JPH0612818B2 - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0612818B2
JPH0612818B2 JP59101021A JP10102184A JPH0612818B2 JP H0612818 B2 JPH0612818 B2 JP H0612818B2 JP 59101021 A JP59101021 A JP 59101021A JP 10102184 A JP10102184 A JP 10102184A JP H0612818 B2 JPH0612818 B2 JP H0612818B2
Authority
JP
Japan
Prior art keywords
region
drain
source
current
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59101021A
Other languages
Japanese (ja)
Other versions
JPS60245177A (en
Inventor
義朗 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59101021A priority Critical patent/JPH0612818B2/en
Publication of JPS60245177A publication Critical patent/JPS60245177A/en
Publication of JPH0612818B2 publication Critical patent/JPH0612818B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体装置に関し、高インピーダンス入力で
あり、高出力電流が得られ、かつ、素子特性劣化の少な
い新規な構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device, and to a novel structure which has a high impedance input, a high output current can be obtained, and a deterioration in element characteristics is small.

従来例の構成とその問題点 素子の微細化に伴なって発生する問題点の一つにホット
キャリアの問題がある。このホットキャリアは、ドレイ
ン接合近傍の高電界領域で発生し閾値電圧変動、gm劣化
等の問題を引き起こす。ドレイン接合近傍の電界を緩和
するため、ドレイン接合のチャンネル側にドレインに接
したドレインと不純物の型が同一である低不純物領域を
設けた構造(以下LDD〔Lightly doped drain〕構造
と略す)等がとられている。
Configuration of Conventional Example and Its Problems One of the problems that occurs with the miniaturization of elements is the problem of hot carriers. The hot carriers are generated in a high electric field region near the drain junction and cause problems such as threshold voltage fluctuation and gm deterioration. In order to alleviate the electric field near the drain junction, there is a structure (hereinafter abbreviated as LDD [Lightly doped drain] structure) provided on the channel side of the drain junction with a low impurity region having the same impurity type as the drain in contact with the drain. It is taken.

第1図は、従来のLDD構造を有するMOS FETの
断面図である。1はp型シリコン基板、2はゲート酸化
膜、3はゲート電極、4Aはソース領域、4Bはドレイ
ン領域、5は低不純物濃度領域、6はSiO2よりなるサイ
ドウォールである。ドレインのチャンネル側に低不純物
濃度領域を設けたことにより、ドレイン接合部の横方向
電界が緩和されホットキャリアの発生をおさえることが
できる。
FIG. 1 is a sectional view of a conventional MOS FET having an LDD structure. Reference numeral 1 is a p-type silicon substrate, 2 is a gate oxide film, 3 is a gate electrode, 4A is a source region, 4B is a drain region, 5 is a low impurity concentration region, and 6 is a sidewall made of SiO 2 . By providing the low impurity concentration region on the channel side of the drain, the lateral electric field at the drain junction can be relaxed and generation of hot carriers can be suppressed.

しかし、構造上チャンネル領域と、ドレイン領域の間に
低不純物濃度領域5が必要となる。また製造上ドレイン
形成のマスクとして、ゲートの両側に、サイドウォール
6を形成する必要がある。これらは素子の微細化に反
し、素子面積を大きくすることとなる。さらにサイドウ
ォール6を用いるLDD構造は、サイドウォール形成の
必要条件として、サイドウォール幅の1.5〜2倍以上
のゲート電界膜厚を必要とし、段差等の問題が発生す
る。
However, a low impurity concentration region 5 is required between the channel region and the drain region structurally. Further, it is necessary to form the sidewalls 6 on both sides of the gate as a mask for forming the drain in manufacturing. These are against the miniaturization of the device and increase the device area. Furthermore, the LDD structure using the sidewalls 6 requires a gate electric field film thickness of 1.5 to 2 times the sidewall width or more as a necessary condition for forming the sidewalls, which causes a problem such as a step.

発明の目的 本発明は、上記問題点を解決するもので、高インピーダ
ンス入力であるというMOSFETの特徴を有しなが
ら、ゲート電圧の制御下で高出力電流が得られ、かつ素
子特性劣化の少ない、微細化可能な半導体装置を提供せ
んとするものである。
An object of the present invention is to solve the above-mentioned problems, and while having the characteristic of a MOSFET having a high impedance input, a high output current can be obtained under the control of the gate voltage, and the element characteristic deterioration is small. An object of the present invention is to provide a semiconductor device that can be miniaturized.

発明の構成 本発明は、上記目的を達する為、通常のMOSFETの
ドレイン領域内に、ドレインと導電型の異なる領域を形
成し、たとえばこれをエミッタとし、従来のドレイン領
域をベース、ドレイン・ソースをとり囲む領域をコレク
タとしたバイポーラトランジスタを形成し、チャネル電
流をベース電流としてドレインのトランジスタに注入す
ることにより、出力としては、このバイポーラトランジ
スタのもつ電流増幅率HFEにより増幅された電流を得る
というものである。またソース領域とこのソース領域と
接する基板領域との間をこれらが接する表面上に設けら
れた同一の電極で短絡されるというものである。
In order to achieve the above-mentioned object, the present invention forms a region having a conductivity type different from that of the drain in the drain region of a normal MOSFET, for example, this is used as an emitter, and the conventional drain region is used as a base and a drain / source is formed. By forming a bipolar transistor with the surrounding region as a collector and injecting a channel current as a base current into the drain transistor, a current amplified by the current amplification factor H FE of this bipolar transistor is obtained as an output. It is a thing. Further, the source region and the substrate region in contact with the source region are short-circuited by the same electrode provided on the surface in contact with them.

実施例の説明 以下、本発明の実施例を図面に従って説明する。第2図
aは、本実施例の半導体装置の断面図である。21はn
型基板で、22はpウェル領域、23,24はそれぞれ
ソース,ドレイン領域である。25はドレイン24領域
中に形成されたp型領域、Al配線などの導電性材料26
はソース領域23とpウェル領域22を短絡する。電極
27はp型領域に接続されている。28はゲート電極、
29はゲート酸化膜、30は酸化膜である。本実施例に
示した構造の等価回路を第2図bに示す。同図aに対応
する部分には同一の符号が記されている。ゲート電極2
8にソース23、ドレイン24からなるMOSFETにチ
ャンネルが形成される様に電位を与えると、ソース2
3,ドレイン24間に電流が流れる。この電流は、ドレ
イン24をベースとするバイポーラトランジスタのエミ
ッタ25,コレクタ22からなるバイポーラトランジス
タのベース電流となり、電極27からはこのベース電流
(チャネル電流)をバイポーラトランジスタの電流増幅
率(hFE)倍された電流出力が得られる。したがってM
OSFETのチャンネル部分を流れる電流は、得たい出
力電流のhFE分の1ですみ、素子劣化もそれだけ起こり
にくい。さらに、ソース23,ドレイン24間の電位差
は、MOSFETが動作時にほぼ0となり、この点から
も、素子特性劣化の防止に効果がある。またソース領域
23とこのソース領域と接するpウェル領域22との間
がこれらが接する表面上に設けられた同一の電極26で
短絡されているため、同一のコンタクト窓で接続が出
来、ソースとは別の一で基板電位を取る場合に比べ微細
化の上で有効であると共に、基板電位の特にソース拡散
層近傍でのソース電位に対する変化が少なくラッチアッ
プ状態になる事はなく、ゲート電圧を下げると元の状態
に復帰させる事が可能である。すなわちゲート電圧での
電流の制御が可能である。本実施例に示した構造では、
エミッタ領域25の形成には電極27を接結するための
コンタクト窓を通して行なうことができるので、新た
に、マスクズレに対するマージンをとる必要がなく、こ
の点でもLDD構造の様な従来構造よりも微細化に適し
ている。
Description of Embodiments Embodiments of the present invention will be described below with reference to the drawings. FIG. 2a is a sectional view of the semiconductor device of this embodiment. 21 is n
The mold substrate 22 is a p-well region, and 23 and 24 are source and drain regions, respectively. 25 is a conductive material such as a p-type region formed in the drain 24 region and Al wiring 26
Short-circuits the source region 23 and the p-well region 22. The electrode 27 is connected to the p-type region. 28 is a gate electrode,
Reference numeral 29 is a gate oxide film, and 30 is an oxide film. An equivalent circuit of the structure shown in this embodiment is shown in FIG. 2b. The same reference numerals are given to the portions corresponding to FIG. Gate electrode 2
When a potential is applied to 8 so that a channel is formed in the MOSFET composed of the source 23 and the drain 24, the source 2
3, a current flows between the drains 24. This current becomes the base current of the bipolar transistor including the emitter 25 and collector 22 of the bipolar transistor whose base is the drain 24, and this base current (channel current) is multiplied by the current amplification factor (h FE ) of the bipolar transistor from the electrode 27. The obtained current output is obtained. Therefore M
The current flowing through the channel part of the OSFET is 1 / h FE of the desired output current, and element deterioration is less likely to occur. Further, the potential difference between the source 23 and the drain 24 becomes almost 0 when the MOSFET is in operation, which is also effective in preventing the deterioration of the element characteristics. Further, since the source region 23 and the p-well region 22 in contact with the source region are short-circuited by the same electrode 26 provided on the surface in contact with each other, connection can be made with the same contact window, and the source is different from the source. It is more effective in miniaturization compared to the case where the substrate potential is taken by another one, and there is little change in the substrate potential with respect to the source potential especially in the vicinity of the source diffusion layer, so that the latch-up state does not occur and the gate voltage is lowered. And it is possible to return to the original state. That is, the current can be controlled by the gate voltage. In the structure shown in this embodiment,
Since the emitter region 25 can be formed through a contact window for connecting the electrode 27, it is not necessary to newly provide a margin for mask misalignment, and also in this respect, the structure can be made finer than the conventional structure such as the LDD structure. Suitable for

発明の効果 以上説明したように、本発明によれば、MOSトランジ
スタの高インピーダンス入力である点と、バイポーラト
ランジスタの高出力電流が得られるという長所をかねそ
なえ、かつ、MOSトランジスタのチャンネル内を流れ
る電流が少なく、またソース・ドレイン間の電位差も小
さいことから素子劣化の少ないデバイスが得られる。ま
たソース領域とこのソース領域と接する基板領域との間
をこれらが接する表面上に設けられた同一の電極で短絡
するため、同一のコンタクト窓で接続が出来、ソースと
は別の位置で基板電位を取る場合に比べ微細化の上で有
効であると共に、基板電位の特にソース拡散層近傍での
ソース電位に対する変化が少なくラッチアップ状態にな
る事はなく、ゲート電圧を下げると元の状態に復帰させ
る事が可能である。
EFFECTS OF THE INVENTION As described above, according to the present invention, the high impedance input of the MOS transistor and the advantage that a high output current of the bipolar transistor can be obtained are obtained, and the current flows in the channel of the MOS transistor. Since the current is small and the potential difference between the source and drain is small, a device with less element deterioration can be obtained. Further, since the source region and the substrate region in contact with this source region are short-circuited by the same electrode provided on the surface where they are in contact, connection can be made with the same contact window, and the substrate potential at a position different from the source It is more effective in miniaturization compared to the case of taking the above, and there is little change in the substrate potential with respect to the source potential especially in the vicinity of the source diffusion layer. It is possible to

【図面の簡単な説明】[Brief description of drawings]

第1図は従来のホット・キャリヤ効果の軽減を目的とし
たLDD構造の半導体装置の断面図、第2図(a)は本発
明の一実施例の半導体装置の断面図、第2図(b)は同図
(a)の等価回路図である。 23……ソース領域、24……ドレインとベースをかね
る領域、25……エミッタ領域、22……コレクタとM
OSの基板をかねる領域、26,27……配線。
FIG. 1 is a sectional view of a conventional semiconductor device having an LDD structure for reducing the hot carrier effect, FIG. 2 (a) is a sectional view of a semiconductor device according to an embodiment of the present invention, and FIG. 2 (b). ) Is the same figure
It is an equivalent circuit diagram of (a). 23 ... Source region, 24 ... Region that also serves as drain and base, 25 ... Emitter region, 22 ... Collector and M
Area that doubles as the OS substrate, 26, 27 ... Wiring.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】MOS電界効果トランジスタのドレイン領
域内に、前記ドレイン領域と異なる導電性の半導体領域
が設けられ、かつこの半導体領域に第1の電極が接続さ
れ、ソース領域とこのソース領域と接する基板領域との
間がこれらが接する表面上に設けられた第2の電極で短
絡されたことを特徴とする半導体装置。
1. A drain region of a MOS field effect transistor is provided with a conductive semiconductor region different from the drain region, and a first electrode is connected to the semiconductor region, and the source region and the source region are in contact with each other. A semiconductor device characterized by being short-circuited with a substrate region by a second electrode provided on the surface in contact with these.
JP59101021A 1984-05-18 1984-05-18 Semiconductor device Expired - Lifetime JPH0612818B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59101021A JPH0612818B2 (en) 1984-05-18 1984-05-18 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59101021A JPH0612818B2 (en) 1984-05-18 1984-05-18 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS60245177A JPS60245177A (en) 1985-12-04
JPH0612818B2 true JPH0612818B2 (en) 1994-02-16

Family

ID=14289542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59101021A Expired - Lifetime JPH0612818B2 (en) 1984-05-18 1984-05-18 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0612818B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4712124A (en) * 1986-12-22 1987-12-08 North American Philips Corporation Complementary lateral insulated gate rectifiers with matched "on" resistances
JPH02101747A (en) * 1988-10-11 1990-04-13 Toshiba Corp Semiconductor integrated circuit and manufacture thereof

Also Published As

Publication number Publication date
JPS60245177A (en) 1985-12-04

Similar Documents

Publication Publication Date Title
US4969023A (en) SOS transistor structure
US4996574A (en) MIS transistor structure for increasing conductance between source and drain regions
US4599576A (en) Insulated gate type field effect semiconductor device and a circuit employing the device
JP3110262B2 (en) Semiconductor device and operating method of semiconductor device
US4547791A (en) CMOS-Bipolar Darlington device
JPH10242470A (en) Semiconductor device and fabrication thereof
JPH1012887A (en) Transistor device and manufacture thereof
US4814287A (en) Method of manufacturing a semiconductor integrated circuit device
JPS63166269A (en) Complementary lateral insulated gate rectifier
JPH08227900A (en) Semiconductor device
JPS6119164A (en) Supplementary integrated circuit and method of producing same
US3296508A (en) Field-effect transistor with reduced capacitance between gate and channel
JP2825038B2 (en) Semiconductor device
JPH0612818B2 (en) Semiconductor device
JPS6123669B2 (en)
JPS6241428B2 (en)
JPH05190561A (en) Semiconductor device
JPH04225238A (en) Lateral transistor and current mirror circuit using same
JP3233510B2 (en) Method for manufacturing semiconductor device
JPH0817206B2 (en) Semiconductor device
JPS6046064A (en) Semiconductor device
JPH0543303B2 (en)
JPH05129425A (en) Semiconductor device and manufacture thereof
JP3016340B2 (en) Semiconductor device and manufacturing method thereof
JPH088359B2 (en) Semiconductor device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term