JPS60245177A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS60245177A
JPS60245177A JP10102184A JP10102184A JPS60245177A JP S60245177 A JPS60245177 A JP S60245177A JP 10102184 A JP10102184 A JP 10102184A JP 10102184 A JP10102184 A JP 10102184A JP S60245177 A JPS60245177 A JP S60245177A
Authority
JP
Japan
Prior art keywords
drain
current
region
type
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10102184A
Other languages
Japanese (ja)
Other versions
JPH0612818B2 (en
Inventor
Yoshiro Nakada
義朗 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59101021A priority Critical patent/JPH0612818B2/en
Publication of JPS60245177A publication Critical patent/JPS60245177A/en
Publication of JPH0612818B2 publication Critical patent/JPH0612818B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain a semiconductor device which has high output while retaining the features of high impedance input and less characteristic deterioration by providing a reverse conductive type region in the drain region of a normal MOSFET. CONSTITUTION:A p<+> type layer 25 is provided in n<+> type drain 24 in a p type well 22, and n<+> type source 23 and a p type well 22 are short-circuited via aluminum wirings 26. When a suitable voltage is applied to a gate electrode to flow a current between the source and the drain, the current becomes a base current of a bipolar element of the base 24, the emitter 25 and the collector 22 to obtain an output current magnified by hFE. Accordingly, the channel current of the FET may be 1/hFE of the desired value, and an element deterioration is hardly progressed. A potential difference between the source and drain becomes substantially 0 at the FET operating time to contribute to prevention of the element deterioration.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体装置に関し、高インピーダンス入力で
あり、高出力電流が得られ、かつ、素子特性劣化の少な
い新規な構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a semiconductor device, and relates to a novel structure that has a high impedance input, can obtain a high output current, and has little deterioration in device characteristics.

従来例の構成とその問題点 素子の微細化に伴なって発生する問題点の一つにホット
キャリアの問題がある。このホットキャリアは、ドレイ
ン接合近傍の高電界領域で発生し閾値電圧変動、9m劣
化等の問題を引き起こす。
Conventional configuration and its problems One of the problems that occur with the miniaturization of elements is the problem of hot carriers. These hot carriers are generated in the high electric field region near the drain junction, causing problems such as threshold voltage fluctuation and 9m degradation.

ドレイン接合近傍の電界を緩和するだめ、ドレイン接合
のチャンネル側にドレインに接したドレインと不純物の
型が同一である低、不純物領域を設けた構造(以下L 
D D [Lightly doped drain]
構造と略す)等がとられている。
In order to alleviate the electric field near the drain junction, a low impurity region (hereinafter referred to as L
D D [Lightly doped drain]
structure) etc. are taken.

第1図は、従来のLDD構造を有するMOSFETの断
面図である。1はp型シリコン基板、2はゲート酸化膜
、3はゲート電極、4人はソース領域、4Bはドレイン
領域、6は低不純物濃度領域、6はSin、、よりなる
サイドウオールである。
FIG. 1 is a cross-sectional view of a MOSFET having a conventional LDD structure. 1 is a p-type silicon substrate, 2 is a gate oxide film, 3 is a gate electrode, 4 is a source region, 4B is a drain region, 6 is a low impurity concentration region, and 6 is a sidewall made of Sin.

ドレインのチャンネル側に低不純物濃度領域を設けたこ
とにより、ドレイン接合部の横方向電界が緩和されホッ
トキャリアの発生をおさえることができる。
By providing the low impurity concentration region on the channel side of the drain, the lateral electric field at the drain junction is relaxed and the generation of hot carriers can be suppressed.

しかし、構造上チャンネル領域と、ドレイン領域の間に
低不純物濃度領域6が必要となる。また製造上ドレイン
形成のマスクとして、ゲートの両側に、サイドウオール
6を形成する必要がある。
However, due to the structure, a low impurity concentration region 6 is required between the channel region and the drain region. Further, in manufacturing, it is necessary to form sidewalls 6 on both sides of the gate as a mask for drain formation.

これらは素子の微細化に反し、素子面積を大きくするこ
ととなる。さらにサイドウオール6を用いるLDD構造
は、サイドウオール形成の必要条件として、サイドウオ
ール幅の1.5〜2倍以上のゲート電極膜厚を必要とし
、段差等の問題が発生する。
These are contrary to miniaturization of the element and increase the area of the element. Furthermore, the LDD structure using the sidewall 6 requires a gate electrode film thickness that is 1.5 to 2 times or more the width of the sidewall as a necessary condition for forming the sidewall, which causes problems such as steps.

発明の目的 本発明は、上記問題点を解決するもので、高インピーダ
ンス入力であるというMOSFETの特徴を有しながら
、高出力電流が得られ、かつ素子特性劣化の少ない、微
細化可能な半導体装置を提供せんとするものである。
OBJECT OF THE INVENTION The present invention solves the above-mentioned problems, and provides a semiconductor device that can be miniaturized, which has the characteristic of MOSFET of high impedance input, can obtain high output current, and has little deterioration of device characteristics. We aim to provide the following.

発明の構成 本発明は、上記目的を達する為、通常のMO8FICT
のドレイン領域内に、ドレインと導電型の異なる領域を
形成し、たとえばこれをエミッタとし、従来のドレイン
領域をベース、ドレイン・ソースをとり囲む領域をコレ
クタとしたバイポーラトランジスタを形成し、チャネル
電流をベース電流としてドレインのトランジスタに注入
することにより、出力としては、このバイポーラトラン
ジスタのもつ電流増幅率hFilにより増幅された電流
を得るというものである。
Structure of the Invention In order to achieve the above object, the present invention uses a conventional MO8FICT.
A region with a conductivity type different from that of the drain is formed in the drain region of the transistor, and a bipolar transistor is formed, for example, with this as the emitter, the conventional drain region as the base, and the region surrounding the drain and source as the collector. By injecting the base current into the drain transistor, the output is a current amplified by the current amplification factor hFil of this bipolar transistor.

実施例の説明 以下、本発明の実施例を図面に従って説明する。Description of examples Embodiments of the present invention will be described below with reference to the drawings.

第2図aは、本実施例の半導体装置の断面図であるっ2
1はn型基板で、22はpウェル領域、23.24はそ
れぞれソース、ドレイン領域である。26はドレイン2
4領域中に形成されたp型頭域、Al配線などの導電性
材料26はソース領域23とpウェル領域22を短絡す
る。電極27はp型頭域に接続されている。28はゲー
ト電極、29はゲート酸化膜、30は酸化膜である。本
実施例に示した構造の等何回路を第2図すに示す。
FIG. 2a is a cross-sectional view of the semiconductor device of this example.
1 is an n-type substrate, 22 is a p-well region, and 23 and 24 are source and drain regions, respectively. 26 is drain 2
A conductive material 26 such as a p-type head region and an Al wiring formed in the four regions short-circuits the source region 23 and the p-well region 22. Electrode 27 is connected to the p-type head region. 28 is a gate electrode, 29 is a gate oxide film, and 30 is an oxide film. A similar circuit having the structure shown in this embodiment is shown in FIG.

同図aに対応する部分には同一の符号が記されている。The same reference numerals are given to the parts corresponding to a in the figure.

ゲート電極28にソース23.ドレイン24からなるM
OSFETにチャンネルが形成される様に電位を与える
と、ソース23.ドレイン24間に電流が流れる。この
電流は、ドレイン24をベースとするバイポーラトラン
ジスタのエミッタ26、コレクタ22からなるバイポー
ラトランジスタのベース電流となり、電極27からはこ
のベース電流(チャネル電流)をバイポーラトランジス
タの電流増幅率(hyx )倍された電流出力が得られ
る。したがってMOSFETのチャンネル部分を流れる
電流は、得だい出力電流のh□分の1ですみ、素子劣化
もそれだけ起こりにくい。さらに、ノース23.ドレ4
フ24間の電位差は、MOSFETが動作時にはほぼ0
となり、この点からも、素子特性劣化の防止に効果があ
る。本実施例に示した構造では、エミッタ領域25の形
成には電極27を接結するためのコンタクト窓を通して
行なうことができるので、新たに、マスクズレに対する
マージンをとる必要がなく、この点でもLDD構造の様
な従来構造よりも微細化に適している。
The source 23. is connected to the gate electrode 28. M consisting of drain 24
When a potential is applied to the OSFET to form a channel, the source 23. A current flows between the drains 24. This current becomes the base current of the bipolar transistor consisting of the emitter 26 and collector 22 of the bipolar transistor with the drain 24 as the base, and from the electrode 27 this base current (channel current) is multiplied by the current amplification factor (hyx) of the bipolar transistor. A current output can be obtained. Therefore, the current flowing through the channel portion of the MOSFET is approximately 1/h□ of the output current, and element deterioration is less likely to occur. Furthermore, North 23. Dre 4
The potential difference between the terminals 24 and 24 is approximately 0 when the MOSFET is in operation.
From this point of view as well, it is effective in preventing deterioration of device characteristics. In the structure shown in this embodiment, since the emitter region 25 can be formed through the contact window for connecting the electrode 27, there is no need to provide a margin for mask misalignment, and in this respect, the LDD structure It is more suitable for miniaturization than conventional structures such as.

発明の詳細 な説明したように、本発明によれば、MOSトランジス
タの高インピーダンス入力である点と、バイポーラトラ
ンジスタの高出力電流が得られるという長所をかねそな
え、かつ、MOS l−ランシロ 1、 。
DETAILED DESCRIPTION OF THE INVENTION As described in detail, the present invention combines the advantages of a high impedance input of a MOS transistor and the high output current of a bipolar transistor, and is a MOS transistor.

スタのチャンネル内を流れる電流が少なく、またソース
・ドレイン間の電位差も小さいことから素子劣化の少な
いデバイスが得られる。
Since the current flowing through the channel of the star is small and the potential difference between the source and drain is also small, a device with less element deterioration can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のホット・キャリア効果の軽減を目的とし
だLDD構造の半導体装置の断面図、第2図(a)は本
発明の一実施例の半導体装置の断面図、第2図(b)は
同図(a)の等価回路図である。 23・・・・・・7−ス領域、24・・・・・・ドレイ
ンとベースをかねる領域、26・・・・・・エミッタ領
域、22・・・・・・コレクタとMOSの基板をかねる
領域、26゜27・・・・・・配線。
FIG. 1 is a sectional view of a conventional semiconductor device with an LDD structure aimed at reducing the hot carrier effect, FIG. 2(a) is a sectional view of a semiconductor device according to an embodiment of the present invention, and FIG. ) is an equivalent circuit diagram of the same figure (a). 23...7-source region, 24... region that serves as drain and base, 26... emitter region, 22... serves as collector and MOS substrate Area, 26°27...Wiring.

Claims (2)

【特許請求の範囲】[Claims] (1)MO8電界効果トランジスタのドレイン領域内に
、前記ドレインと異なる導電性の半導体領域が設けられ
、かつこの半導体領域に電極が設けられたことを特徴と
する半導体装置。
(1) A semiconductor device characterized in that a semiconductor region having a conductivity different from that of the drain is provided in a drain region of an MO8 field effect transistor, and an electrode is provided in this semiconductor region.
(2) ドレイン領域と半導体領域が、バイポーラトラ
ンジスタの一部を構成することを特徴とする特許請求の
範囲第1項に記載の半導体装置。
(2) The semiconductor device according to claim 1, wherein the drain region and the semiconductor region constitute part of a bipolar transistor.
JP59101021A 1984-05-18 1984-05-18 Semiconductor device Expired - Lifetime JPH0612818B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59101021A JPH0612818B2 (en) 1984-05-18 1984-05-18 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59101021A JPH0612818B2 (en) 1984-05-18 1984-05-18 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS60245177A true JPS60245177A (en) 1985-12-04
JPH0612818B2 JPH0612818B2 (en) 1994-02-16

Family

ID=14289542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59101021A Expired - Lifetime JPH0612818B2 (en) 1984-05-18 1984-05-18 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0612818B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0272754A2 (en) * 1986-12-22 1988-06-29 Koninklijke Philips Electronics N.V. Complementary lateral insulated gate rectifiers
JPH02101747A (en) * 1988-10-11 1990-04-13 Toshiba Corp Semiconductor integrated circuit and manufacture thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0272754A2 (en) * 1986-12-22 1988-06-29 Koninklijke Philips Electronics N.V. Complementary lateral insulated gate rectifiers
JPH02101747A (en) * 1988-10-11 1990-04-13 Toshiba Corp Semiconductor integrated circuit and manufacture thereof

Also Published As

Publication number Publication date
JPH0612818B2 (en) 1994-02-16

Similar Documents

Publication Publication Date Title
US6713794B2 (en) Lateral semiconductor device
JP3158738B2 (en) High breakdown voltage MIS field-effect transistor and semiconductor integrated circuit
KR19980064498A (en) Semiconductor device and manufacturing method thereof
US6198131B1 (en) High-voltage metal-oxide semiconductor
JP2983110B2 (en) Semiconductor device and manufacturing method thereof
JPH02143566A (en) Double diffusion type insulated gate field effect transistor
US5969391A (en) Complementary insulated-gate field-effect transistors having improved anti-latchup characteristic
US5497011A (en) Semiconductor memory device and a method of using the same
JP2825038B2 (en) Semiconductor device
JPS60245177A (en) Semiconductor device
JP3211529B2 (en) Vertical MIS transistor
JP2737629B2 (en) Semiconductor device having output circuit of CMOS configuration
JPH05190561A (en) Semiconductor device
JPH09246545A (en) Semiconductor element for power
JPH0590579A (en) Power field-effect transistor
JPH09191054A (en) Cmos transistor
JPH09199718A (en) Semiconductor integrated circuit device and its fabrication
JP2818416B2 (en) MOS field effect transistor
JP2546179B2 (en) Semiconductor device
JPH05129425A (en) Semiconductor device and manufacture thereof
JPS62133763A (en) Mos transistor
JPH03229469A (en) Vertical mos field effect transistor
JP2968640B2 (en) Semiconductor device
JPH01181571A (en) Conduction modulation type mosfet
JPH118381A (en) Semiconductor device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term