JPS60245739A - Manufacture of tough ceramic - Google Patents

Manufacture of tough ceramic

Info

Publication number
JPS60245739A
JPS60245739A JP59102216A JP10221684A JPS60245739A JP S60245739 A JPS60245739 A JP S60245739A JP 59102216 A JP59102216 A JP 59102216A JP 10221684 A JP10221684 A JP 10221684A JP S60245739 A JPS60245739 A JP S60245739A
Authority
JP
Japan
Prior art keywords
oxide
metal
silicon nitride
ceramics
relative density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59102216A
Other languages
Japanese (ja)
Inventor
Tadahiko Mitsuyoshi
忠彦 三吉
Akihiro Goto
明弘 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59102216A priority Critical patent/JPS60245739A/en
Publication of JPS60245739A publication Critical patent/JPS60245739A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a tough ceramic having high strength and high reliability by mixing an element of group IVa, etc. in the periodic table and an oxide such as Al2O3 in powder state with silicon nitride as a main body, and sintering said mixture to a specified relative density. CONSTITUTION:With silicon nitride as the main body, 5.5-45wt% metal (especially, V is preferable) of one kind or more selected from groups IVa or Va elements in the periodic table, and 1-20wt% metal oxide (especially, Al2O3, Y2O3 is preferable) of one kind or more selected from Al2O3, MgO, Y2O3, rare earth element oxide are mixed in powder state. Said mixture is sintered thoroughly in nonoxidizing atmosphere at about >=1,650 deg.C temp. to obtain >=95% relative density. In this way, the tough ceramic suitable for gas turbine blade, turbo-charger, etc. for automobile is obtained.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は構造用セラミックスの製造方法に係り、特にガ
スタービン翼や自動車用タービチャーソヤ等に採用する
に好適な、強靭性セラミックスの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for manufacturing structural ceramics, and particularly to a method for manufacturing strong ceramics suitable for use in gas turbine blades, automotive turbine blades, and the like.

〔発明の背景〕[Background of the invention]

高効率化を目的に熱機関の使用、温度はますます高温化
する傾向にあり、熱機関を構成する構造部材にも一層の
高温特性が要求されている。例えば自動車用のター?チ
ャーシャにおいては排ガス温度1100〜1200℃で
の使用が要求されており、また、ガスタービンではガス
温度として1300〜1500℃程度までの使用が計画
されている。
BACKGROUND ART There is a tendency for heat engines to be used and temperatures to become higher and higher for the purpose of increasing efficiency, and the structural members that make up heat engines are also required to have even higher temperature characteristics. For example, a car tar? Charsha is required to be used at an exhaust gas temperature of 1100 to 1200°C, and gas turbines are planned to be used at a gas temperature of about 1300 to 1500°C.

このような目的のために、金属材料に比して高温高強度
の炭化ケイ素、窒化ケイ素、サイアロンなどのセラミッ
クスが開発されているが、これらのセラミックスは耐熱
性や高温強度は充分な特性を持っている反面、もろいた
めに一度りラヅクを生じるとクラックが簡単に成長して
割れやすく、構造材としての信頼性に欠ける欠点があっ
た。さらに、焼結体内の欠陥や表面欠陥などによって強
度がばらつきやすく、構造材としての強度設計が困難で
ある等の欠点があった。
For this purpose, ceramics such as silicon carbide, silicon nitride, and sialon, which have high temperature and high strength compared to metal materials, have been developed, but these ceramics do not have sufficient heat resistance or high temperature strength. On the other hand, because it is brittle, once cracks occur, cracks easily grow and break, making it unreliable as a structural material. Further, the strength of the sintered body tends to vary due to defects in the sintered body, surface defects, etc., and it is difficult to design the strength of the sintered body.

一方、サーノ・トや、炭化ホウ素、窒化ホウ素などを主
体とした焼結体のような工具材料は、一度りンヴクが入
ってもクラックが成長しにくく、ねばシ強い、所謂強靭
材料となっている反面、これらの材料は酸化雰囲気中で
高温にさらされると変質し、機械的強度が著しく低下す
るという欠点があった。
On the other hand, tool materials such as ceramics, sintered bodies made mainly of boron carbide, boron nitride, etc., are tough materials that do not easily develop cracks even after being stained. However, these materials have the disadvantage that they change in quality when exposed to high temperatures in an oxidizing atmosphere, resulting in a significant decrease in mechanical strength.

これらの欠点を除くために、セラミックス中に無機化合
物のファイバや金属を分散させる方法も提案されている
。しかしながら、前者の方法では、ファイバの分散が困
難なために均一な焼結体が得にくいこと、焼結時にファ
イ・ぐが収縮しないため、ホットプレス法などの特殊な
焼結法が必要であること、量産性が低く、複雑形状品へ
の適用が困難なことなどの欠点がちった。
In order to eliminate these drawbacks, methods have also been proposed in which fibers of inorganic compounds or metals are dispersed in ceramics. However, with the former method, it is difficult to obtain a uniform sintered body because it is difficult to disperse the fibers, and the fibers do not shrink during sintering, so a special sintering method such as hot pressing is required. However, it has many disadvantages such as low mass production and difficulty in applying it to products with complex shapes.

また、後者の方法としては、例えば特開J1851−4
1011号2%開昭51−10815号、特開昭54−
154417号、特開昭58−194775号、特公昭
50−1569号などのように窒化ケイ素に各種金属を
添加した例が知られている。しかしながら、これらの例
においては以下に述べるいずれかの理由から、得られる
焼結体の靭性が小さく、構造材として充分高信頼性のも
のは得られなかった。
Further, as the latter method, for example, Japanese Patent Application Laid-Open No. J1851-4
No. 1011 2% 1982-10815, 1973-
Examples are known in which various metals are added to silicon nitride, such as in Japanese Patent Application Laid-open No. 154417, Japanese Patent Application Laid-Open No. 194775-1982, and Japanese Patent Publication No. 1569-1987. However, in these examples, the toughness of the obtained sintered bodies was low for one of the reasons described below, and it was not possible to obtain a sufficiently reliable sintered body as a structural material.

(1)窒化ケイ素に加える金属の債が5%以下と少ない
ため、焼結体の靭性が大きくならない。
(1) Since the amount of metal added to silicon nitride is small at 5% or less, the toughness of the sintered body does not increase.

(2)窒化ケイ素に金属を加えるのみで、焼結助剤とな
る酸化物が添加されていないため、窒化ケイ累同志の焼
結が充分に進まず、得られる焼結体の高温における耐酸
化性や靭性が充分大きなものとならない。
(2) Because metal is only added to silicon nitride and no oxide to act as a sintering aid is added, sintering of the silicon nitride does not progress sufficiently, resulting in oxidation resistance at high temperatures of the resulting sintered body. The strength and toughness are not sufficiently large.

(3) 窒化ケイ素に金属と共に焼結助剤となる酸化物
が加えられているが、金属の種類と酸化物の種類の組合
せが適切でなく、焼結時に窒化ケイ素・金属、酸化物の
反応によってできる粒界相が充分高靭性で緻密なものに
ならない。このため、焼結体の高温における耐酸化性1
強度、靭性が充分大きなものとならない。
(3) An oxide that serves as a sintering aid is added to silicon nitride along with a metal, but the combination of metal and oxide types is not appropriate, and reactions between silicon nitride, metal, and oxide occur during sintering. The grain boundary phase formed by this process cannot be sufficiently tough and dense. Therefore, the oxidation resistance of the sintered body at high temperatures is 1
Strength and toughness are not sufficiently large.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、ターボチャーツヤやガスタービン等の
ような高温部材として用いるに適した、高強度で高信頼
性の強靭性セラミックスを製造する方法を提供すること
にある。
An object of the present invention is to provide a method for producing high-strength, highly reliable, tough ceramics suitable for use as high-temperature components such as turbocharts and gas turbines.

〔発明の概要〕[Summary of the invention]

本発明の強靭性セラミックスの製造方法は、窒化ケイ素
を主成分とし、これに周律表IVa族またはVa族元素
のうちから選ばれた1種以上の金属、および、酸化アル
ミニウム、酸化マグネシウム、酸化イツトリウム、希土
類元素酸化物から選ばれた1種以上の金属酸化物を粉末
状態で混合し、相対密度95%以上に焼結すること、を
特徴としている。
The method for producing tough ceramics of the present invention includes silicon nitride as a main component, one or more metals selected from elements of group IVa or group Va of the periodic table, and aluminum oxide, magnesium oxide, yttrium oxide, It is characterized in that one or more metal oxides selected from rare earth element oxides are mixed in powder form and sintered to a relative density of 95% or more.

本発明の有利な実施態様としては、上記金属としてパナ
ソウムが、また、金属酸化物として酸化アルミニウムま
たは酸化イゾトリウムのうちの1種以上が選ばれる。
In an advantageous embodiment of the invention, panasium is selected as the metal and one or more of aluminum oxide or isothrium oxide is selected as the metal oxide.

本発明者らが種々検討した結果、窒化ケイ素に周期律表
fVa族またはva族の金属と、酸化アルミニウム、酸
化マグネシウム、酸化イツトリウム。
As a result of various studies by the present inventors, silicon nitride, metals from group fVa or group VA of the periodic table, aluminum oxide, magnesium oxide, and yttrium oxide.

希土類元素酸化物から選ばれた金属酸化物を混合し、非
酸化性雰囲気中で1650℃以上の温度で相対密度が9
5%以上となるまで充分焼結したセラミックスは、強度
、耐酸化性がすぐれているばかりでなく、応力拡大係数
に1cで評価した破壊靭性値が10MN/rn%以上と
大きく、構造用セラミ・クスとして特に優れた性質を持
つことが判明した。
Metal oxides selected from rare earth element oxides are mixed and the relative density is 9 at a temperature of 1650℃ or higher in a non-oxidizing atmosphere.
Ceramics that have been sufficiently sintered to 5% or more not only have excellent strength and oxidation resistance, but also have a high fracture toughness value of 10MN/rn% or more when evaluated with a stress intensity factor of 1c, making it suitable for structural ceramics. It was found that it has particularly excellent properties as a camphorax.

破壊靭性値とはねばり強さを示す値で、その値が大きい
ほどセラミックスはねばり強くなり、構造材としての信
頼性が増すことが知られている。
The fracture toughness value is a value indicating toughness, and it is known that the larger the value, the tougher the ceramic is, and the more reliable it is as a structural material.

特に、KlcがIOMN/□ζ以上になると、セラミッ
クスの破壊起点となる内部や表面の欠陥として100μ
m程度捷での欠陥が存在したとしても、その強度は30
ゆ7間2以上となシ、ターボチャーツヤやガスタービン
などの回転構造物の強度設計の許容値を満足し、使用時
の破損などの問題はおこらない。また、セラミックスの
欠陥として100μm以上の欠陥が存在したとしてもそ
れらの欠陥はX線透過法、超音波探傷法、目視法などの
手段によって、製造ラインで非破壊的に発見し、除去す
ることが容易である。このように、Klcが10 MN
/rn%以上のセラミックスを用いれば、セラミックス
に不可避の内部欠陥や表面傷などによる破損事故を防止
することができ、セラミックス構造物の構造材としての
信頼性を大幅に高めることができる。
In particular, when Klc exceeds IOMN/□ζ, defects of 100 μm can occur inside or on the surface, which can become a starting point for ceramic fracture.
Even if there is a defect of approximately 30 m, its strength is 30
With a length of 7 or more, it satisfies the strength design tolerances of rotating structures such as turbocharts and gas turbines, and does not cause problems such as breakage during use. Furthermore, even if there are defects in ceramics that are 100 μm or larger, they can be found and removed non-destructively on the production line by means such as X-ray transmission, ultrasonic flaw detection, and visual inspection. It's easy. In this way, Klc is 10 MN
By using ceramics with a content of /rn% or more, damage accidents due to inevitable internal defects or surface scratches in ceramics can be prevented, and the reliability of ceramic structures as structural materials can be greatly improved.

さらに、Klcが大きいと、セラミックス中に存在する
クラツクが成長するのに大きなエネルギーが必要となシ
、結果としてクラックの成長が阻止されるためにセラミ
ックスの特性が長期に渡って安定で、信頼性の高いもの
となる。本発明の製造方法によるセラミックスのに1c
はl Q MN/ ′72以上で、他方、代表的構造用
セラミックスである炭化ケイ素および窒化ケイ素のに4
.はそれぞれ高々6MN/:4および13MN/、、5
4である。従って本発明の製造方法による強靭性上2ミ
ックスのクラヅク成長のためのエネルギーは、これら炭
化ケイ素、窒化ケイ素セラミックスの1.5〜2.5倍
以上と太きい。
Furthermore, when Klc is large, a large amount of energy is required for the cracks existing in the ceramic to grow, and as a result, the growth of cracks is inhibited, so the properties of the ceramic are stable over a long period of time, and reliability is improved. The value will be high. 1c of ceramics produced by the manufacturing method of the present invention
is greater than l Q MN/'72, while silicon carbide and silicon nitride, which are typical structural ceramics, are
.. are at most 6MN/:4 and 13MN/, , 5 respectively.
It is 4. Accordingly, the energy required to grow the tough two-mix ceramics by the manufacturing method of the present invention is 1.5 to 2.5 times higher than that of these silicon carbide and silicon nitride ceramics.

本発明の製造方法による強靭性セラミックスにおいて、
このように大きな破壊靭性値が得られる原因は、添加し
た周期律表■a族またはVa族の金属の一部が、焼結時
に窒化ケイ素と反応して、窒化物やケイ化物となシ、窒
化ケイ累粒子と金属粒子との密着性を高めると同時に、
一部が酸化アルミニウム、酸化マグネシウム、酸化イヴ
トリウム、希土類元素酸化物と混り合い、または反応し
て、緻密で高靭性の相を形成し、この相が窒化ケイ素の
粒界に析出して、クラツクの成長全阻止するためと考え
られる。
In the tough ceramic produced by the production method of the present invention,
The reason why such a large fracture toughness value is obtained is that some of the added metals in Group A or Group Va of the periodic table react with silicon nitride during sintering, forming nitrides and silicides. At the same time as increasing the adhesion between silicon nitride particles and metal particles,
A part of it mixes with or reacts with aluminum oxide, magnesium oxide, ivtrium oxide, and rare earth element oxides to form a dense and tough phase, which precipitates at the grain boundaries of silicon nitride and causes cracks. This is thought to be to completely prevent the growth of

本発明において、セラミックスの相対密度を95%以上
にすることが不可欠である理由は、相対密度がこれ以上
低下してセラミックス中に気孔が増すと、クラックが気
孔を伝って成長するようになシ、クラ・Iりの成長阻止
が困難で、大きな破壊靭性値が得られなくなるからであ
シ、また、相対密度が低下すると高温における耐酸化性
が低下し、強度が経時変化しやすいという欠点を生ずる
からである。ここで、相対密度は、窒化ケイ素、添加し
た金属および金属酸化物の密度と添加量から計算した理
論密度と、実際の密度との比率を意味している。
In the present invention, the reason why it is essential to make the relative density of the ceramic 95% or more is that if the relative density decreases further and the number of pores increases in the ceramic, cracks may grow along the pores. This is because it is difficult to inhibit the growth of cracks and cracks, making it impossible to obtain a large fracture toughness value.Also, when the relative density decreases, oxidation resistance at high temperatures decreases, and the strength tends to change over time. This is because it occurs. Here, the relative density means the ratio between the theoretical density calculated from the density and addition amount of silicon nitride, the added metal, and the metal oxide, and the actual density.

周期律表IVa族およびVa族金属の添加量は5.5重
量%以上、45重量%以下であることが望ましい。添加
量が5重量係以下では破壊靭性値向上に有効でなく、4
5重量%を越えると、焼結性が低下して、相対密度全9
5係以上とするのが困難となる。なお、添加量が30重
緻チ以下では、1100℃以上の高温における強度や耐
酸化性が大きい利点を生ずる。ターボチャーツヤやガス
タービンなどではセラミックスの温度は一般にガス温度
よりも100〜150℃程度低く、添加量が55〜30
重量%の範囲ではガス温度1200〜1250℃での使
用が可能である。また、上記金属添加量が5.5重量%
以上、15重量−以下では、ガス温度1300〜135
0℃での使用が可能となる。
It is desirable that the amount of the metals of group IVa and group Va of the periodic table added is 5.5% by weight or more and 45% by weight or less. If the amount added is less than 5% by weight, it is not effective in improving the fracture toughness value;
If it exceeds 5% by weight, the sinterability will decrease and the relative density will decrease.
It will be difficult to have more than 5 sections. It should be noted that when the amount added is less than 30%, the strength and oxidation resistance at high temperatures of 1100° C. or higher are advantageous. In turbocharts and gas turbines, the temperature of ceramics is generally about 100 to 150°C lower than the gas temperature, and the amount added is 55 to 30°C.
It can be used at a gas temperature of 1200 to 1250° C. within the range of % by weight. In addition, the amount of the metal added is 5.5% by weight.
Above, 15 weight - or less, gas temperature 1300-135
It can be used at 0°C.

周期律表IVa族及びVa族金属のうちではバナジウム
の使用が特に好ましい。バナジウムを用いると、得られ
るセラミックスの高温における耐酸化性が特に大きくな
る。
Among the metals of groups IVa and Va of the periodic table, the use of vanadium is particularly preferred. The use of vanadium particularly increases the oxidation resistance of the resulting ceramics at high temperatures.

酸化アルミニウム、酸化マグネシウム、酸化イツトリウ
ム、希土類元素酸化物は、焼結時に窒化ケイ素の緻密化
を促進する焼結助剤として作用するが、その添加量は、
金属酸化物の総計で1重量%を越えて20重量%以下の
範囲であることが好ましい。添加量がこの範囲よシも少
ないと焼結が不充分となって相対密度が低下、シ、また
、破壊靭性値が光分大きなものとならない。逆に20重
量%を越えると1,1200℃以上の高温における強度
や耐酸化性が低下する。なお、高温における強度を高く
保つためには金属酸化物として、酸化アルミニウムまた
は/および酸化イツトリウムを用いるのが特に好ましい
Aluminum oxide, magnesium oxide, yttrium oxide, and rare earth element oxides act as sintering aids that promote densification of silicon nitride during sintering, but the amount added is
The total amount of metal oxides is preferably in the range of more than 1% by weight and less than 20% by weight. If the amount added is less than this range, sintering will be insufficient, the relative density will decrease, and the fracture toughness value will not be large enough. On the other hand, if it exceeds 20% by weight, the strength and oxidation resistance at high temperatures of 1,1200°C or higher will decrease. Note that in order to maintain high strength at high temperatures, it is particularly preferable to use aluminum oxide and/or yttrium oxide as the metal oxide.

周期律表F/a族及びVa族金属の添加原料としては焼
結時に一旦金属に変るものであれば何でもよく、金属粉
、金属同志の合金粉、金属水素化物、有機金属化合物な
どを用いることができる。また、金属酸化物などの形で
添加して、その後金属に還元しても良い。
The additive raw materials for the F/a group and Va group metals in the periodic table may be anything as long as they can be converted into metals during sintering, such as metal powders, alloy powders of metals, metal hydrides, organometallic compounds, etc. I can do it. Alternatively, it may be added in the form of a metal oxide or the like and then reduced to a metal.

また、酸化アルミニウム、酸化マグネシウム、酸化イツ
) IJウム、希土類元素酸化物の添加原料としては焼
結時に酸化物になるものであれば何でも良く、金属酸化
物担体、金属酸化物同志が反応したスピネル等の複合酸
化物、硝酸塩などの金属塩などを用いることができる。
In addition, as raw materials for adding aluminum oxide, magnesium oxide, and rare earth element oxides, anything can be used as long as it becomes an oxide during sintering. Composite oxides such as, metal salts such as nitrates, etc. can be used.

以下、本発明の実施例を比較例と共に説明する。Examples of the present invention will be described below along with comparative examples.

〔発明の実施例〕[Embodiments of the invention]

実施例】 平均粒径0.5μmのSi3N4粉末に、平均粒径10
μmのバナソウム粉末及び平均粒径07μmのY2O3
゜At203. MgO、CeO,、、La2O3粉末
を第1表の割合に配合し、均一な混合粉末とした。次に
これに10〜15重量%の低重合ポリエチレンなどのよ
うな有機バインダを加え、射出成形法によシ、1500
kg/cm2.の荷重を加えて成形体とした。該成形体
は次に2℃/hの速度で昇温しでバインダを除去した後
、N2ガス中1650〜1800℃で1〜10h焼成し
、焼結体を得た。得られた焼結体の相対密度、曲げ強さ
、破壊靭性値に、c、空気中1100℃で1000h酸
化後の室温における曲げ強さを第1表に示す。
Example: Si3N4 powder with an average particle size of 0.5 μm has an average particle size of 10 μm.
μm vanasome powder and Y2O3 with average particle size 07μm
゜At203. MgO, CeO,..., La2O3 powders were blended in the proportions shown in Table 1 to form a uniform mixed powder. Next, 10 to 15% by weight of an organic binder such as low polymerized polyethylene was added to this, and the mixture was molded using an injection molding method.
kg/cm2. A molded body was obtained by applying a load of . The molded body was then heated at a rate of 2° C./h to remove the binder, and then fired in N2 gas at 1650 to 1800° C. for 1 to 10 hours to obtain a sintered body. Table 1 shows the relative density, bending strength, and fracture toughness of the obtained sintered body, c, and the bending strength at room temperature after oxidation at 1100° C. for 1000 hours in air.

なお、破壊靭性値に1cは試料にビヅヵース硬度計で面
積Aの半端円形の傷をつけた後、曲げ強度σを測定し、
下式により計算した。
In addition, the fracture toughness value 1c is determined by making a semi-circular scratch with an area A on the sample using a Bizkaas hardness tester, and then measuring the bending strength σ.
Calculated using the formula below.

σ=0.84に、c4占 また、曲げ強度はJISの3点曲げ法により測定した。At σ=0.84, c4 horoscope Moreover, the bending strength was measured by the JIS three-point bending method.

第1表に見られるように、本発明を実施した屋1〜23
の強靭性セラミックスは曲げ強度と破壊靭性値が大きく
、中でも、金属添加量が5重量%を越えて30重量条以
下であり、がっ、金属酸化物添加量が1重量%を越えて
20重量%以下の時に、高温強度及び耐酸化性が特に大
きいことが判る。
As seen in Table 1, companies 1 to 23 who implemented the present invention
The tough ceramics have high bending strength and fracture toughness values, especially those with metal addition of more than 5% by weight and 30% by weight or less, and those with metal oxide addition of more than 1% by weight and 20% by weight. % or less, it can be seen that the high temperature strength and oxidation resistance are particularly high.

第1表のA2,8,12.13の配合比を用い、上述の
方法で羽根径40mmのターボチャーツヤ用ロータ(羽
根とシャフト一体)全試作した。試作ロータをガス温度
1200〜1300℃中で3o万rpmの速度で100
h連続運転したシ、ガスのON a OFFにょる。t
artdstopのくシ返し試験音おこなったりしたが
、破損などの問題は1つたく認められなかった。
Using the blending ratios of A2, 8, and 12.13 in Table 1, all prototype rotors for turbocharts (blades and shaft integrated) with a blade diameter of 40 mm were manufactured in the manner described above. The prototype rotor was heated at a speed of 30,000 rpm at a gas temperature of 1,200 to 1,300°C.
After continuous operation, turn the gas ON and OFF. t
I ran the artdstop repeat test sound, but I couldn't find any problems such as damage.

実施例2 平均粒径0.5μmの515N4粉末に周期律表■a族
及びVa族金属粉(粒径1〜20μm)及び平均粒径0
.7 timのAt205. Y2O3,MgO、希土
類元素の酸化物の粉末を第2表の割合で配合し、5チポ
リビニールアルコール水溶液をIO%混合した後、カー
ビン製の型に入れて、圧力350kg/crn2、最高
温度1750℃保持時間2hの条件でホットデ1/ス焼
結した。得られた焼結体の特性を第2表に示す、。
Example 2 515N4 powder with an average particle size of 0.5 μm was added with metal powder from group A and Va of the periodic table (particle size 1 to 20 μm) and an average particle size of 0
.. 7 tim's At205. Y2O3, MgO, and rare earth element oxide powders were blended in the proportions shown in Table 2, mixed with 5% polyvinyl alcohol aqueous solution, and then placed in a carbine mold at a pressure of 350 kg/crn2 and a maximum temperature of 1750 ml. Hot-dose sintering was carried out under the conditions of 2 hours of holding time at °C. The properties of the obtained sintered body are shown in Table 2.

卯、2表からも、本発明の製造力法による強靭性セラミ
ックス(扁24〜57)の破壊靭性値及び曲げ強度の大
きいことが明らかである。
It is clear from Table 2 that the fracture toughness and bending strength of the tough ceramics (diameters 24 to 57) obtained by the manufacturing force method of the present invention are large.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、高温強度、耐酸
化性がすぐれているばかりでなく、破壊靭性値が10 
MN/−5,、以上という大きい値であり、従って構造
用セラミ、ックスとしての信頼性が太きい強靭性セラミ
ックスが得られる。
As explained above, the present invention not only has excellent high-temperature strength and oxidation resistance, but also has a fracture toughness value of 10.
This is a large value of MN/-5, or more, and therefore, a strong ceramic that is highly reliable as a structural ceramic or glass can be obtained.

Claims (1)

【特許請求の範囲】 1、 窒化ケイ素を主体とし、これに周期律表■a族ま
たは”l/a族元累のうちから選ばれた1種以上の金属
、および、酸化アルミニウム、酸化マグネシウム、酸化
イヴトリウム、希土類元素酸化物のうちから選ばれた1
種以上の金属酸化物を粉末状態で混合し、相対密度95
%以上に焼結すること、を特徴とする強靭性セラミック
スの製造方法。 2、金属の添加量の総計が5.5〜45重量%の範囲内
にある特許請求の範囲第1項記載の強靭性セラミックス
の製造方法。 3、 金属酸化物の添加量の総計が1〜20重量裂の範
囲内にある特許請求の範囲第1項または第2項記載の強
靭性セラミックスの製造方法。 4、金属はパナゾウムであシ、金属酸化物は酸化アルミ
ニウム、酸化イヴトリウムまたはその両者である特許請
求の範囲第1項、第2項または第3項記載の強靭性セラ
ミックスの製造方法。
[Claims] 1. Mainly silicon nitride, and one or more metals selected from Group A or Group I/A elements of the periodic table, and aluminum oxide, magnesium oxide, Ivtrium oxide, one selected from rare earth element oxides
More than one metal oxide is mixed in powder form, and the relative density is 95.
% or more. 2. The method for producing tough ceramics according to claim 1, wherein the total amount of metal added is within the range of 5.5 to 45% by weight. 3. The method for producing tough ceramics according to claim 1 or 2, wherein the total amount of metal oxides added is within the range of 1 to 20 parts by weight. 4. The method for producing tough ceramics according to claim 1, 2, or 3, wherein the metal is panzoum, and the metal oxide is aluminum oxide, ivtrium oxide, or both.
JP59102216A 1984-05-21 1984-05-21 Manufacture of tough ceramic Pending JPS60245739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59102216A JPS60245739A (en) 1984-05-21 1984-05-21 Manufacture of tough ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59102216A JPS60245739A (en) 1984-05-21 1984-05-21 Manufacture of tough ceramic

Publications (1)

Publication Number Publication Date
JPS60245739A true JPS60245739A (en) 1985-12-05

Family

ID=14321467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59102216A Pending JPS60245739A (en) 1984-05-21 1984-05-21 Manufacture of tough ceramic

Country Status (1)

Country Link
JP (1) JPS60245739A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5030599A (en) * 1990-07-19 1991-07-09 W. R. Grace & Co.-Conn. Silicon nitride sintered materials

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5030599A (en) * 1990-07-19 1991-07-09 W. R. Grace & Co.-Conn. Silicon nitride sintered materials

Similar Documents

Publication Publication Date Title
KR890002156B1 (en) Ceramic structure having thermal shock resistance
JPS5823345B2 (en) Method for manufacturing ceramic sintered bodies
JP2001328869A (en) Abrasion-resistant member and method for producing the same
JPH0680470A (en) Production of silicon nitride sintered compact
US5204296A (en) Process for injection molding ceramics
JPH09268072A (en) Production of silicon nitride sintered compact
JPS60186468A (en) Ceramic structural material and manufacture
JP3270792B2 (en) Method for producing silicon nitride based sintered body
JPH0449509B2 (en)
JPS60245739A (en) Manufacture of tough ceramic
JPS6050750B2 (en) Silicon nitride composite sintered body
JP3091085B2 (en) Rare earth silicate based sintered body and method for producing the same
JPS59223272A (en) Ceramics structure and manufacture
JPS6033263A (en) Ceramic structural material
JP2519076B2 (en) Method for manufacturing silicon carbide whisker-reinforced ceramics
US5545362A (en) Production method of sintered silicon nitride
JPS63319263A (en) Silicon nitride-based ceramic
JP2710865B2 (en) Manufacturing method of silicon nitride sintered body
JP3124865B2 (en) Silicon nitride sintered body and method for producing the same
JPH06116045A (en) Silicon nitride sintered compact and its production
JP2972836B2 (en) Forming method of composite ceramics
JPH10279360A (en) Silicon nitride structural parts and its production
JP2892186B2 (en) Method for producing silicon nitride-silicon carbide composite sintered body
JPH0712980B2 (en) Silicon carbide sintered body and method for producing the same
JPH04342471A (en) Reacted sintered composite ceramic, its production and sliding member using the same