JPS59223272A - Ceramics structure and manufacture - Google Patents

Ceramics structure and manufacture

Info

Publication number
JPS59223272A
JPS59223272A JP58093953A JP9395383A JPS59223272A JP S59223272 A JPS59223272 A JP S59223272A JP 58093953 A JP58093953 A JP 58093953A JP 9395383 A JP9395383 A JP 9395383A JP S59223272 A JPS59223272 A JP S59223272A
Authority
JP
Japan
Prior art keywords
ceramic structural
particle size
structural material
boride
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58093953A
Other languages
Japanese (ja)
Inventor
忠彦 三吉
竹田 幸男
田口 三夫
小杉 哲夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58093953A priority Critical patent/JPS59223272A/en
Publication of JPS59223272A publication Critical patent/JPS59223272A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はターボチャージャやガスタービン等のような高
温構造部品として使用するに適したセラミックス構造材
とその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a ceramic structural material suitable for use as a high-temperature structural component such as a turbocharger or a gas turbine, and a method for manufacturing the same.

〔発明の背景〕[Background of the invention]

高効率化を目的に熱機関の使用温度はますます高温化す
る傾向にあり、熱機関を構成する構造部品にも一層の高
温特性が要求されている。例えば自動車用のターボチャ
ージャにおいては排ガス製置1100〜1200t:’
での使用が要求されており、また、高温ガスタービンで
はガス温度とじて1300〜1500c程度までの使用
が計画されている。このような目的のために、金属材料
に比して高温高強度の炭化ケイ素、窒化ケイ素、サイア
ロンなどのセラミックスが開発されているが、これらの
セラミックスは耐熱性や高温強度は充分な特性を持って
いる反面、もろいために一度クラックを生じるとクラッ
クが簡単に成長して割れやすく、信頼性に欠ける欠点が
あった。さらに、焼結体内の欠陥や表面欠陥などによっ
て強度がばらつきやすく、構造材としての強度設計が困
難であることの欠点があった。
The operating temperature of heat engines tends to be higher and higher in order to improve efficiency, and the structural components that make up heat engines are also required to have even higher temperature characteristics. For example, in a turbocharger for an automobile, the exhaust gas production capacity is 1100 to 1200 tons:'
In addition, high-temperature gas turbines are planned to be used at gas temperatures of about 1,300 to 1,500 c. For this purpose, ceramics such as silicon carbide, silicon nitride, and sialon, which have high temperature and high strength compared to metal materials, have been developed, but these ceramics do not have sufficient heat resistance or high temperature strength. On the other hand, because it is brittle, once a crack develops, it easily grows and breaks, making it unreliable. Furthermore, the strength tends to vary due to defects within the sintered body, surface defects, etc., and it is difficult to design the strength of the material as a structural material.

一方、サーメットや、炭化ホウ素、窒化ホウ素などを主
体とした焼結体のような工具材料は、一度クラックがは
いってもクラックが成長しにくく、ねばυ強い、所謂強
靭材料となっている反面、これらの材料は酸化雰囲気で
高温にさらされると変質し、機械的強度が著しく低下す
るという欠点があった。
On the other hand, tool materials such as cermet, sintered bodies mainly made of boron carbide, boron nitride, etc., are tough materials that are difficult to grow even if they crack, and are sticky. These materials have the disadvantage that they change in quality when exposed to high temperatures in an oxidizing atmosphere, resulting in a significant decrease in mechanical strength.

これらの欠点を除くために、例えば炭化ケイ素のような
耐熱高強度材料のファイバを例えば窒化ケイ素のような
耐熱材料中に混合し、焼結する方法も提案されている。
In order to eliminate these drawbacks, a method has also been proposed in which fibers of a heat-resistant, high-strength material such as silicon carbide are mixed into a heat-resistant material such as silicon nitride and then sintered.

しかしながら、この方法にも、一般にファイバは高価で
あること、アスペクト比(長軸と短軸の長さの比)が普
通的50以上程にと大きいため、ファイバ同志がからま
って分散しにくく、均一な焼結体が得にくいこと、焼結
時にファイバは収縮しないため、亀裂のない緻密な焼結
体を得るためにはポットプレス法などのような特殊な焼
結法が必要であシ、量産性が低く、かつ、複雑形状品へ
の適用が困難なこと、および、成形や焼結などの工程で
ファイバ同志が平行に並ぶ傾向が強いだめ、焼結体の機
械的性質が方向によって異シ、一般的な構造部品として
は使いにくいこと、などの欠点がちシ、構造部品として
の信頼性や汎用性に欠ける難点があった。
However, even with this method, the fibers are generally expensive and the aspect ratio (the ratio of the length of the long axis to the short axis) is usually as large as 50 or more, so the fibers become entangled with each other and are difficult to disperse. Because it is difficult to obtain a uniform sintered body and the fiber does not shrink during sintering, a special sintering method such as the pot press method is required to obtain a dense sintered body without cracks. The mechanical properties of the sintered body vary depending on the direction because mass production is low and it is difficult to apply it to products with complex shapes, and because the fibers tend to line up parallel to each other during processes such as molding and sintering. It has many disadvantages, such as being difficult to use as a general structural component, and lacks reliability and versatility as a structural component.

〔発明の目的〕[Purpose of the invention]

本発明は、上述した従来技術の欠点を除き、ターボチャ
ージャやガスタービン等のような高温部品として用いる
に適した、耐熱性、破壊靭性共に大きく、かつ、信頼性
や汎用性の高いセラミックス構造材を提供することを目
的としている。
The present invention eliminates the drawbacks of the prior art described above, and provides a ceramic structural material that has high heat resistance and fracture toughness, and is highly reliable and versatile, suitable for use as high-temperature parts such as turbochargers and gas turbines. is intended to provide.

〔発明の概要〕[Summary of the invention]

本発明のセラミックス構造材は、耐化ケイ素、窒化ケイ
素、サイアロンのうちから選ばれた少くとも1種類と、
ハフニウムホウ化物とを主体量とすることを特徴として
いる。
The ceramic structural material of the present invention includes at least one type selected from hydrogen-resistant silicon, silicon nitride, and sialon;
It is characterized by mainly containing hafnium boride.

本発明の望ましい実施態様としては、ノ・フニウムホウ
化物の含有量として5〜50体積チの範囲が選ばれる。
In a preferred embodiment of the present invention, the content of the funium boride is selected to be in the range of 5 to 50 volumes.

また、本発明のセラミックス構造材は酸化アルミニウム
、酸化マグネシウム、酸化イツトリウムのうちから選ば
れた少くとも1種類をそれぞれ10重量%以下含有する
ことが特に望ましい。
Furthermore, it is particularly desirable that the ceramic structural material of the present invention contains at least 10% by weight or less of at least one selected from aluminum oxide, magnesium oxide, and yttrium oxide.

本発明者達が種々検討の結果、炭化ケイ素、窒化ケイ素
、サイアロンなどのようなシリコン系材料とハフニウム
ホウ化物を混合、焼結したセラミックスにおいては、■
高温酸化性雰囲気中で表面に810xを主体とした酸化
被膜を形成し、この被膜がバリヤとなって、それ以後の
内部の酸化、変質などが防止できること、■添加したハ
フニウムホウ化物は焼結体中でシリコン系材料の母材中
に分散し、母材とは異なる機械的性質を持った相を形成
する。このため、クラックが発生してもクラックがハフ
ニウムホウ化物またはその焼結反応生成物を主体とした
分散相との相互作用で分岐、屈曲し、その結果としてク
ラックの進展が阻止されること、の理由から、耐熱性、
破壊靭性値共に大きなセラミックスの得られることがわ
かった。また、用いるシリコン系セラミックス、ハフニ
ウムホウ化物共に一般のセラミックス工業で用いられる
程度の原料で良く、特にファイバなどを用いる必要はな
い。さらに、ホットプレス法、HIP法などだけでなく
通常の常圧焼結法でも充分緻密な焼結体が得られ、かつ
、その機械的性質も実質的に等方向な性質のものが得ら
れる。このため、得られるセラミックス構造材は信頼性
、汎用性共に高い。
As a result of various studies, the present inventors found that in ceramics made by mixing and sintering silicon-based materials such as silicon carbide, silicon nitride, and sialon with hafnium boride,
An oxide film mainly composed of 810x is formed on the surface in a high-temperature oxidizing atmosphere, and this film acts as a barrier to prevent internal oxidation and deterioration. It is dispersed in the base material of silicon-based material, forming a phase with mechanical properties different from those of the base material. Therefore, even if a crack occurs, the crack will branch and bend due to the interaction with the dispersed phase mainly composed of hafnium boride or its sintering reaction product, and as a result, the crack growth will be inhibited. Because of the heat resistance,
It was found that ceramics with high fracture toughness values could be obtained. Furthermore, the silicon ceramics and hafnium boride used may be of the same raw materials as those used in the general ceramics industry, and there is no need to use fibers or the like. Furthermore, a sufficiently dense sintered body can be obtained not only by hot pressing, HIP, etc., but also by ordinary pressureless sintering, and its mechanical properties are substantially isotropic. Therefore, the resulting ceramic structural material has high reliability and versatility.

本発明のセラミックス構造材に含有されるハフニウムホ
ウ化物量としては5〜50体積−の範囲内であることが
望ましい。ハフニウムホウ化物量が少なすぎると破壊靭
性値の向上に効果がない。
The amount of hafnium boride contained in the ceramic structural material of the present invention is preferably within the range of 5 to 50 volumes. If the amount of hafnium boride is too small, it will not be effective in improving the fracture toughness value.

ハフニウムホウ化物量が5体積−以上となると、破壊靭
性値は10 MN/H13/2以上となる。また、ハフ
ニウムホウ化物量が10体積チ以上になると破壊靭性値
は15MN/m”/2以上となる。ターボチャージャや
高温ガスタービンの部品のような複雑な形状のセラミッ
クスを作製するためには焼結後の機械加工が不可欠であ
る。この際には一般に最大100〜200μm程度の表
面傷が生成することがしばしばあシ、従来のセラミック
スではこのために強度が低下して信頼性低下の原因とな
っていたが、破壊靭性値が10MN/m”/”以上のセ
ラミックスを用いればこのような条件でもロータなどに
一般に必要とされる約3QK9f/−以上の強度を示し
、セラミックス構造材の信頼性が大幅に高くなる。
When the amount of hafnium boride is 5 volumes or more, the fracture toughness value is 10 MN/H13/2 or more. Furthermore, when the amount of hafnium boride is 10 volumetric or more, the fracture toughness value becomes 15 MN/m''/2 or more. Machining after curing is essential.In this case, surface scratches of up to 100 to 200 μm are often generated, which reduces the strength of conventional ceramics and causes a decrease in reliability. However, if ceramics with a fracture toughness value of 10 MN/m"/" or more are used, even under such conditions, it will show a strength of about 3QK9f/- or more, which is generally required for rotors, etc., and the reliability of ceramic structural materials will be improved. becomes significantly higher.

さらに、破壊靭性値が15MN/mL4以上となるとI
OMN/rn”/”の時に比べて破壊に必要なエネルギ
ーが2倍以上に増加し、セラミックス構造材の信頼性は
さらに向上する。
Furthermore, when the fracture toughness value is 15 MN/mL4 or more, I
The energy required for destruction is more than doubled compared to OMN/rn''/'', and the reliability of the ceramic structural material is further improved.

一方、ハフニウムホウ化物量が多くなシすぎると酸化雰
囲気中での耐熱性が低下するため、好ましくない。自動
車用ターボチャージャなどの用途に安全に用いるだめに
は1200tl’以上の耐熱性が要求されるが、このた
めにはハフニウムホウ化物量が50体積チ以下であるこ
とが望ましい。
On the other hand, if the amount of hafnium boride is too large, the heat resistance in an oxidizing atmosphere will decrease, which is not preferable. Heat resistance of 1200 tl' or more is required for safe use in applications such as automobile turbochargers, and for this purpose it is desirable that the amount of hafnium boride is 50 vol tl or less.

本発明のセラミックス構造材が酸化アルミニウム、酸化
マグネシウム、酸化イツトリウムの少くとも一種類を含
む場合には、焼結時にこれらの酸化物がハフニウムホウ
化物と反応して、一部またやハフニウムΔヒ物に変化す
ると共に、粒径約1μm以下の粒子の集合体を形成し、
この集合体がシリコン手セラミックス中に分散した構造
のセラミックス構造材が得られる。この粒径約1μm以
下の粒子の集合体はクラックの分岐に有効であり、クラ
ックの進展防止に大きな効果を持つ。特に集合体中に粒
子が約100個以上集合している場合にはクラック進展
防止に著しい効果があり、得られるセラミックス構造材
は特に大きな破壊靭性値を示す。
When the ceramic structural material of the present invention contains at least one of aluminum oxide, magnesium oxide, and yttrium oxide, these oxides react with hafnium boride during sintering, and part of the material also becomes hafnium Δ arsenide. and form an aggregate of particles with a particle size of about 1 μm or less,
A ceramic structural material having a structure in which this aggregate is dispersed in silicone ceramics is obtained. This aggregate of particles with a particle size of about 1 μm or less is effective in branching cracks and has a great effect in preventing crack propagation. In particular, when about 100 or more particles are aggregated in the aggregate, there is a remarkable effect in preventing crack propagation, and the resulting ceramic structural material exhibits a particularly high fracture toughness value.

酸化アルミニウム、酸化マグネシウム、酸化イツトリウ
ムなどの添加量は10W1%以下であることが望ましい
。添加量が多すぎると1200C以上の高温における強
度が低下して好ましくない。
The amount of aluminum oxide, magnesium oxide, yttrium oxide, etc. added is preferably 10W1% or less. If the amount added is too large, the strength at high temperatures of 1200C or higher will decrease, which is not preferable.

尚、本発明のセラミックス構造材は炭化ケイ素、窒化ケ
イ素、サイアロンの内の少なくとも一種類と、ハフニウ
ムホウ化物と必要に応じてYx Os 。
The ceramic structural material of the present invention includes at least one of silicon carbide, silicon nitride, and sialon, hafnium boride, and Yx Os as necessary.

A Lx Os 2M g O、B 4C等の焼結助剤
とを混合焼結して作製される。この際、焼結温度は16
00〜2500Cの範囲が望ましい。1600C未満で
は焼結が不充分となって焼結体の強度が低下する恐れが
あり、また、2500Cを超えると過燐酸となって破壊
靭性値低下の恐れがある。
It is produced by mixing and sintering sintering aids such as A Lx Os 2M g O and B 4C. At this time, the sintering temperature was 16
A range of 00 to 2500C is desirable. If it is less than 1600C, sintering may be insufficient and the strength of the sintered body may be reduced, and if it exceeds 2500C, it may become superphosphoric acid, which may reduce the fracture toughness value.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例に従って説明する。 Hereinafter, the present invention will be explained according to examples.

〔実施例 1〕 平均粒径が0.7μmの8!3N4粉末と、平均粒径2
pmのHfB!と、平均粒径0.5/JmのY * O
s 。
[Example 1] 8!3N4 powder with an average particle size of 0.7 μm and an average particle size of 2
pm HfB! and Y*O with an average particle size of 0.5/Jm
s.

MgOおよびAAsOsを第1表に示した割合に配合し
、均一な混合粉末とした。次に、これに10〜15wt
%の低重合ポリエチレンなどのような有機バインダを加
え、射出成形法により3500 K9/ trotの荷
重を加えて成形体とした。該成形体は次にバインダ抜き
後、N2ガス中1700〜1800t:’で1h焼成し
、焼結体を得た。得られた焼結体の曲げ強さ、破壊靭性
値KIC,及び1200Cで2000h酸化後の室温に
おける曲げ強度を第1表に示す。
MgO and AAsOs were blended in the proportions shown in Table 1 to form a uniform mixed powder. Next, add 10 to 15 wt to this
% of an organic binder such as low-polymerized polyethylene was added thereto, and a molded body was obtained by applying a load of 3500 K9/trot by injection molding. After removing the binder from the molded body, the molded body was fired for 1 hour at 1700 to 1800 t:' in N2 gas to obtain a sintered body. Table 1 shows the bending strength, fracture toughness value KIC, and bending strength at room temperature after oxidation at 1200C for 2000 hours of the obtained sintered body.

なお、破壊靭性値KICは試料にビッカース硬度計で傷
をつけた後、曲げ強度σを測定し、σと傷の大きさCよ
シ、下式を用いて計算した。
The fracture toughness value KIC was calculated by scratching the sample with a Vickers hardness meter, measuring the bending strength σ, and using the formula below based on σ and the scratch size C.

第1表に見られるように、HfB2の添加#5〜50体
積チ、Yz Os 、 M g O、A t 20gの
添加量≦iowtsの範囲で破壊靭性値、耐熱性共に優
れたセラミックス構造材の得られることがわかる。
As shown in Table 1, ceramic structural materials with excellent fracture toughness and heat resistance can be obtained in the range of HfB2 addition #5 to 50 volumetric, YzOs, MgO, At 20g addition amount≦iowts. You can see what you can get.

次に、第1表A3の試料を用いて羽根径40mのターボ
チャージャー用ロータを試作した。このロータをガス温
度1100〜1200C中で30万f戸の速度で100
0時間連続運転したが、破損などの問題は全く認められ
なかった。
Next, a prototype turbocharger rotor with a blade diameter of 40 m was fabricated using the sample shown in Table 1 A3. This rotor was operated at a speed of 300,000 f in a gas temperature of 1,100 to 1,200 C.
Although it was operated continuously for 0 hours, no problems such as damage were observed.

また、粒径1μmの5isN4に加えるH f B2の
添加量を10体積チ、粒径0.5μmのY2O3、Al
tosの添加量をそれぞれ6wt%、3wtチとし、温
度1750t?、圧力200Kp/crlでホットプレ
スして得られた焼結体の特性を原料HfB2の粒径と共
に第2表に示す。
In addition, the amount of H f B2 added to 5isN4 with a particle size of 1 μm was added to 10 volumes, and the amount of H f B2 added to 5isN4 with a particle size of 1 μm was
The amount of tos added is 6wt% and 3wt, respectively, and the temperature is 1750t? The characteristics of the sintered body obtained by hot pressing at a pressure of 200 Kp/crl are shown in Table 2 together with the particle size of the raw material HfB2.

第2表の試料では焼結時にHfB2とY2O5。In the samples in Table 2, HfB2 and Y2O5 were present during sintering.

A tz Osなどが反応して、粒径0.1〜1μIn
のHf& 、 HfO2,HfS f  などの粒子の
集合体を形成し、これが5IsN4中に分散した構造を
持っていることがSEM観察の結果にかった。1つの集
合体を構成する粒子数は原料Hf B 2の粒径に依存
するが、第2表より集合体中の粒子数が約100個以上
で特に破壊靭性値が大きくなること、および、HfB2
の原料粒径が大きくなシすぎると、焼結体中の気孔が多
くなって曲げ強度が低下することがわかる。
AtzOs etc. react to reduce the particle size to 0.1 to 1 μIn.
The results of SEM observation showed that the 5IsN4 particles formed an aggregate of particles such as Hf&, HfO2, HfSf, etc., and had a structure in which these particles were dispersed in 5IsN4. The number of particles constituting one aggregate depends on the particle size of the raw material HfB2, but Table 2 shows that the fracture toughness value becomes especially large when the number of particles in the aggregate is about 100 or more.
It can be seen that if the particle size of the raw material is too large, the number of pores in the sintered body increases and the bending strength decreases.

平均粒径1μmのα−8iC粉末と平均粒径5μmの)
−I f B 2と平均粒径0.5μmのAt203を
第2表に示しだ割合に配合し、ポリメチルシロキザンを
バインダとして、温度2050 t;、圧力200Kf
/cdでホトプレスした。得られた焼結体の特性を第3
表に示す。
α-8iC powder with an average particle size of 1 μm and an average particle size of 5 μm)
-I f B 2 and At203 with an average particle size of 0.5 μm were blended in the proportions shown in Table 2, and polymethylsiloxane was used as a binder at a temperature of 2050 t; a pressure of 200 Kf.
/cd photopress. The characteristics of the obtained sintered body were
Shown in the table.

第3表より、Hf132の添加量5〜50体績係の範囲
で、破壊靭性値、耐熱性共に優れたセラミックスの構造
材の得られることがわかる。
From Table 3, it can be seen that a ceramic structural material having excellent fracture toughness and heat resistance can be obtained when the amount of Hf132 added is in the range of 5 to 50%.

〔実施例 3〕 平均粒径が0.7μmの5j3N4粉末と平均粒径が0
.5μmのALzos粒末と平均粒径が2/4mのAA
N粉末及び平均粒径が1μmの5iOz粉末を、サイア
ロンの一般式S fa−zAtzOzNs−zの2の籠
が0.2〜4,2になるように採取し、これにさらに平
均粒径2μmのHfB2を1〜70体積チ体積間で添加
し、均一な混合粉末とした。該混合粉末は次に金型中で
1000 Ky / cdlの荷重を加えて成形体とし
た。
[Example 3] 5j3N4 powder with an average particle size of 0.7 μm and 5j3N4 powder with an average particle size of 0
.. ALzos particles of 5 μm and AA with an average particle size of 2/4 m
N powder and 5iOz powder with an average particle size of 1 μm were collected so that the value of 2 in the general formula S fa-zAtzOzNs-z of Sialon was 0.2 to 4.2, and then 5iOz powder with an average particle size of 2 μm was collected. HfB2 was added between 1 and 70 volumes to form a uniform mixed powder. The mixed powder was then formed into a compact by applying a load of 1000 Ky/cdl in a mold.

該成形体は次にN2ガス中、1700Cの温度で1h焼
成した。この実施例においても得られた焼結体は、Hf
Bz添加量が5〜50体at%の範囲で、破壊靭性値>
IOMN/m”、10体積チ以上で15MN/m¥似上
、1200Cで2oooh醒化後の曲げ強度≧40Kp
/−とすぐれた性質を示した。
The compact was then fired in N2 gas at a temperature of 1700C for 1 hour. The sintered body obtained in this example also had Hf
When the amount of Bz added is in the range of 5 to 50 at%, the fracture toughness value>
IOMN/m", 15MN/m for 10 volumes or more, bending strength after 2oooh cooling at 1200C ≧40Kp
/- showed excellent properties.

〔実施例 4〕 平均粒径0.5μmのβ−8iC粉末に平均粒径0.5
μmのB4C0,75W t %とノボラックフェノー
ル樹脂4wt%及び低重合ポリエチレン15wt%と平
均粒径5μmのHfB28 v oL %を加え、10
00 Kg / crAの圧力で射出成型後2C/hの
昇温速度でバインダ抜きし、Ar中2300t:’でl
 It焼D5.した試料、及び、平均粒径2μmのα−
8iC粉末に平均粒径2μmのA7N4wt%と平均粒
径5μmのHfB28vot%を加え、温度2050C
,圧力200 Ky/ ctdでホットプレスした試料
葡作製した。これらの試料の破壊靭性値は共に11MN
/rr13/ミ曲げ強度は前者が70 Ky / mr
&、後者が105KV/−でおった。
[Example 4] β-8iC powder with an average particle size of 0.5 μm
75 W t % of B4C of μm, 4 wt % of novolak phenolic resin, 15 wt % of low polymerized polyethylene, and 8 vol % of HfB with an average particle size of 5 μm were added.
After injection molding at a pressure of 00 Kg/crA, the binder was removed at a heating rate of 2C/h, and the product was heated at 2300t:' in Ar.
It-yaki D5. sample, and α- with an average particle size of 2 μm.
4wt% of A7N with an average particle size of 2 μm and 28vot% of HfB with an average particle size of 5 μm were added to 8iC powder, and the temperature was 2050C.
Sample grapes were prepared by hot pressing at a pressure of 200 Ky/ctd. The fracture toughness values of these samples are both 11 MN.
/rr13/mi bending strength is 70 Ky/mr for the former
&, the latter was 105KV/-.

また、前者の試料を用いて実施例1と同様に羽根径40
mmのターボチャージャ用ロータ(羽根とシャフト一体
)を試作した。このロータを用いて、カス温度1300
〜1500C中30万rymの粂件での1000hの連
続試験やガスのONiOF Fのくシ返し試験をおこな
ったが、破損などの問題はまったく認められなかった。
In addition, using the former sample, the blade diameter was 40 as in Example 1.
We prototyped a rotor for a turbocharger (blades and shaft integrated). Using this rotor, the waste temperature is 1300
We conducted a continuous test for 1000 hours at a temperature of 300,000 ryam at ~1500C and a cycling test of gas ONiOF, but no problems such as breakage were observed.

〔発明の効果〕〔Effect of the invention〕

以上説明して来たように、本発明のセラミックス構造材
は破壊靭性値が大きいこと、耐熱化性が大きいことの利
点を持っておシ、自動車用ターボチャージャやガスター
ビンなどの用途に、信頼性の高い高温構造部材として広
く応用することができる。
As explained above, the ceramic structural material of the present invention has the advantages of high fracture toughness and high heat resistance, and is reliable for applications such as automobile turbochargers and gas turbines. It can be widely applied as a high-temperature structural member with high properties.

Claims (1)

【特許請求の範囲】 1、炭化ケイ素、窒化ケイ素、サイアロンのうちから選
ばれた少くとも1種類とノ・フニウムホウ化物とを主体
量とすることを特徴とするセラミックス構造材。 2、特許請求の範囲第1項において、−ヒ記ノ1フニウ
ムホウ化物の含有量が5〜50体積チの範囲内であるこ
とを特徴とするセラミックス構造材。 3、特許請求の範囲第1項または第2項において、上記
セラミックス構造材がさらに酸化アルミニウム、酸化マ
グネシウム、酸化イツトリウムのうちから選ばれた少く
とも1種類をそれぞれ10重量−以下含有することを特
徴とするセラミックス構造材。 4、特許請求の範囲第1項、第2項または第3項におい
て、上記ノ・フニウムホウ化物またはその反応生成物が
粒径約1μm以下の粒子が約100個以上集合した集合
体組織を持って、セラミックス構造材中に分散している
ことを特徴とするセラミックス構造材。 5、炭化ケイ素、窒化ケイ素、サイアロンの内から選ば
れた少なくとも1種類と、5〜50体積チのハフニウム
ホウ化物とを混合し、1600〜2500Gの範囲内の
温度で焼成することを特徴とするセラミックス構造材の
製造方法。
[Scope of Claims] 1. A ceramic structural material, characterized in that the main content thereof is at least one selected from silicon carbide, silicon nitride, and sialon, and a funium boride. 2. A ceramic structural material according to claim 1, characterized in that the content of the funium boride is in the range of 5 to 50 vol. 3. Claim 1 or 2, characterized in that the ceramic structural material further contains at least one selected from aluminum oxide, magnesium oxide, and yttrium oxide by 10 weight or less each. Ceramic structural materials. 4. Claims 1, 2, or 3, wherein the above-mentioned no-funium boride or its reaction product has an aggregate structure in which about 100 or more particles with a particle size of about 1 μm or less are aggregated. A ceramic structural material characterized by being dispersed in a ceramic structural material. 5. At least one selected from silicon carbide, silicon nitride, and sialon and 5 to 50 volumes of hafnium boride are mixed and fired at a temperature within the range of 1600 to 2500G. Method for manufacturing ceramic structural materials.
JP58093953A 1983-05-30 1983-05-30 Ceramics structure and manufacture Pending JPS59223272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58093953A JPS59223272A (en) 1983-05-30 1983-05-30 Ceramics structure and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58093953A JPS59223272A (en) 1983-05-30 1983-05-30 Ceramics structure and manufacture

Publications (1)

Publication Number Publication Date
JPS59223272A true JPS59223272A (en) 1984-12-15

Family

ID=14096790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58093953A Pending JPS59223272A (en) 1983-05-30 1983-05-30 Ceramics structure and manufacture

Country Status (1)

Country Link
JP (1) JPS59223272A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0152488A1 (en) * 1983-07-27 1985-08-28 Hitachi, Ltd. Heat impact-resistant ceramic structure
JPS6340766A (en) * 1986-08-01 1988-02-22 旭硝子株式会社 High temperature steel contacting member
US4876227A (en) * 1986-07-18 1989-10-24 Corning Incorporated Reaction sintered boride-oxide-silicon nitride for ceramic cutting tools
CN104311138A (en) * 2014-10-22 2015-01-28 山东理工大学 Preparation method of silicon nitride and silicon carbide combined titanium diboride foamed ceramics
CN104311129A (en) * 2014-10-22 2015-01-28 山东理工大学 Preparation method of foam ceramic with combination of silicon nitride, silicon carbide and niobium diboride

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0152488A1 (en) * 1983-07-27 1985-08-28 Hitachi, Ltd. Heat impact-resistant ceramic structure
US4876227A (en) * 1986-07-18 1989-10-24 Corning Incorporated Reaction sintered boride-oxide-silicon nitride for ceramic cutting tools
JPS6340766A (en) * 1986-08-01 1988-02-22 旭硝子株式会社 High temperature steel contacting member
CN104311138A (en) * 2014-10-22 2015-01-28 山东理工大学 Preparation method of silicon nitride and silicon carbide combined titanium diboride foamed ceramics
CN104311129A (en) * 2014-10-22 2015-01-28 山东理工大学 Preparation method of foam ceramic with combination of silicon nitride, silicon carbide and niobium diboride

Similar Documents

Publication Publication Date Title
KR890002156B1 (en) Ceramic structure having thermal shock resistance
JPS595550B2 (en) Ceramic rotor and its manufacturing method
JPS5823345B2 (en) Method for manufacturing ceramic sintered bodies
JPS5851910B2 (en) Titsukakeisokeishyouketsutainoseizouhouhou
JPS59223272A (en) Ceramics structure and manufacture
JPS60186468A (en) Ceramic structural material and manufacture
JPS6050750B2 (en) Silicon nitride composite sintered body
JPS5950074A (en) Continuous casting refractories
Carlsson The shaping of engineering ceramics
JPS5891072A (en) Manufacture of silicon nitride sintered body
JPS6033263A (en) Ceramic structural material
JP2972836B2 (en) Forming method of composite ceramics
JPS61158866A (en) Ceramic sintered body and manufacture
JPS63112471A (en) Silicon nitride base ceramics and manufacture
JP2892186B2 (en) Method for producing silicon nitride-silicon carbide composite sintered body
JPS60255672A (en) Manufacture of silicon carbide sintered body
JPS63185862A (en) Manufacture of ceramic composite body
JP2710865B2 (en) Manufacturing method of silicon nitride sintered body
JPS63162583A (en) Manufacture of fiber reinforced ceramics
JPS63252966A (en) Manufacture of silicon nitride base ceramic composite body
JPS598669A (en) Silicon nitride composite sintered body and manufacture
JP2581128B2 (en) Alumina-sialon composite sintered body
JPS60245739A (en) Manufacture of tough ceramic
JPS60264366A (en) Composite sintered body
JPS63195170A (en) Manufacture of silicon nitride sintered body