extracted from the main turbine has sufficient thermal energy to cover the output required by the RFP turbine, so the main steam is introduced as high pressure steam. is not necessary. but,
When starting the main turbine or when the main turbine is operating at low load, sufficient driving force cannot be obtained because the thermal energy of the low-pressure steam flowing to the BFP turbine is low (zero when the main turbine starts). . To avoid this, it is necessary to introduce high pressure steam to the RFP turbine. - As mentioned above, high-pressure steam is the main steam, and its steam conditions are generally 169 to 246 kglon"g% and 530 to 566 C. Since such high-temperature and high-pressure steam is used, the BFP turbine Warming up the high-pressure steam introduction section is essential to protect the RFP turbine from excessive thermal stress.As mentioned above, low-pressure steam has a low temperature, so there is no need to warm it up.

最近、電力事情によシ発電用プラントは、昼間は高負荷
運転を行い、夜間は低負荷運転、または中、低負荷で連
続運転を行う、いわゆるミドル化運転の傾向にある。そ
して、2台のBF’Pタービンのうち、主タービン負荷
が50%までは1台運転し、50%以上で2台運転を行
う。したがって、主タービンが低負荷から高負荷運転に
移行する場合、停止中の1台のRFPタービンを運転す
る必要がある。この場合に、停止中のBFPタービンを
起動する前に、BFPタービンの高圧蒸気導入部を必ず
暖機する必要がある。
Recently, due to the electric power situation, power generation plants have tended to operate at high loads during the day and at low loads at night, or to operate continuously at medium or low loads, which is the so-called middle operation. Of the two BF'P turbines, one is operated when the main turbine load is 50% or more, and two BF'P turbines are operated when the main turbine load is 50% or more. Therefore, when the main turbine shifts from low load to high load operation, it is necessary to operate one stopped RFP turbine. In this case, before starting the stopped BFP turbine, it is necessary to warm up the high pressure steam introduction section of the BFP turbine.

第1図にRFPタービン1台についての高圧蒸気系統と
低圧蒸気系統とを示し、第2図に高圧蒸気導入部と従来
の暖機技術を示す。
FIG. 1 shows a high-pressure steam system and a low-pressure steam system for one RFP turbine, and FIG. 2 shows a high-pressure steam introduction section and a conventional warm-up technique.

その第1図に示すように、BFPタービン1には高圧蒸
気系統Aと低圧蒸気系統Bとが接続されている。
As shown in FIG. 1, a high pressure steam system A and a low pressure steam system B are connected to the BFP turbine 1.

前記高圧蒸気系統Aは、高圧蒸気配管2a〜2Cと、電
動の高圧蒸気人口弁3と、高圧主蒸気止め弁(以下、H
P−MSVと略称)4と、高圧蒸気加減弁(以下、HP
−CVと略称)5と、これらHP −Msv4およびu
p −CVsの−y−s−ストロと、HP・MSV4の
チェスト6に接続された第1のドレン系統と、HP−C
V5のチェスト6に接続された第2のドレン系統と、同
じ<HP・CV5のチェスト6に接続された暖機系統と
、HP−MSV4の弁棒4′とチェスト6間のギャップ
のリーク蒸気系統15と、HP−CV5の弁棒5′とチ
ェスト6間のギャップのリーク蒸気系統16と、温度計
測器17とを備えている。前記高圧蒸気人口弁3は、高
圧蒸気系RhからRFPタービン1を隔離するために設
けられている。前記HP−M8V4とHP・CV5とコ
レらを内蔵しているチェスト6とにより高圧蒸気導入部
が構成されている。前記HP・MSV4は、油圧駆動に
よシ開閉操作されるようになっていて、危急時にBFP
タービン1へ流入する蒸気を遮断するために設けられて
いる。前記HP−CV5は、油圧駆動の制御装置(図示
省略)によシ開閉操作されるようになっていて、ボイラ
(図示省略)からの要求信号に応じてRFPタービン1
への流入蒸気量を制御するために設けられている。前記
第1のドレン系統は、ドレン配管7a〜7Cと、手動の
ドレン排出弁8と、電動のドレン排出弁9とを有し、高
圧蒸気配管2a〜2CとHP −MSV4Oチェスト6
の内部のドレンをブロータンク(図示省略)へ排出する
とともに、高圧蒸気導入部の暖機にも使用される。前記
第2のドレン系統は、ドレン配管108〜IOCと、手
動のドレン排出弁11と、電動のドレン排出弁12とを
備え、HP・CV5のチェスト6の内部のドレンを主タ
ービンの復水器(図示省略)へ排出す・るとともK、高
圧蒸気導入部の暖機にも用いられるようになっている。
The high-pressure steam system A includes high-pressure steam pipes 2a to 2C, an electric high-pressure steam valve 3, and a high-pressure main steam stop valve (hereinafter referred to as H).
(abbreviated as P-MSV) 4 and high pressure steam control valve (hereinafter referred to as HP
- CV) 5 and these HP -Msv4 and u
-y-s-stro of p-CVs, first drain system connected to chest 6 of HP/MSV4, and HP-C
A second drain system connected to the chest 6 of V5, a warm-up system connected to the chest 6 of the same HP-CV5, and a leak steam system in the gap between the valve stem 4' and the chest 6 of HP-MSV4. 15, a leak steam system 16 in the gap between the valve stem 5' of the HP-CV5 and the chest 6, and a temperature measuring device 17. The high-pressure steam artificial valve 3 is provided to isolate the RFP turbine 1 from the high-pressure steam system Rh. The HP-M8V4, HP-CV5, and the chest 6 containing them constitute a high-pressure steam introduction section. The HP/MSV4 is hydraulically driven to open and close, and the BFP is activated in an emergency.
It is provided to block steam flowing into the turbine 1. The HP-CV 5 is configured to be opened and closed by a hydraulically driven control device (not shown), and is operated to open and close the RFP turbine 1 in response to a request signal from a boiler (not shown).
It is provided to control the amount of steam flowing into the The first drain system includes drain pipes 7a to 7C, a manual drain discharge valve 8, and an electric drain discharge valve 9, and includes high pressure steam pipes 2a to 2C and the HP-MSV4O chest 6.
In addition to discharging the internal drain to a blow tank (not shown), it is also used to warm up the high-pressure steam introduction section. The second drain system includes drain piping 108 to IOC, a manual drain discharge valve 11, and an electric drain discharge valve 12, and connects the drain inside the chest 6 of the HP/CV 5 to the condenser of the main turbine. It is also used to warm up the high-pressure steam introduction section.

前記暖機系統は、暖機蒸気配管13a。The warm-up system includes a warm-up steam pipe 13a.

13bと、オリフィス14とを有し、BFPタービン1
の再起動に備えて待機中に高圧蒸気導入部を常時暖機す
るために設けられておシ、オリフィス14は最適蒸気量
を流し、暖機蒸気配管13bは暖機後の蒸気を主タービ
ンの復水器へ入れるようになっている。
13b and an orifice 14, the BFP turbine 1
The orifice 14 is provided to constantly warm up the high-pressure steam introduction part during standby in preparation for restarting the main turbine. It is designed to be put into the condenser.

一方、低圧蒸気系統Bは前記高圧蒸気系統Aとほぼ同様
に構成されておシ、低圧蒸気配管182〜18cと、電
動の低圧蒸気人口弁19と、低圧主蒸気止め弁20と、
低圧蒸気加減弁21とを備えている。そして、この低圧
蒸気系統Bはドレン系統(図示省略)は必要であるが、
低温低圧蒸気を流すため、暖機系統は必要ではない。
On the other hand, the low-pressure steam system B is configured almost the same as the high-pressure steam system A, and includes low-pressure steam pipes 182 to 18c, an electric low-pressure steam valve 19, and a low-pressure main steam stop valve 20.
A low pressure steam control valve 21 is provided. Although this low-pressure steam system B requires a drain system (not shown),
Because low-temperature, low-pressure steam flows, a warm-up system is not required.

ところで、前記高圧蒸気系統Aでは、機器のコンパクト
化を図るため、第2図に示すごとく、HP−MSV4と
HP−CV5とを共通のチェスト6に内蔵させている。
By the way, in the high-pressure steam system A, in order to make the equipment more compact, the HP-MSV 4 and the HP-CV 5 are housed in a common chest 6, as shown in FIG.

そして、このチェスト6には高温高圧の主蒸気が入って
来るため、チェスト6は肉厚が非常に厚く形成され、ま
たHP・MSV4とHP−CV5とを内蔵させているた
め、構造も複雑である。このため、高温高圧の主蒸気の
導入時には、チェスト6の内壁と外壁との温度差が犬と
なシ、チェスト6に過大な熱応力が発生する。チェスト
6に熱応力が繰り返し掛かるとクラックが発生し、大事
故に継がる。そのため、チェスト6の暖機は絶対に必要
である。
Since high-temperature, high-pressure main steam enters the chest 6, the chest 6 has a very thick wall, and also has a complicated structure because it contains the HP/MSV4 and HP-CV5. be. Therefore, when high-temperature, high-pressure main steam is introduced, there is a large temperature difference between the inner and outer walls of the chest 6, and excessive thermal stress is generated in the chest 6. If thermal stress is repeatedly applied to the chest 6, cracks will occur, leading to a serious accident. Therefore, warming up the chest 6 is absolutely necessary.

次に、高圧蒸気導入部の従来の暖機方法について説明す
る。
Next, a conventional method for warming up the high-pressure steam introduction section will be explained.

その一つの方法は、51c1図および第2図に示す高圧
蒸気系統Aに付属の系統を使用して次のように行う。
One method is as follows using a system attached to the high pressure steam system A shown in Figures 51c1 and 2.

RFPタービン1の起動時において、暖機前には高圧蒸
気人口弁3、HP・MSV4およびHP・CV5は全閉
、ドレ/排出弁8,9の組および11.12の組は全開
となっている。
When starting up the RFP turbine 1, the high pressure steam valve 3, HP/MSV4 and HP/CV5 are fully closed, and the drain/discharge valves 8, 9 and 11.12 are fully open before warming up. There is.

そこで、まず高圧蒸気人口弁3を開く。これによシ、高
温高圧の主蒸気が高圧蒸気配管2a→高圧蒸気人口弁3
→高圧蒸気配管2bを通、り、HP・MSV4のチェス
ト6に導入される。ここで、HP−MSV4が全閉のた
め、蒸気はチェスト6の内部から第1のドレン系統のド
レン配管7a→、ドレン排出弁8→ドレン配管7b→ド
レン排出弁9→ドレン配管7Cを通シ、ブロータンクに
排出される。また、HP−MSV4の弁棒4′とチェス
ト6間のギャップからのリーク蒸気は、リーク蒸気系統
15を通ってグランド蒸気系統(図示省略)へ熱回収さ
れる。この間、HP −MSV4のチェスト6の内面が
暖機される。
Therefore, first open the high pressure steam valve 3. As a result, the high-temperature, high-pressure main steam is transferred from the high-pressure steam pipe 2a to the high-pressure steam valve 3.
→It passes through the high pressure steam pipe 2b and is introduced into the chest 6 of HP/MSV4. Here, since the HP-MSV 4 is fully closed, steam is passed from the inside of the chest 6 through the drain pipe 7a of the first drain system →, the drain discharge valve 8 → the drain pipe 7b → the drain discharge valve 9 → the drain pipe 7C. , is discharged into the blow tank. Further, the leak steam from the gap between the valve stem 4' of the HP-MSV 4 and the chest 6 passes through the leak steam system 15 and is recovered as heat to the grand steam system (not shown). During this time, the inner surface of the chest 6 of the HP-MSV4 is warmed up.

前記HP −MSV4のチェスト6の内面を暖機後、次
にHP−MSV4を開く。これによシ、主蒸気はHP−
MSV4からHP−Cv5のチェスト6の内部に導入さ
れ、その蒸気の一部は第2のドレン系統のドレン配管1
0a→ドレン排出弁11→ドレン配管10b→ドレン排
出弁12→ドレン配管10Cを通って主タービンの復水
器へ排出され、蒸気の他の一部は暖機系統の暖機蒸気配
管131→オリフィス14→暖機蒸気配管13bを経由
して、これも主タービンの復水器へ排出される。また、
HP−CV5の弁棒5′とチェスト6間のギャップから
のリーク蒸気は、リーク蒸、気系統16を通シ、グラン
ド蒸気系統に熱回収される。この暖機をチェスト6が暖
機完了目標温度に到達するまで継続する。この暖機完了
目標温度は、主蒸気の定格温度の約50%である。
After warming up the inner surface of the chest 6 of the HP-MSV4, the HP-MSV4 is then opened. Accordingly, the main steam is HP-
The steam is introduced from the MSV4 into the chest 6 of the HP-Cv5, and a part of the steam is transferred to the drain pipe 1 of the second drain system.
0a→drain discharge valve 11→drain pipe 10b→drain discharge valve 12→drain pipe 10C to be discharged to the condenser of the main turbine, and the other part of the steam is discharged to the warm-up steam pipe 131 of the warm-up system→orifice 14→This is also discharged to the condenser of the main turbine via the warm-up steam pipe 13b. Also,
Leak steam from the gap between the valve stem 5' of the HP-CV5 and the chest 6 passes through the leak steam and air system 16 and is heat-recovered to the ground steam system. This warm-up is continued until the chest 6 reaches the warm-up completion target temperature. This warm-up completion target temperature is approximately 50% of the rated temperature of the main steam.

暖機完了の判定は、温度計測器17によシ行う。The completion of warm-up is determined by the temperature measuring device 17.

暖機完了後は、第1.第2のドレン系統の電動のドレン
排出弁9,12を全閉にし、主蒸気をいつでもRFPタ
ービン1に通気できる状態にしておく。この状態におけ
る高圧蒸気導入部の暖機は、主蒸気を常時チェスト6の
内部を経由して暖機系統から排出させて行う。したがっ
て、高圧蒸気導入部を常時暖機状態に保持することがで
きる。
After warming up, the first step is The electric drain discharge valves 9 and 12 of the second drain system are fully closed so that the main steam can be vented to the RFP turbine 1 at any time. Warming up of the high-pressure steam introduction section in this state is performed by constantly discharging main steam from the warm-up system via the inside of the chest 6. Therefore, the high-pressure steam introducing section can be maintained in a warmed-up state at all times.

前記暖機方法による高圧蒸気導入部温度を第6図に示す
FIG. 6 shows the temperature of the high-pressure steam introduction section according to the warm-up method.

しかし、前述の従来技術では高圧蒸気導入部から暖機系
統に主蒸気を暖機蒸気として常時流入させているので、
熱エネルギ〜を浪費し、熱効率の低下を招き、ひいては
性能低下を来たす。
However, in the above-mentioned conventional technology, main steam is constantly flowing into the warm-up system from the high-pressure steam introduction section as warm-up steam.
Thermal energy is wasted, resulting in a decrease in thermal efficiency and, in turn, a decrease in performance.

次に、前述の暖機方法を改善した従来のもう一つの暖機
方法を説明する。
Next, another conventional warming-up method that is an improvement on the above-mentioned warming-up method will be described.

この暖機方法では、第1図に示すBFPタービンlに付
属する系統のうちから、暖機蒸気配管13a、13bと
オリフィス14とを含む暖機系統を除去し、HP−M8
V4と第2のドレン系統の電動のドレン排出弁12を交
互に開閉させ、高玉導入部を暖機するようにしている。
In this warm-up method, the warm-up system including the warm-up steam pipes 13a, 13b and the orifice 14 is removed from the systems attached to the BFP turbine l shown in FIG.
The V4 and the electric drain discharge valve 12 of the second drain system are opened and closed alternately to warm up the high ball introduction section.

すなわち、高圧蒸気人口弁3を開く前に、HP−MSV
4お!びHP −CV5を全閉とし、第1゜第2のドレ
ン系統の電動ドレン排出弁9,12を全開とし、手動の
ドレン排出弁8,11を開状態とする。なお、前記手動
のドレン排出弁8,11は、電動のドレン排出弁9,1
2の故障時に閉じ、通常は全開状態とされている。
That is, before opening the high pressure steam valve 3, the HP-MSV
4 Oh! and HP-CV5 are fully closed, the electric drain discharge valves 9 and 12 of the first and second drain systems are fully opened, and the manual drain discharge valves 8 and 11 are opened. Note that the manual drain discharge valves 8 and 11 are replaced with electric drain discharge valves 9 and 1.
It closes when 2 fails, and is normally fully open.

前記HP−MSV4およびHP−CV5を全閉とし、ド
レン排出弁9,12を全開とし、ドレン排出弁8,11
を開いた状態から、高圧蒸気人口弁3を開き、高圧蒸気
配管28〜2C内のドレン等を第1のドレン系統のドレ
ン配管7a→ドレン排出弁8→ドレン配管7b→ドレン
排出弁9→ドレン配管7Cを通じてブロータンクへ排出
させる一ついで、第2のドレン系統のドレン排出弁12
を閉じた後、HP−MSV4を開き、主蒸気をHP・C
V5のチェスト6の内部に導入して暖機し、設定時間経
過後、I(P−MSV4を閉じる。そして、第2のドレ
ン系統のドレン排出弁12を全開させ、チェスト6内の
停滞ドレンまたは蒸気を第2のドレン系統のドレン配管
10a→ドレン排出弁11→ドレン配管10b→ドレン
排出弁12→ドレン配管10Cを経由して主タービンの
復水器へ排出する。
The HP-MSV4 and HP-CV5 are fully closed, the drain discharge valves 9 and 12 are fully opened, and the drain discharge valves 8 and 11 are fully closed.
From the open state, open the high pressure steam artificial valve 3, and drain the drain etc. in the high pressure steam pipes 28 to 2C to the drain pipe 7a of the first drain system → drain discharge valve 8 → drain pipe 7b → drain discharge valve 9 → drain The drain discharge valve 12 of the second drain system is one for discharging to the blow tank through the pipe 7C.
After closing the HP-MSV4, open the main steam to HP-C
V5 is introduced into the chest 6 and warmed up, and after the set time elapses, the I(P-MSV4 is closed. Then, the drain discharge valve 12 of the second drain system is fully opened, and the stagnant drain in the chest 6 or The steam is discharged to the condenser of the main turbine via the drain pipe 10a of the second drain system→drain discharge valve 11→drain pipe 10b→drain discharge valve 12→drain pipe 10C.

この操作を繰シ返しながら、高圧蒸気導入部を暖機する
Warm up the high pressure steam introduction section by repeating this operation.

前記従来の暖機方法における高圧蒸気導入部温度を第7
図に示す。
The temperature of the high-pressure steam introduction part in the conventional warm-up method is
As shown in the figure.

しかし、この暖機方法では高圧蒸気導入部に過大な熱応
力が発生する。また、前述の操作を繰り返して暖機する
ようにしているので、暖機完了までに長時間を要する。
However, this warm-up method generates excessive thermal stress in the high-pressure steam introduction section. Furthermore, since the above-mentioned operations are repeated to warm up the device, it takes a long time to complete the warm-up.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、高圧蒸気導入部に過大な熱応力を与え
ることなく暖機でき、かつ熱効率を向上でき、しかも暖
機時間を短縮し得るBFPタービンの暖機方法を提供す
るにアシ、本発明の他の目的は、前記暖機方法を適確に
実施し得るBFPタービンの暖機装置を提供するにちる
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for warming up a BFP turbine that can warm up the high-pressure steam introduction section without applying excessive thermal stress, improve thermal efficiency, and shorten the warm-up time. Another object of the invention is to provide a warm-up device for a BFP turbine that can accurately carry out the warm-up method described above.

〔発明の概要〕[Summary of the invention]

本発明の1番目の発゛明は、ボイラ給水ポンプ駆動用蒸
気タービンへ動力用蒸気源としての主蒸気を導く高圧蒸
気導入部に、主タービンの段落途中から抽気した蒸気と
、高圧蒸気人口弁の上流側から分岐した必要最少限度の
主蒸気とのいずれかを導入し、暖機するようにしたとこ
ろに特徴を有するもので、この構成により高圧蒸気導入
部に過大な熱応力を与えることなく暖機でき、かつ熱効
率を向上でき、暖機時間を短縮することができる。
The first invention of the present invention is to introduce steam extracted from the middle of a stage of the main turbine and a high-pressure steam artificial valve into a high-pressure steam introduction section that guides main steam as a power steam source to a steam turbine for driving a boiler feedwater pump. This system is characterized by the fact that either the necessary minimum amount of main steam is introduced from the upstream side of the steam generator to warm it up, and this configuration prevents excessive thermal stress from being applied to the high-pressure steam introduction section. Warm-up is possible, thermal efficiency can be improved, and warm-up time can be shortened.

また、本発明の2番目の発明は、ボイラ給水、ポンプ駆
動用蒸気タービンへ動力用蒸気源としての主蒸気を導く
高圧蒸気導入部の入口側鵜、主タービンの段落途中から
抽気した蒸気を導入する蒸気配管と、弁とを備えた暖機
蒸気系統を接続したところに特徴を有するもので、この
構成により前記1番目の発明である暖機方法を適確に実
施することができる。
In addition, the second invention of the present invention is an inlet side of a high-pressure steam introduction section that leads main steam as a power steam source to a steam turbine for boiler feed water and a pump drive, and introduces extracted steam from the middle of a stage of the main turbine. This is characterized in that a warm-up steam system including a steam pipe and a valve are connected, and with this configuration, the warm-up method of the first invention can be carried out appropriately.

そして、本発明の3番目の発明は、ボイラ給水ポンプ駆
動用蒸気タービンへ動力用蒸気源とじての主蒸気を導く
高圧蒸気導入部の入口側に、高圧蒸気人口弁の上流側か
ら主蒸気の一部を分岐する蒸気配管と、弁とを備えた暖
機蒸気系統を接続したところに特徴を有するもので、こ
の発明も前記1番目の発明である暖機方法を適確に実施
することができる。
The third aspect of the present invention is to supply main steam from the upstream side of the high-pressure steam artificial valve to the inlet side of the high-pressure steam introduction section that guides the main steam as a power steam source to the steam turbine for driving the boiler feed water pump. This invention is characterized by connecting a warm-up steam system equipped with steam piping that partially branches and a valve, and this invention also makes it possible to accurately implement the warm-up method of the first invention. can.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面によシ説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第3図および第4図は、本発明方法を実施する装置の一
実施例を示すもので、高圧蒸気系統Aの高圧蒸気人口弁
3と高圧蒸気導入部とを結ぶ高圧蒸気配管2bに、暖機
蒸気系統Cが接続されている。
FIGS. 3 and 4 show an embodiment of the apparatus for carrying out the method of the present invention, in which a high-pressure steam pipe 2b connecting the high-pressure steam artificial valve 3 of the high-pressure steam system A and the high-pressure steam introduction part is heated. Machine steam system C is connected.

前記暖機蒸気系統Cは、主タービンの段落途中に接続さ
れた蒸気配7zzaと、これに接続された電動弁23と
、この電動弁23に接続された蒸気配管22bと、これ
に接続された逆止弁24と、この逆止弁24と高圧蒸気
人口弁3の下流側の高圧蒸気配管2bとを接続している
蒸気配管22Cとを備えて構成されている。
The warm-up steam system C includes a steam distribution 7zza connected to the middle of a stage of the main turbine, an electric valve 23 connected to this, a steam pipe 22b connected to this electric valve 23, and a steam pipe 22b connected to this. It includes a check valve 24 and a steam pipe 22C connecting the check valve 24 and the high pressure steam pipe 2b on the downstream side of the high pressure steam artificial valve 3.

なお、高圧蒸気導入部は前記第1図、第2図について説
明したものと同様、HP−MSV4と、HP−CV5と
、これらHP−M8V4お、1:びHP−CV5を共通
に内蔵しているチェスト6とを有して構成されている。
Note that the high-pressure steam introduction section is the same as that explained with reference to FIGS. A chest 6 is provided.

また、暖機蒸気配管とオリフィスとを含む暖機系統は除
去されている。
Additionally, the warm-up system, including the warm-up steam piping and orifice, has been removed.

なお、この実施例の他の構成については、前記第1図、
第2図に示すものと同様である。
Note that other configurations of this embodiment are shown in FIG.
It is similar to that shown in FIG.

次に、第3図および第4図に示す暖機装置の作用に関連
して本発明方法の一例を説明する。
Next, an example of the method of the present invention will be explained in connection with the operation of the warm-up device shown in FIGS. 3 and 4.

まず、主タービンの起動時において、高圧蒸気導入部の
暖機前の状態では、高圧蒸気系統Aの高圧蒸気人口弁3
と、HP−M8V4と、HP−CV5は全閉、第1.第
2のドレン系統のドレン排出弁8,9,11.12は全
開になっている。
First, when starting the main turbine, before the high-pressure steam introduction section is warmed up, the high-pressure steam artificial valve 3 of the high-pressure steam system A
, HP-M8V4, and HP-CV5 are fully closed, and the first. The drain discharge valves 8, 9, 11.12 of the second drain system are fully open.

この状態から暖機蒸気系統Cの電動弁23を開くと、主
タービンの段落途中から抽出された暖機完了目標温度よ
りも多少高めの、低温低圧の蒸気が暖機蒸気として蒸気
配管22a→電動弁23→蒸気配管22b→逆止弁24
→蒸気配管22Cを通って高圧蒸気配管2bに流れ、こ
の高圧蒸気配管2bからHP−MSV4のチェスト6の
内部に導入される。
When the electric valve 23 of the warm-up steam system C is opened from this state, low-temperature, low-pressure steam extracted from the middle of the main turbine stage and slightly higher than the warm-up completion target temperature is released as warm-up steam from the steam pipe 22a to the electric Valve 23 → Steam piping 22b → Check valve 24
→It flows through the steam pipe 22C to the high pressure steam pipe 2b, and is introduced into the chest 6 of the HP-MSV4 from this high pressure steam pipe 2b.

ここで、前記HP−M8V4は全閉となっているので、
暖機蒸気はI(P−M8V4のチェスト6の内部から第
1のドレン系統のドレン配管7a→ドレン排出弁8→ド
レン配管7b→ドレン排出弁9→ドレン配[7cを通夛
、ブロータンクへ排出される。また、HP−MSV4の
弁棒4′とチェスト6間のギャップからのリーク蒸気は
、リーク蒸気系統15を通シ、グランド蒸気系統に熱回
収される。
Here, since the HP-M8V4 is fully closed,
The warm-up steam is passed from the inside of the chest 6 of P-M8V4 to the first drain system's drain pipe 7a → drain discharge valve 8 → drain pipe 7b → drain discharge valve 9 → drain pipe [7c] to the blow tank. Furthermore, leak steam from the gap between the valve stem 4' of the HP-MSV 4 and the chest 6 passes through the leak steam system 15 and is heat-recovered to the grand steam system.

その間、HP−MSV4のチェスト6の内部は、暖機蒸
気が低温低圧の蒸気でちるため、徐々に暖機される。
Meanwhile, the interior of the chest 6 of the HP-MSV4 is gradually warmed up because the warm-up steam is filled with low-temperature, low-pressure steam.

また、暖機によって発生したドレンも前記第1のドレン
系統を通ってブロータンクへ排出される。
Further, drain generated during warm-up is also discharged to the blow tank through the first drain system.

前記HP−M8V4のチェスト6の内部を暖機後、HP
−MSV4を開くと、暖機蒸気はHP・MSV4を通D
、HP −CV 5ノチエ、1.トロの内部に導入され
る。
After warming up the inside of the chest 6 of the HP-M8V4, the HP
-When MSV4 is opened, warm-up steam passes through HP/MSV4 and D
, HP-CV 5 Notie, 1. Introduced inside Toro.

この状態では、HP−CV5が全閉となっているので、
暖機蒸気はHP −CV5のチェスト6の内部から第2
のドレン系統のドレン配管10 a→ドレン排出弁11
→ドレン配管10b→ドレン排出弁12→ドレン配管1
0Cを通シ、主タービンの復水器へ排出される。また、
HP−CV5の弁棒5′とチェスト6間のギャップから
のリーク蒸気は、リーク蒸気系統16を通シ、グランド
蒸気系統に熱回収される。
In this state, HP-CV5 is fully closed, so
The warm-up steam is from inside chest 6 of HP-CV5.
Drain piping 10 a of the drain system → drain discharge valve 11
→ Drain pipe 10b → Drain discharge valve 12 → Drain pipe 1
0C and is discharged to the main turbine condenser. Also,
Leak steam from the gap between the valve stem 5' of the HP-CV5 and the chest 6 passes through the leak steam system 16 and is heat-recovered to the ground steam system.

この状態を保持し、チェスト6の温度が主蒸気を導入し
ても、チェスト6が主蒸気を連続的に流し、あるいは主
蒸気の導入、停止を何回繰シ返しても許容できる熱応力
以下となる温度まで暖機する。
Even if this state is maintained and the temperature of the chest 6 is introduced, even if the main steam is introduced, the chest 6 continuously flows the main steam or the main steam is introduced and stopped many times. Warm up to the temperature.

前記暖機完了時、第1.第2のドレン系統の電゛ 動の
ドレン排出弁9,12を全閉とする。これらドレン排出
弁9,12の全閉時、暖機蒸気はHP・MSV4.I(
P −CV5(D弁棒4’ + s’ と−y−ニスト
ロ間のギャップから第1.第2のリーク蒸気系統15.
16を経由してグランド蒸気系統へ排出されるため、チ
ェスト6の内部には、ドレンは溜らない。
When the warm-up is completed, 1. The electric drain discharge valves 9 and 12 of the second drain system are fully closed. When these drain discharge valves 9 and 12 are fully closed, warm-up steam is released from HP/MSV4. I(
P-CV5 (D from the gap between valve stem 4' + s' and -y-Nystro 1st. 2nd leak steam system 15.
16 to the grand steam system, no condensate accumulates inside the chest 6.

前記暖機完了後、BFPタービン1からの主蒸気の要求
時に、高圧蒸気系統Aの高圧蒸気人口弁3が開かれ、B
FPタービン1へ主蒸気が通気される。
After the warm-up is completed, when main steam is requested from the BFP turbine 1, the high-pressure steam valve 3 of the high-pressure steam system A is opened, and the high-pressure steam valve 3 of the high-pressure steam system A is opened.
Main steam is vented to the FP turbine 1.

前記主蒸気を導入すると、暖機蒸気は自動的に流れなく
なる。
When the main steam is introduced, the warm-up steam automatically stops flowing.

この実施例の暖機方法によれば、第8図に示すごとく、
暖機開始時、高圧蒸気導入部に過大な熱応力を与えるこ
となく徐々に暖機することができる。また、暖機蒸気と
して主蒸気を使用せず、抽気を使用して暖機しているの
で、熱効率の向上を図ることができる外、従来の暖機蒸
気配管とオリフィスとを含む暖機系統を取り除いた暖機
技術に比べて暖機時間を短縮することができる。
According to the warm-up method of this embodiment, as shown in FIG.
At the start of warm-up, it is possible to warm up gradually without applying excessive thermal stress to the high-pressure steam introduction section. In addition, since the main steam is not used as the warm-up steam and warm-up is performed using extracted air, not only can thermal efficiency be improved, but the warm-up system including the conventional warm-up steam piping and orifice can be improved. The warm-up time can be shortened compared to the warm-up technology that has been removed.

ついで、第5図は本発明方法を実施する装置の他の例を
示すもので、高圧蒸気人口弁の高圧蒸気大口弁3をバイ
パスする暖機蒸気系統りが設けられている。
Next, FIG. 5 shows another example of an apparatus for carrying out the method of the present invention, in which a warm-up steam system is provided that bypasses the high-pressure steam large mouth valve 3 of the high-pressure steam artificial valve.

前記暖機蒸気系統りは、高圧蒸気人口弁3の上流側の高
圧蒸気配管2aに接続された蒸気配管25aと、これに
接続された電動弁26と、この電動弁26と高圧蒸気人
口弁3の下流側の高圧蒸気配管2b間を接続している蒸
気配管25bとを有して構成されている。
The warm-up steam system includes a steam pipe 25a connected to the high-pressure steam pipe 2a on the upstream side of the high-pressure steam artificial valve 3, an electric valve 26 connected to this, and this electric valve 26 and the high-pressure steam artificial valve 3. and a steam pipe 25b connecting the high pressure steam pipes 2b on the downstream side.

なお、この第5図に示す実施例の他の構成については、
前記第3図、第4図に示すものと同様でちる。
Regarding other configurations of the embodiment shown in FIG. 5,
It is similar to that shown in FIGS. 3 and 4 above.

そして、この第5図に示す実施例の暖機装置では、高圧
蒸気導入部の暖機時に、暖機蒸気系統りの電動弁26が
開かれ、高圧蒸気人口弁3の上流側の高圧蒸気配W2a
から暖機蒸気系統りの蒸気l配管25aに暖機蒸気とし
て、必要最少量の主蒸\/ 気が分岐され、その暖機蒸気は電動弁26から蒸気配管
25bを経由して高圧蒸気人口弁3の下流側の高圧蒸気
配管2bに流入し、この高圧蒸気配管2bから高圧蒸気
導入部に導入され、暖機する。
In the warm-up device of the embodiment shown in FIG. 5, when warming up the high-pressure steam introduction section, the electric valve 26 connected to the warm-up steam system is opened, and the high-pressure steam valve 26 on the upstream side of the high-pressure steam artificial valve 3 is opened. W2a
The necessary minimum amount of main steam is branched from the main steam pipe 25a of the warm-up steam system as warm-up steam, and the warm-up steam is passed from the electric valve 26 to the steam pipe 25b to the high-pressure steam artificial valve. The steam flows into the high-pressure steam piping 2b on the downstream side of No. 3, is introduced from the high-pressure steam piping 2b into the high-pressure steam introduction section, and is warmed up.

前記高圧蒸気導入部の暖機完了後、BFPタービン1が
主蒸気を要求した時は、暖機蒸気系統りの電動弁26は
閉じられ、ついで高圧蒸気人口弁3が開かれる。
When the BFP turbine 1 requests main steam after the warm-up of the high-pressure steam introduction section is completed, the electric valve 26 in the warm-up steam system is closed, and then the high-pressure steam artificial valve 3 is opened.

この実施例による暖機装置を使用して行う暖機方法によ
れば、第9図に示すごとく、高圧蒸気導入部に過大な熱
応力を与えることなく暖機でき、しかもよシ一層暖機時
間を短縮できる。また、この暖機方法では、主蒸気の一
部を暖機蒸気として絶えず流すのではなく、暖機の必要
時にのみ、必要最少限度の主蒸気を導入して暖機するよ
うにしていることと、暖機時間を短縮できることが相俟
ち、熱効率の向上を図ることができる。
According to the warm-up method using the warm-up device according to this embodiment, as shown in FIG. can be shortened. In addition, with this warming method, instead of constantly flowing a portion of the main steam as warm-up steam, the minimum amount of main steam necessary for warming is introduced only when warming is necessary. , the warm-up time can be shortened, and thermal efficiency can be improved.

なお、この第5図に示す暖機装置の他の作用、およびこ
の暖機装置を使用して行う暖機方法の他の工程について
は、前記第3図および第4図について説明したところと
同様である。
Note that other functions of the warm-up device shown in FIG. 5 and other steps of the warm-up method performed using this warm-up device are the same as those explained with respect to FIGS. 3 and 4 above. It is.

また、前記各実施例とも、暖機蒸気系統を、高圧蒸気人
口弁3とHP−MSV4とを結ぶ高圧蒸気配管2bに接
続するものに限らず、例えば第1のドレン系統の手動の
ドレン排出弁8とHP・MSV4とを結ぶドレン配管7
aに接続してもよ<、HP−MSV4のチェスト6に接
続口を設けて接続してもよく、要は高圧蒸気導入部の入
口側に暖機蒸気を導入し得る構成であればよい。
In addition, in each of the above-mentioned embodiments, the warm-up steam system is not limited to one that connects to the high-pressure steam piping 2b connecting the high-pressure steam artificial valve 3 and the HP-MSV 4, and for example, the manual drain discharge valve of the first drain system. Drain piping 7 connecting 8 and HP/MSV4
A connection may be made by providing a connection port in the chest 6 of the HP-MSV 4. In short, any configuration that allows warm-up steam to be introduced to the inlet side of the high-pressure steam introduction section is sufficient.

さらに、暖機蒸気系統に設ける弁は、各実施例とも電動
弁に限らず、流体圧によシ開閉制御するものでもよい。
Furthermore, the valves provided in the warm-up steam system are not limited to electric valves in each embodiment, but may be ones whose opening and closing are controlled by fluid pressure.

しかも、前述の暖機蒸気系統は1系統に限らず、蒸気条
件の異なる複数の系統を追設してもよい。
Moreover, the above-mentioned warm-up steam system is not limited to one system, and a plurality of systems with different steam conditions may be additionally installed.

〔発明の効果〕 。〔Effect of the invention〕 .

以上説明した本発明の1番目の発明としての暖機方法に
よれば、ボイラ給水ポンプ駆動用蒸気タービンへ動力用
蒸気源としての主蒸気を導く高圧蒸気導入部に、主ター
ビンの段落途中から抽気した蒸気と、高圧蒸気人口弁の
上流側から分岐した必要最少限度の主蒸気とのいずれか
を導入し、暖機するようにしているので、暖機開始時に
、高圧蒸気導入部に過大な熱応力を発生させることなく
暖機し得る効果があり、低温低圧の抽気または必要最少
限度の主蒸気を利用して暖機するようにしているので、
熱効率の向上を図り得る効果を有する外、暖機時間の短
縮を図シ得る効果がある。
According to the warm-up method as the first invention of the present invention described above, the high-pressure steam introduction part that guides main steam as a power steam source to the steam turbine for driving the boiler feed water pump has air extracted from the middle of the stage of the main turbine. Warm-up is performed by introducing either the steam that has been heated or the minimum necessary amount of main steam branched from the upstream side of the high-pressure steam artificial valve, so that excessive heat is not generated in the high-pressure steam introduction section at the start of warm-up. It has the effect of warming up without creating stress, and warms up using low-temperature, low-pressure bleed air or the minimum necessary amount of main steam.
In addition to having the effect of improving thermal efficiency, there is also the effect of shortening warm-up time.

また、本発明の2番目の発明としての暖機装置によれば
、ボイラ給水ポンプ駆動用蒸気タービンへ動力用蒸気源
としての主蒸気を導く高圧蒸気導入部の入口側に、主タ
ービンの段落途中から抽気した蒸気を導入する蒸気配管
と、弁とを備えた暖機蒸気系統を接続しているので、前
記本発明方法を適確に実施し得る効果がある。
Further, according to the warm-up device as the second invention of the present invention, the heating device is provided on the inlet side of the high-pressure steam introduction part that guides the main steam as a power steam source to the steam turbine for driving the boiler feed water pump, in the middle of the stage of the main turbine. Since a warm-up steam system equipped with a valve is connected to a steam pipe that introduces steam extracted from the steam pipe, there is an effect that the method of the present invention can be carried out accurately.

さらに、本発明の3番目の発明としての暖機装置は、ボ
イラ給水ポンプ駆動用蒸気タービンへ動力用蒸気源どし
ての主蒸気を導く高圧蒸気導入部の入口側に、高圧蒸気
人口弁の上流側から主蒸気の一部を分岐する蒸気配管と
、弁とを備えた暖機蒸気系統を接続しているので、この
発明によっても前記本発明方法を適確に実施し得る効果
がある。
Furthermore, the warm-up device as the third invention of the present invention includes a high-pressure steam artificial valve on the inlet side of the high-pressure steam introduction section that guides main steam as a power steam source to the steam turbine for driving the boiler feedwater pump. Since a warm-up steam system equipped with a valve and a steam pipe that branches part of the main steam from the upstream side is connected, this invention also has the effect that the method of the invention described above can be carried out properly.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の暖機装置を含むRFPタービンの系統図
、第2図は第1図中の高圧蒸気導入部とその回りの系統
を示す拡大断面図、第3図は本発明方法を実施するだめ
の装置の一例を示す系統図、第4図は第3図中の高圧蒸
気導入部とその回シの系統を示す拡大断面図、第5図は
本発明方法を実施するための装置の他の例を示す系統図
、第6図は第1図に示す従来技術による暖機特性を示す
図、第7図は他の従来技術による暖機特性を示す図、第
8図は第3図に示す本発明による暖機特性を示す図、第
9図は第5図に示す本発明による暖機特性を示す図であ
る。 1・・・RFPタービン、A・・・高圧蒸気系統、B・
・・低圧蒸気系統、28〜2C・・・高圧蒸気配管、3
・・・高圧蒸気人口弁、4・・・高圧蒸気導入部を構成
しているHP・MSV、5・・・同HP−CV、6・・
・同チェスト、7a〜7C・・・第1のドレン系統のド
レン配管、8,9・・・同ドレン排出弁、10a〜10
C・・・第2のドレン系統のドレン配管、11.12・
・・同ドレン排出弁、C・・・低温低圧の蒸気による暖
機蒸気系統、22a〜22C・・・暖機蒸気系統を構成
している蒸気配管、23・−・同電動弁、24・・・同
逆止弁、D・・・主蒸気から分岐した蒸気による暖機蒸
気系統、25a、25b・・・暖機蒸気系統を構成して
いる蒸気配管、26・・・電動弁。 代理人 弁理士 秋本正実 第1図 第2riJ b 第 3 図 第4図 第 5 図 第6図 第7圀 纂8図 第9反 鍍歳任渦的閉−融機任え晴朋−
Fig. 1 is a system diagram of an RFP turbine including a conventional warm-up device, Fig. 2 is an enlarged sectional view showing the high-pressure steam introduction section in Fig. 1 and its surrounding system, and Fig. 3 is an implementation of the method of the present invention. FIG. 4 is an enlarged cross-sectional view showing the high-pressure steam introduction section and its rotary system in FIG. 3, and FIG. A system diagram showing another example, FIG. 6 is a diagram showing warm-up characteristics according to the conventional technology shown in FIG. 1, FIG. 7 is a diagram showing warm-up characteristics according to another conventional technology, and FIG. 9 is a diagram showing the warm-up characteristic according to the present invention shown in FIG. 5, and FIG. 9 is a diagram showing the warm-up characteristic according to the present invention shown in FIG. 1...RFP turbine, A...high pressure steam system, B...
...Low pressure steam system, 28~2C...High pressure steam piping, 3
... High pressure steam artificial valve, 4... HP/MSV constituting the high pressure steam introduction section, 5... HP-CV, 6...
・The same chest, 7a to 7C... Drain piping of the first drain system, 8, 9... The same drain discharge valve, 10a to 10
C... Drain piping of the second drain system, 11.12.
・・Drain discharge valve, C ・Warm-up steam system using low-temperature, low-pressure steam, 22a to 22C ・・Steam pipes forming the warm-up steam system, 23・・・Same electric valve, 24・・- Check valve, D... Warm-up steam system using steam branched from main steam, 25a, 25b... Steam piping forming the warm-up steam system, 26... Electric valve. Agent Patent Attorney Masami Akimoto Fig. 1 Fig. 2 riJ b Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Summary 8 Fig. 9 Closing of the anti-Japanese government whirlpool - Harutomo leaving the finances -

Claims (1)

【特許請求の範囲】 1、ボイラ給水ポンプ駆動用蒸気タービンへ動力用蒸気
源としての主蒸気を導く高圧蒸気導入部に、主タービン
の段落途中から抽気した蒸気と、高圧蒸気人口弁の上流
側から分岐した必要最少限度の主蒸気とのいずれかを導
入し、暖機することを特徴とするボイラ給水ポンプ駆動
用蒸気タービンの暖機方法。 2、ボイラ給水ポンプ駆動用蒸気タービンへ動力用蒸気
源としての主蒸気を導く高圧蒸気導入部の入口側に、主
タービンの段落途中から抽気した蒸気を導入する蒸気配
管と、弁とを備えた暖機蒸気系統を接続したことを特徴
とするボイラ給水ポンプ駆動用蒸気タービンの暖機装置
。 3、ボイラ給水ポンプ駆動用蒸気タービンへ動力用蒸気
源としての主蒸気を導く高圧蒸気導入部の入口側に、高
圧蒸気人口弁の上流側から主蒸気の一部を分岐する蒸気
配管と、弁とを備えた暖機蒸気系統を接続したことを特
徴とするボイラ給水ポンプ駆動用蒸気タービンの暖機装
置。
[Claims] 1. Steam extracted from the middle of a stage of the main turbine and the upstream side of the high-pressure steam artificial valve are added to the high-pressure steam introduction section that leads main steam as a power steam source to the steam turbine for driving the boiler feed water pump. A method for warming up a steam turbine for driving a boiler feedwater pump, characterized by introducing either the necessary minimum amount of main steam branched from the main steam and warming it up. 2. A valve is provided on the inlet side of the high-pressure steam introduction section that guides main steam as a power steam source to the steam turbine for driving the boiler feedwater pump, and a steam pipe that introduces steam extracted from the middle of a stage of the main turbine. A warm-up device for a steam turbine for driving a boiler feed water pump, characterized in that a warm-up steam system is connected. 3. On the inlet side of the high-pressure steam introduction section that leads main steam as a power steam source to the steam turbine for driving the boiler feed water pump, there is a steam pipe that branches a part of the main steam from the upstream side of the high-pressure steam artificial valve, and a valve. A warm-up device for a steam turbine for driving a boiler feed water pump, characterized in that a warm-up steam system is connected to the warm-up steam system.
JP10055784A 1984-05-21 1984-05-21 Method and device for warming up steam turbine for driving boiler feed pump Pending JPS60245904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10055784A JPS60245904A (en) 1984-05-21 1984-05-21 Method and device for warming up steam turbine for driving boiler feed pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10055784A JPS60245904A (en) 1984-05-21 1984-05-21 Method and device for warming up steam turbine for driving boiler feed pump

Publications (1)

Publication Number Publication Date
JPS60245904A true JPS60245904A (en) 1985-12-05

Family

ID=14277231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10055784A Pending JPS60245904A (en) 1984-05-21 1984-05-21 Method and device for warming up steam turbine for driving boiler feed pump

Country Status (1)

Country Link
JP (1) JPS60245904A (en)

Similar Documents

Publication Publication Date Title
JPS6026107A (en) Power generation plant with multistage turbine
US8776521B2 (en) Systems and methods for prewarming heat recovery steam generator piping
JP3977909B2 (en) Recoverable steam cooled gas turbine
JPS5835304A (en) Method and device for warming high-pressure feedwater heater
JP3559574B2 (en) Startup method of single-shaft combined cycle power plant
JPS6336004A (en) Method for starting steam turbine plant
JPS60245904A (en) Method and device for warming up steam turbine for driving boiler feed pump
JPS5823208A (en) Operation controller for thermal power plant equipped with stored steam power generation system
JP2870759B2 (en) Combined power generator
JPS60159311A (en) Starting method for steam turbine
JPS6136125B2 (en)
JPH04298602A (en) Steam turbine starting equipment
JPS5827211Y2 (en) High pressure feed water heater cooling system
JPH08121117A (en) Starting method for multi-shaft type compound power generation plant
JPH04272409A (en) Cold starting method for one shaft type combined cycle power generating plant
JP2558855B2 (en) Method of operating steam-gas combined cycle power plant and its power plant
JPH0381505A (en) Apparatus and method for prewarming steam turbine
JPS6140763Y2 (en)
JPS6185506A (en) Warming up method of steam turbine
JPS60119304A (en) Steam turbine
JPS62106202A (en) Combined cycle power plant
JPS60209605A (en) Steam turbine
JPS6088804A (en) Warm-up device for steam turbine
JPS5844205A (en) Steam turbine
SU1208280A1 (en) Method of motor operation of multicylinder turbine