JPS60242717A - Fir-type digital filter - Google Patents

Fir-type digital filter

Info

Publication number
JPS60242717A
JPS60242717A JP9926684A JP9926684A JPS60242717A JP S60242717 A JPS60242717 A JP S60242717A JP 9926684 A JP9926684 A JP 9926684A JP 9926684 A JP9926684 A JP 9926684A JP S60242717 A JPS60242717 A JP S60242717A
Authority
JP
Japan
Prior art keywords
channel
fed
multiplier
shift register
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9926684A
Other languages
Japanese (ja)
Other versions
JP2580102B2 (en
Inventor
Masayuki Nishiguchi
正之 西口
Tadao Suzuki
忠男 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP9926684A priority Critical patent/JP2580102B2/en
Publication of JPS60242717A publication Critical patent/JPS60242717A/en
Application granted granted Critical
Publication of JP2580102B2 publication Critical patent/JP2580102B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/02Frequency selective networks
    • H03H17/06Non-recursive filters

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Mathematical Physics (AREA)
  • Stereophonic System (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

PURPOSE:To obtain reproduced sound of plural channels where the phase is arranged completely even when a single D/A converter is used by setting individually a coefficient different from a prescribed amount depending on plural channels and using the coefficient switchingly corresponding to each channel. CONSTITUTION:When D/A conversion is required for an L channel, a switch circuit 16 is thrown to the position of a contact (a), a digital signal fed from an input terminal 10 is delayed sequentially by a prescribed amount at a shift register 11 and a RAM12 and fed to a multiplier 13 as a data. The data is multiplied sequentially at the multiplier 13 with a multiplication coefficient corresponding from a ROM14. Then the multiplied output of the multiplier 13 is fed sequentially to an adder 17, added with a feedback input from an accumulator 18, and when the addition is executed repetitively, an output of the accumulator 18 is fed to a shift register 19, the content of the shift register 19 is extracted at an output terminal 20 as a desired L channel digital signal and fed to a D/A converter.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、複数チャンネルが同時にサンプリングされ
たデータをステレオ時分割処理で、ディジタル−アナロ
グ変換(以下、D/A変換と云うする場合等に用いて好
適なF I RJディジタルフィルタに関する。
[Detailed Description of the Invention] Industrial Application Field This invention is used for digital-to-analog conversion (hereinafter referred to as D/A conversion) using stereo time division processing of data sampled simultaneously from multiple channels. The present invention relates to a preferred F I RJ digital filter.

背景技術とその問題点 LチャンネルとRチャンネルの如(複数のチャンネルの
データを所定の位相差をもって交互にサンプリングし′
ζ記録する場合には、再生時に単一のD/A変換器を用
いて時分割処理しても問題ないが、例えばコンパクトデ
ィスクプレーヤのディスクに記録されるデータの如く、
LチャンネルとRチャンネルのデータが同時にサンプリ
ングされて記録されているような場合には、再生時に単
一のD/A変換器を用いて時分割処理すると、Lチャン
ネルとRチャンネルの間で1/ fs (fsばオーバ
サンプル後のサンプリング周波数で、通常44.1k)
Iz X 2) X 1/2 (秒)だけ位相がずれる
と云う不都合が生ずる。
BACKGROUND TECHNOLOGY AND PROBLEMS L channel and R channel (data of multiple channels are sampled alternately with a predetermined phase difference)
ζ In the case of recording, there is no problem in using a single D/A converter for time-division processing during playback, but for example, as with data recorded on a compact disc player disc,
In cases where L channel and R channel data are sampled and recorded at the same time, if a single D/A converter is used for time division processing during playback, the 1/2 fs (fs is the sampling frequency after oversampling, usually 44.1k)
This causes the inconvenience that the phase is shifted by Iz x 2) x 1/2 (seconds).

そこで、従来は、LチャンネルとRチャンネルの間で位
相差が生じては困るような用途に対しては、時分割処理
をやめて夫々チャンネル毎に専用のD/A変換器を用い
て同時にD/A変換の処理を行うようにしていた。従っ
て構成が複雑になると共にコスト的にも市価になる等の
不都合があった。
Therefore, conventionally, for applications where it would be a problem to cause a phase difference between the L channel and the R channel, time-division processing was stopped and a dedicated D/A converter was used for each channel to perform simultaneous D/A conversion. A conversion processing was performed. Therefore, there are disadvantages in that the structure becomes complicated and the cost becomes high on the market.

また、D/A変換器の後にアナログ遅延回路(テンプル
ホールド回路)を設け、D/A変換後のLチャンネルと
Rチャンネルの位相差を解消することも考えられるが、
実用的でなく、実際には用いられていない。
It is also conceivable to provide an analog delay circuit (temple hold circuit) after the D/A converter to eliminate the phase difference between the L channel and R channel after D/A conversion.
It is impractical and is not used in practice.

発明の目的 この発明は斯る点に鑑み、単一のD/A変換器を用いて
も完全に位相の揃った複数チャンネルの再生音を得るこ
とができるFIR型ディジタルフィルりを提イハするも
のである。
Purpose of the Invention In view of the above, the present invention proposes an FIR type digital filter that can obtain reproduced sound of multiple channels with completely aligned phases even when using a single D/A converter. It is.

発明の概要 この発明では、複数チャンネルを時分割処理してデータ
の補間を行うFIR型ディジタルフィルタにおいて、上
記複数チャンネルに対して個別に且つ互いに所定量界な
る係数を設定し、これ等の係数を各チャンネルに対応し
て切換え使用するようにしている。これによって、この
発明では単一のD/A変換によるステレオ時分割処理で
も、完全に複数チャンネル位相の揃った再生が可能とな
る。
Summary of the Invention In the present invention, in an FIR type digital filter that performs data interpolation by time-division processing of multiple channels, coefficients are set for each of the multiple channels individually and each other by a predetermined amount, and these coefficients are It is designed to be used by switching according to each channel. As a result, according to the present invention, even with stereo time-division processing using a single D/A conversion, it is possible to reproduce a plurality of channels with completely aligned phases.

実施例 以ト、この発明の一実施例を第1図〜第4図に基づいて
詳しく説明する。
EXAMPLE Hereinafter, an example of the present invention will be described in detail based on FIGS. 1 to 4.

第1図は慣用のFIR型ディジタルフィルタであって、
入力データのサンプリング周期に等しい遅延量を有する
遅延器(11)、(12)・・・・・・(IN)と、各
遅延出力に係数KO,に1 ・・・・・・KN−1を掛
ける乗算器(2t ) 、(22)・・・・・・(2N
)と、各乗算出力を加算する加算器(3)とで一般に構
成され−Cいる。遅延器(11)、(12)・・・・・
・(IM)は通常シフトレジスタ、RAM等で構成され
、その動作クロックは基本サンプリング周波数fsの整
数倍とされている。
FIG. 1 shows a conventional FIR type digital filter,
Delay devices (11), (12)... (IN) having a delay amount equal to the sampling period of input data, and coefficients KO, 1...KN-1 for each delay output. Multiplier (2t), (22)...(2N
) and an adder (3) that adds the outputs of each multiplication. Delay device (11), (12)...
- (IM) usually consists of a shift register, RAM, etc., and its operating clock is an integral multiple of the basic sampling frequency fs.

いま、このディジタルフィルタの単位サンプル応答をh
 (n)とすると、システム関数(伝達関数)H(Zl
は、次式で表わされる。
Now, the unit sample response of this digital filter is h
(n), the system function (transfer function) H(Zl
is expressed by the following formula.

また、その係数K n (n−0〜N−1)はKn・=
h(nl ・・・・・・(2)となる。
Moreover, the coefficient K n (n-0 to N-1) is Kn・=
h(nl...(2)).

そして、このようなシステム関数を有するフィルタの周
波数応答は、Z=e”とおいて、で表わされる。
The frequency response of a filter having such a system function is expressed by Z=e''.

上記(2)式よりFIR型ディジタルフィルタの係数K
nは、単位サンプル応答h (n)そのものであること
がわかる。
From the above equation (2), the coefficient K of the FIR type digital filter is
It can be seen that n is the unit sample response h (n) itself.

次に、単位サンプル応答h (n)のめ方を述べる。Next, we will discuss how to calculate the unit sample response h(n).

この単位サンプル応答のめ方には、チェビシェフ近似や
等リップル近似による手法等があるが、こ\では理想ロ
ーパスの逆フーリエ変換による手法、すなわちアナログ
フィルタのイパルス応答からめる方法に付いて説明する
There are methods for calculating this unit sample response, such as Chebyshev approximation and equiripple approximation, but here we will explain a method using ideal low-pass inverse Fourier transform, that is, a method for calculating from the impulse response of an analog filter.

先ずめる周波数特性をF(すとすると、その時間関数f
 Ttlは逆フーリエ変換してとなる。
First, let F be the frequency characteristic, then its time function f
Ttl is obtained by inverse Fourier transform.

こ−で、周波数特性F(ω)は第2図にネオような理想
ローパスである。よ、って、このときの時間関数r (
t)は次式で表わされる。
Here, the frequency characteristic F(ω) is an ideal low-pass as shown in FIG. So, the time function r (
t) is expressed by the following formula.

π t この(5)式を離散時間の関数として偶き直すと、とな
る。但し、上記(6)式において、t=nT(T= 1
/fs、 nは整数) 、(IIC=2πfc(fcは
遮断周波数)とする。なお、fsはフィルタのオーバザ
ンプリング周波数である。
π t When this equation (5) is modified as a function of discrete time, it becomes. However, in the above equation (6), t=nT (T= 1
/fs, n is an integer), (IIC=2πfc (fc is the cutoff frequency). Note that fs is the oversampling frequency of the filter.

こ\で、アナログフィルタのインパルス応答をha(t
l、これに対応するディジタルフィルタの単位サンプル
応答をhd(nl (n = 0〜N−1)とすると、
アナログフィルタの特性をゲインも含めて近似するには
、ディジクルフィルタの単位サンプル応答を hd(nl = T ha (n T ) ・・・・(
71とすればよい。なおhaを1倍するのは双方の関数
の単位面積で比較するためのノーマライズのためである
Here, the impulse response of the analog filter is ha(t
l, and the unit sample response of the corresponding digital filter is hd(nl (n = 0 to N-1), then
To approximate the characteristics of an analog filter including its gain, the unit sample response of a digital filter is expressed as hd(nl = T ha (n T )...
It may be set to 71. Note that ha is multiplied by 1 for normalization in order to compare the unit areas of both functions.

従って、上記(6)及び(7)式より、ディジタルフィ
ルタの単位サンプル応答は でめられる。
Therefore, from equations (6) and (7) above, the unit sample response of the digital filter can be determined.

次にこれを第1図の回路構成に通用するために、上記(
2)式で用いた単位サンプル応答h tn>を、ha(
n)を用いて表わす。それには、直線位相のFIR型デ
ィジタルフィルタとするために、 h(n) = h (N−1−n) = =f91を満
足しなければならない。そごで、 −1 hd(01= h (−) ・・・・α0となるように
上記(8)式のnをシフトしてやればよい。すなわち h (nl−K n となる。つまり、この(11)式はディジクルフィルタ
の単位サンプル応答hd(nlが実質的に正の方向が存
在することになる。
Next, in order to apply this to the circuit configuration shown in Figure 1, the above (
The unit sample response h tn> used in equation 2) is expressed as ha(
n). To do so, the following must be satisfied in order to form a linear phase FIR type digital filter: h(n) = h (N-1-n) = = f91. Then, n in the above equation (8) should be shifted so that -1 hd(01= h (-) ...α0. In other words, h (nl-K n ). In other words, this ( Equation 11) means that there is a direction in which the unit sample response hd(nl) of the dicicle filter is substantially positive.

こ\でこのフィルタの群遅延特性を考えると、この群遅
延特性は実質的にフィルタの段数(タップ数)Nとオー
バサンプリング副波数fsに依存し、次式で決定される
Now, considering the group delay characteristic of this filter, this group delay characteristic substantially depends on the number of stages (number of taps) N of the filter and the number of oversampling subwaves fs, and is determined by the following equation.

−1 つまり、上記aφ式で示されるシフト量−に1/fsを
乗じたもので、一定となる。
-1 In other words, it is the shift amount - shown by the above aφ formula multiplied by 1/fs, which is constant.

そこで、上記(12)式のNに任意の段数を表わず!と
、これより1段異なるl+1とを夫々代入して両者の差
をとると、次式の如くなる。
Therefore, N in equation (12) above does not represent an arbitrary number of stages! By substituting and l+1, which is one step different from this, and taking the difference between the two, the following equation is obtained.

これは、複数チャンネル、例えばLチャンネルとRチャ
ンネル間で時分割的にD/A変換する際に補正しなけれ
ばないない遅延量そのものである。
This is the amount of delay that must be corrected when time-divisionally performing D/A conversion between multiple channels, for example, the L channel and the R channel.

通常記録の際に同時にサンプリングされたデータは、L
チャンネルとRチャンネルの場合は、再生時にはLチャ
ンネル、Rチャンネルの順でD/A変換されるので、■
、チャンネルの方がRチャンネルて、これを補止するた
めには、Lチャンネルに対し、Rチャンネルより1だけ
大きなNを設定してやればよいことが、」−記(13)
式より理解できる。
Data sampled simultaneously during normal recording is
In the case of channel and R channel, D/A conversion is performed in the order of L channel and R channel during playback, so ■
, the R channel is larger than the R channel, and in order to compensate for this, it is sufficient to set N for the L channel to be 1 larger than for the R channel.'' (13)
It can be understood from the formula.

従って、斯る設定により、ディジタルフィルタにンネル
の遅延量より大きくなり、結果としてD/A変換後には
完全に位相の揃ったLチャンネルとRチャンネルの信号
が得られることになる。
Therefore, with such a setting, the delay amount is greater than that of the digital filter channel, and as a result, L channel and R channel signals having completely aligned phases can be obtained after D/A conversion.

第3図はこの発明の一実施例をネオもので、こ\では1
個のD / A、変換で多チヤンネル切換を行う型のデ
ィジタルフィルタに適用した場合である。
Figure 3 is a neo version of one embodiment of this invention.
This is a case where the present invention is applied to a type of digital filter that performs multi-channel switching by D/A conversion.

同図において、aωばディジタル信号が供給される入力
端子、(11)は入力端子(+01からのディジタル信
号を順次取込むシフトレジスタ、(12)はシフトレジ
スタ(11)の内容を書き込み、そして読み出すRAM
で、このRAM(12)はご\では例えば16X 27
 (16X’14 (Lch ) ’+ 16X 13
 (Rch ) )ビットの容量とされる。
In the same figure, aω is an input terminal to which a digital signal is supplied, (11) is a shift register that sequentially takes in digital signals from the input terminal (+01), and (12) is used to write and read the contents of the shift register (11). RAM
So, this RAM (12) is, for example, 16X 27
(16X'14 (Lch) '+16X 13
(Rch) ) bit capacity.

(13)はRAM(12)の出力がデータとしζその一
方の入力側に供給される乗算器であって、例えばこ\で
は両チャンネルで考えた時にT−2Zfs内に16〔ビ
ット)X16(ビット) x 53 (27+ 26)
〔回〕の乗算能力があるものとする。(1,4) 。
(13) is a multiplier in which the output of RAM (12) is treated as data and is supplied to one of its input sides. For example, in this case, when considering both channels, 16 [bits] x 16 ( bit) x 53 (27+26)
Assume that there is a multiplication ability of [times]. (1,4).

(15)は夫々上チャンネル、RチャンネルのD/A変
換の際に使用される乗算係数が予め記憶されているRO
Mであって、この場合、例えばROM(14)は16X
 27ビツトの容量、ROM(15)は16×26ビツ
トの容量とされる。(16)はROM(14)(15)
の出力を切換えるスイッチ回路であって、Lチャンネル
のD/A変換時には接点a側に接続されてROM(14
)からの乗算係数を、またRチャンネルのD/A変換時
には接点す側に切換えられてROM(15)からの乗算
係数を、夫々乗算器(13)の他方の入力側に供給する
(15) is an RO in which multiplication coefficients used in D/A conversion of the upper channel and R channel are stored in advance, respectively.
In this case, for example, the ROM (14) is 16X
The capacity of the ROM (15) is 27 bits, and the capacity of the ROM (15) is 16×26 bits. (16) is ROM (14) (15)
This is a switch circuit that switches the output of the ROM (14
) and the multiplication coefficient from the ROM (15) which is switched to the contact side during D/A conversion of the R channel, respectively, are supplied to the other input side of the multiplier (13).

(17)は乗算器(13)の乗算出力を加算する加算器
、(18)は加算器(17)の結果をランチするアキュ
ムレータであって、このアキュムレータ(18)の出力
の一部は加算器(17)に帰還されて逐次乗算器(13
)からの乗算出力と加算され、例えば、こ\ではT=2
/fsの間にLチャンネルのD/A変換の際には25回
、RチャンネルのD/A変換の際には24回の加算がな
される。
(17) is an adder that adds the multiplication output of the multiplier (13), and (18) is an accumulator that launches the result of the adder (17), and a part of the output of this accumulator (18) is sent to the adder. (17) and is fed back to the successive multiplier (13
), for example, T=2 in this\
During /fs, addition is performed 25 times during D/A conversion of the L channel and 24 times during D/A conversion of the R channel.

(19)はアキュムレータ(18)の出力が供給される
シフト1/シスタ、(20)はシフトレジスタ(19)
より取り出された出力端子である。
(19) is the shift 1/sister to which the output of the accumulator (18) is supplied, (20) is the shift register (19)
This is the output terminal taken out from the

次に、この回路動作を説明する。LチャンネルのD/A
変換時には、スイッチ回路(16)が接点a側に接続さ
れ、入力端子00)より供給されたディジタル信号がシ
フトレジスタ(Jl)及びRAM(12)で順次所定量
遅延されてデータとして乗算器(13)に供給され、ご
、こごROM(14)からの対応する乗算係数と順次乗
算される。そして、乗算器(13)の乗算出力は順次加
算器(17)に供給されて、先の乗算出力、すなわちア
キュムレータ(18)からの帰還入力と加許され、この
加算動作の繰返しがこの場合25回行われると、アキュ
ムレータ(18)の出力がシフトレジスタ(19)に供
給され、このシフトレジスタ(19)の内容が所望の1
2チヤンネルのディジタル信号として出力端子(20)
に取り出され、図示せずもD/A変換器に供給される。
Next, the operation of this circuit will be explained. L channel D/A
At the time of conversion, the switch circuit (16) is connected to the contact a side, and the digital signal supplied from the input terminal 00) is sequentially delayed by a predetermined amount in the shift register (Jl) and RAM (12), and is sent as data to the multiplier (13). ) and are sequentially multiplied by the corresponding multiplication coefficients from the ROM (14). Then, the multiplication output of the multiplier (13) is sequentially supplied to the adder (17) and added to the previous multiplication output, that is, the feedback input from the accumulator (18), and the repetition of this addition operation is 25 in this case. Once the output of the accumulator (18) is supplied to the shift register (19), the contents of this shift register (19) are changed to the desired one.
Output terminal (20) as a 2-channel digital signal
The signal is taken out and supplied to a D/A converter (not shown).

また、RチャンネルのD/A変換時には、スイッチ回路
(16)が接点す側に切換えられ、上述同様入力端子(
101からのディジタル信号がシフトレジスタ(11)
及びRAM(12)で順次所定量遅延されてデータとし
て乗算器(13)に供給され、こ\でROM(15)か
らの対応する乗算係数と順次乗算される。そして、乗算
器(13)の乗算出力は順次加算器(17)に供給され
て、アキュムレータ(18)からの帰還人力と加算され
、この加算動作の繰返しがこの場合24回行われると、
アキュムレータ(18)の出力がシフトレジスタ(19
)に供給され、その内容が所望のRチャンネルのディジ
タル信号として出力端子(20)に取り出され、図示せ
ずもD/A変換器に供給される。
Also, during D/A conversion of the R channel, the switch circuit (16) is switched to the contact side, and the input terminal (
The digital signal from 101 is sent to the shift register (11)
The signals are sequentially delayed by a predetermined amount in the RAM (12) and supplied as data to the multiplier (13), where they are sequentially multiplied by the corresponding multiplication coefficients from the ROM (15). Then, the multiplication output of the multiplier (13) is sequentially supplied to the adder (17) and added to the feedback power from the accumulator (18), and when this addition operation is repeated 24 times in this case,
The output of the accumulator (18) is the shift register (19).
), its contents are taken out as a desired R-channel digital signal at an output terminal (20), and supplied to a D/A converter (not shown).

第4図は上述の如くLチャンネルをN−27、Rチャン
ネルをN−26と、Nの大きさを1だけずらした時の各
チャンネルにおける群遅延量を承すもので、第4図Aに
不すしチャンネルの群遅延量は13T、第4図Bに承ず
Rチャンネルの群遅延量は量の差が存在することがわか
る。
Figure 4 shows the group delay amount in each channel when the size of N is shifted by 1, such as N-27 for the L channel and N-26 for the R channel, as described above. It can be seen that the group delay amount of the unseen channel is 13T, and as shown in FIG. 4B, there is a difference in the amount of group delay of the R channel.

■ 従って、このようなRチャンネルに対して−・の信号と
をD/A変換器に供給し、こ\で時分割処理することに
より、D/A変換器では通常Lチ行して処理するので、
結果としてD/A変換器の出力側にはLチャンネル及び
Rチャンネル間の位相差の補正された同相のLチャンネ
ル信号及びLチヤンネル信号が得られることになる。
■ Therefore, by supplying such R channel and - signals to the D/A converter and time-sharing processing, the D/A converter normally processes the L channels. So,
As a result, an in-phase L channel signal and an L channel signal with the phase difference between the L channel and R channel corrected are obtained on the output side of the D/A converter.

このようにし°ζ、本実施例ではLチャンネル。In this way, °ζ is the L channel in this embodiment.

Rチャンネル独立に係数を配し、これ等2種類のの個数
(段数)がLチャンネルとRチャンネル間でlだけ異な
るようにし、これ等の係数をLチャンネルとRチャンネ
ルに対応して切換え用いるようにしたので、Lチャンネ
ル、Rチャンネル間の位相差も補正できるオーバサンプ
リングフィルタが実現できる。
Coefficients are allocated independently for the R channel, the number of these two types (number of stages) differs by l between the L channel and the R channel, and these coefficients are switched and used depending on the L channel and the R channel. Therefore, it is possible to realize an oversampling filter that can also correct the phase difference between the L channel and the R channel.

発明の効果 上述の如くこの発明によれば、複数チャンネルを時分割
処理してデータの補間を行う、つまりサンプリングレー
トをシフトするオーバサンプリングを行うFIR型ディ
ジタルフィルタにおいて、複数チャンネルに個別に且つ
相互に所定量異なる係数を設定し、これ等の係数を各チ
ャンネルに対応して切換え使用するようにしたので、単
一のD/A変換によるステレオ時分割処理でも完全に複
数チャンネルの位相の揃った再生かり能となり、回路構
成の簡略化、コストの低廉化が図れる。
Effects of the Invention As described above, according to the present invention, in an FIR type digital filter that performs data interpolation by time-division processing of multiple channels, that is, performs oversampling to shift the sampling rate, the multiple channels are individually and mutually processed. By setting coefficients that differ by a predetermined amount and switching between these coefficients in accordance with each channel, even with stereo time-sharing processing using a single D/A conversion, it is possible to reproduce completely phase-aligned multiple channels. This makes it possible to simplify the circuit configuration and reduce costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は慣用のFIR型ディジタルフィルタの構成を示
すブロック図、第2図は理想ローパスの周波数特性を不
す線図、第3図はこの発明の一実施例を不ずブロック図
、第4図は第3図の動作説明に供するための線図である
。 (11) 、(19)はシフトレジスタ、(12)はR
AM、(13)は乗算器、(14) 、(15)はRO
M、(17)は加算器、(18)はアキュムレータであ
る。 第1図 第3図
FIG. 1 is a block diagram showing the configuration of a conventional FIR type digital filter, FIG. 2 is a diagram showing ideal low-pass frequency characteristics, FIG. 3 is a block diagram showing an embodiment of the present invention, and FIG. This figure is a diagram for explaining the operation of FIG. 3. (11) and (19) are shift registers, (12) is R
AM, (13) is a multiplier, (14) and (15) are RO
M, (17) is an adder, and (18) is an accumulator. Figure 1 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 複数チャンネルを時分割処理してデータの補間を行うF
IR型ディジタルフィルタにおいて、上記複数チャンネ
ルに対して個別に且つ互いに所定量異なる係数を設定し
、該係数を各チャンネルに対応し゛ζ切換え使用するよ
うにしたことを特徴とするFIR型ディジタルフィルタ
F that performs data interpolation by time-sharing processing of multiple channels
An FIR type digital filter characterized in that coefficients are individually set for the plurality of channels and different from each other by a predetermined amount, and the coefficients are switched and used in accordance with each channel.
JP9926684A 1984-05-17 1984-05-17 FIR digital filter Expired - Lifetime JP2580102B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9926684A JP2580102B2 (en) 1984-05-17 1984-05-17 FIR digital filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9926684A JP2580102B2 (en) 1984-05-17 1984-05-17 FIR digital filter

Publications (2)

Publication Number Publication Date
JPS60242717A true JPS60242717A (en) 1985-12-02
JP2580102B2 JP2580102B2 (en) 1997-02-12

Family

ID=14242887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9926684A Expired - Lifetime JP2580102B2 (en) 1984-05-17 1984-05-17 FIR digital filter

Country Status (1)

Country Link
JP (1) JP2580102B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0280575A2 (en) * 1987-02-26 1988-08-31 Sony Corporation Fir type digital filter for recording and reproducing apparatus
JPS6442909A (en) * 1987-08-10 1989-02-15 Sony Corp Digital filter
JPS6447113A (en) * 1987-08-17 1989-02-21 Sony Corp Digital filter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0280575A2 (en) * 1987-02-26 1988-08-31 Sony Corporation Fir type digital filter for recording and reproducing apparatus
JPS6442909A (en) * 1987-08-10 1989-02-15 Sony Corp Digital filter
JPS6447113A (en) * 1987-08-17 1989-02-21 Sony Corp Digital filter

Also Published As

Publication number Publication date
JP2580102B2 (en) 1997-02-12

Similar Documents

Publication Publication Date Title
US4888808A (en) Digital equalizer apparatus enabling separate phase and amplitude characteristic modification
EP0137464B1 (en) A digital signal processing apparatus having a digital filter
JPH0642619B2 (en) Interpolative time-discrete filter device
JPH0562495A (en) Sampling frequency converter
JPS60242717A (en) Fir-type digital filter
EP0280575B1 (en) Fir type digital filter for recording and reproducing apparatus
JPH057903B2 (en)
JPH05327409A (en) Rate conversion method and its conversion circuit
EP0288159B1 (en) Digital equalizer apparatus enabling separate phase and amplitude characteristic modification
JPS59207720A (en) Digital filter
JPH0193211A (en) Signal conversion device
JPS6145407B2 (en)
JP2625887B2 (en) Digital arithmetic circuit
JP5466054B2 (en) D / A converter
JP2590291B2 (en) Switching IIR filter
JP3513508B2 (en) Recording / playback device
JPH01296706A (en) Digital filter
JPS63209317A (en) Fir type digital filter in recording and reproducing device
JPS62122423A (en) Digital-analog conversion circuit
JP4128109B2 (en) Digital signal processor
JPH0832409A (en) Digital fir filter circuit
JPH07106883A (en) Digital sound volume adjustment device and digital mixing device
JPS63256009A (en) Tone control circuit
JPH0681360B2 (en) Sound reproduction device
JPS60205669A (en) Convolutional arithmetic circuit

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term