JPS6024060A - Semiconductor controlled rectifying element - Google Patents

Semiconductor controlled rectifying element

Info

Publication number
JPS6024060A
JPS6024060A JP13262583A JP13262583A JPS6024060A JP S6024060 A JPS6024060 A JP S6024060A JP 13262583 A JP13262583 A JP 13262583A JP 13262583 A JP13262583 A JP 13262583A JP S6024060 A JPS6024060 A JP S6024060A
Authority
JP
Japan
Prior art keywords
electrode
region
auxiliary
emitter region
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13262583A
Other languages
Japanese (ja)
Inventor
Toshio Ogawa
敏夫 小川
Hideo Matsuda
秀雄 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP13262583A priority Critical patent/JPS6024060A/en
Publication of JPS6024060A publication Critical patent/JPS6024060A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/74Thyristor-type devices, e.g. having four-zone regenerative action
    • H01L29/7428Thyristor-type devices, e.g. having four-zone regenerative action having an amplifying gate structure, e.g. cascade (Darlington) configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/083Anode or cathode regions of thyristors or gated bipolar-mode devices
    • H01L29/0839Cathode regions of thyristors

Abstract

PURPOSE:To restrain finger voltage on a turn-OFF to a small value while increasing di/dt resistance by making a resistance value between a gate electrode constituting a controlled rectifying element and a cathode electrode as a main electrode larger than that between the gate electrode and an auxiliary electrode surrounding the main electrode. CONSTITUTION:An N type layer 22 and a P type layer 23 are laminated and formed on a P type semiconductor layer 20, the back thereof has an anode electrode 21, and an N type emitter region 24 and an N type auxiliary emitter region 25, which is connected to the region 24 and extended, are diffused and formed to the layer 23. A gate electrode 28 is attached on the end section side of the region 25 while being positioned on the layer 23, and a cathode electrode 26 as a main electrode, which does not reach on the region 25, and an auxiliary electrode 27 connected to the electrode 26 are applied on the region 24. In the constitution, the region 25 is constituted by a first auxiliary emitter section 25a separating the region 24 and the electrode 28 and a second auxiliary emitter section 25b, which is separated from the electrode 28 and is in contact with the region 24. Accordingly, a resistance value R2 between the electrodes 26 and 28 is increased only by the shortening section of the electrode 26.

Description

【発明の詳細な説明】 〔発明の技術的背景〕 従来、大型電力素子として例えば第1図(AJ乃至同図
(D)に示す半導体装置が使用されている。
DETAILED DESCRIPTION OF THE INVENTION [Technical Background of the Invention] Conventionally, semiconductor devices shown in FIGS. 1A to 1D, for example, have been used as large-sized power devices.

図中1は、P導厄形半専体層である。P 4= 71i
形半導体層1上には、N尋電形半導体層2を介してP導
電形半導体層3が形成されている。P導定形半導体層3
には、所定の拡散深さのN導電形牛導体層からなる主エ
ミツタ領域4が形成されている。P 4Q’、 %形半
導体層3には、主エミツタ領域4から延出された補助エ
ミッタ領域5が形成されている。主エミツタ領域4上に
は、補助エミック領域5上に延出する延出部6aを有す
る主電極6か形成されている。P導電形半導体j曽3上
には、補助エミツク領域5上に両端部を位酋伺け、かつ
主電極6を囲むようにして補助電極7が形成されている
。また、P導電形半専体ノ山3上には、主電極6のは出
部6a及び補助電極7に対向してゲート電極8が設りら
れている。
1 in the figure is a P-type semi-dedicated layer. P4=71i
A P conductivity type semiconductor layer 3 is formed on the conductivity type semiconductor layer 1 with an N conductivity type semiconductor layer 2 interposed therebetween. P-type semiconductor layer 3
A main emitter region 4 made of an N conductor layer having a predetermined diffusion depth is formed in the main emitter region 4 . An auxiliary emitter region 5 extending from the main emitter region 4 is formed in the P 4Q',% type semiconductor layer 3 . On the main emitter region 4, a main electrode 6 having an extension portion 6a extending onto the auxiliary emitter region 5 is formed. An auxiliary electrode 7 is formed on the P-conductivity type semiconductor 3 so as to extend both ends onto the auxiliary emitter region 5 and surround the main electrode 6. Further, a gate electrode 8 is provided on the P conductivity type semi-dedicated peak 3 so as to face the protruding portion 6a of the main electrode 6 and the auxiliary electrode 7.

このように411fJ成された半導体装置Bによれば、
増幅ゲ・−1・構造になっているため、サイリスクのタ
ーンオンは2段階のステップを踏んで行われ、所哨フィ
ンカー電圧VFI Nが発生する。
According to the semiconductor device B manufactured by 411fJ in this way,
Since it has an amplification gate-1 structure, the turn-on of the sirisk is performed in two steps, and the sentinel finker voltage VFIN is generated.

〔背景技前の問題点〕[Problems before background techniques]

上述の半導体装置ηでは、第1図(C)に示す如く、電
圧ターンオンの場合を考えると、ゲート電流Iを流すき
、同図@)に示す如く、主サイリスクの部分■がターン
オンする。このとき同時に補助サイリスタ川もターンオ
ンする。補助サイリスクのターンオン電流■は主サイリ
スクに流れ込み、主サイリスクにターンオン電流■が流
れる。しかしながら、ゲート電極8と主電極6の延出部
68間の抵抗R1の値が小さいため、ターンオン電流の
一部は、補助サイリスクから主サイリスタヘターンオン
の移行後も流れる。
In the above-mentioned semiconductor device η, as shown in FIG. 1(C), considering the case of voltage turn-on, when the gate current I is caused to flow, the main silicon risk portion ① is turned on as shown in FIG. 1(C). At this time, the auxiliary thyristor is also turned on. The turn-on current ■ of the auxiliary cylinder flows into the main cylinder, and the turn-on current ■ flows into the main cylinder. However, since the value of the resistance R1 between the gate electrode 8 and the extension 68 of the main electrode 6 is small, a part of the turn-on current flows from the auxiliary thyristor to the main thyristor even after the turn-on transition.

この電流によってd l/dt破壊が起きる。つまり、
従来の半導体装置yはフィンガー電圧vpi Nを小さ
くできるが、di/dt耐骨を向上できない問題があっ
た。
This current causes d l/dt breakdown. In other words,
Although the conventional semiconductor device y can reduce the finger voltage vpi N, there is a problem in that the di/dt bone resistance cannot be improved.

〔発明の目的〕[Purpose of the invention]

本発明は、ターンオン時のフィンガー電圧をとするもの
である。
In the present invention, the finger voltage at turn-on is set to .

〔発明のi要部 本発明は、ゲート電極と主電極間の!抗値をゲート電極と補助電極間の抵抗値より太きくして、クーンホン時のフィンガー電圧を小さい値〔発明の実施例〕[Main part of the invention In the present invention, between the gate electrode and the main electrode! The resistance value is made larger than the resistance value between the gate electrode and the auxiliary electrode, and the finger voltage at the time of Kuhn-phone is set to a small value [Embodiment of the invention]

以下、本発明の実施例について図面を参照して説明する
Embodiments of the present invention will be described below with reference to the drawings.

第2図(Alは、不発1F−1の一実施例の要部の平面
図、同図CB)は、同実施例のB−B線に白う断面図で
ある。図中20は、露出した裏面側にアート電極、21
を形成したP形半尋体層である。P形半導体J響2o上
には、N形半導体層22を介してP形半導体層23が形
成されている。P形半導体層23には、所定の拡散深さ
のN形半導体層からなる主エミツタ領域24が形成され
ている。また、P形半導体層23には、主エミッタ頒呟
24から延出された補助エミッタ領域25が形成されて
いる。補助エミッタ領域25は、主エミツタ領域24お
よび後述するゲート電極28と離間した第1の補助エミ
ッタ部分25aと、ゲート電極28と離間し、がっ、主
エミツタ領域24と接続する第2の補助エミッタ部分2
5bとで構成されている。主エミツタくβ域24上には
、カソード電4aとなる主電極26が形J脱されている
。主電極26は、補助エミッタ仙域25上には延出しで
いない。主電極26の周1:iには、その両軸1部を補
助エミッタ領域25上に位7i付け、かつ、主電極26
を囲むようにして補助電極27が形成されている。P形
半導体M;23土には、補助電硝27の両端部間から主
室4夕26に臨むよ・)にしてゲート電極ば、ゲート電
@28と主電極26間の抵抗値R2は、第1図(A)乃
至同図(D)に示すものに比べで、主電極26の延出部
がなくなった分たけ大きくなっている。その結果、ゲー
)を流を流したときに直接主サイリスクへ流れ込む定流
を小さくターンオン時のフィンガー電圧VFINは、<
1.5V 、 d + / dt耐量は’;> 35 
OA/μsであったが、従来の半導体装置では、フィガ
ー電圧VFI Nはでは、ターンオン時のフィンガー電
圧を小さくすると共に、d + / dt酬量の同上を
達成できるものである。
FIG. 2 (Al is a plan view of a main part of an embodiment of the unexploded 1F-1, and CB of the same figure is a cross-sectional view taken along the line BB of the same embodiment). In the figure, 20 is an art electrode on the exposed back side, 21
It is a P-shaped hemifron layer formed. A P-type semiconductor layer 23 is formed on the P-type semiconductor 2o with an N-type semiconductor layer 22 interposed therebetween. A main emitter region 24 made of an N-type semiconductor layer having a predetermined diffusion depth is formed in the P-type semiconductor layer 23 . Furthermore, an auxiliary emitter region 25 extending from the main emitter region 24 is formed in the P-type semiconductor layer 23 . The auxiliary emitter region 25 includes a first auxiliary emitter portion 25a separated from the main emitter region 24 and a gate electrode 28 (described later), and a second auxiliary emitter portion 25a separated from the gate electrode 28 and connected to the main emitter region 24. part 2
5b. On the main emitter β region 24, there is a main electrode 26 having a J shape and serving as a cathode 4a. The main electrode 26 does not extend over the auxiliary emitter sacrum 25 . At the circumference 1:i of the main electrode 26, 1 part of both axes thereof are positioned 7i on the auxiliary emitter region 25, and the main electrode 26
An auxiliary electrode 27 is formed to surround the auxiliary electrode 27 . If the P-type semiconductor M; 23 has a gate electrode facing the main room 26 from between both ends of the auxiliary electrode 27, then the resistance R2 between the gate electrode 28 and the main electrode 26 is: Compared to those shown in FIGS. 1(A) to 1(D), the main electrode 26 is larger due to the absence of an extended portion thereof. As a result, when the current flows through the gate, the constant current that flows directly into the main cylinder is reduced, and the finger voltage VFIN at turn-on is <
1.5V, d+/dt tolerance is ';> 35
OA/μs, but in the conventional semiconductor device, the finger voltage VFIN can reduce the finger voltage at turn-on and achieve the same d + /dt compensation amount.

なお、実施例のものの他にも、第3図に示す如く、第1
の補助エミッタ部分25Bと第2の補助エミッタ部分2
5b、!:を分離して、主サイリスクと補助ザイリスタ
とが離れた構造としても良い。更に、d v / dt
耐量の低下を防止するために、第4図(A) 、 (B
)に示す如く、第1の補助エミッタ部分25aの内位の
P形半導体層を短絡する短絡孔をする短絡電極31を第
2の補助エミッタ部分25b上に設けても良い。
In addition to the examples, as shown in FIG.
auxiliary emitter portion 25B and second auxiliary emitter portion 2
5b,! : may be separated so that the main thyristor and the auxiliary thyristor are separated. Furthermore, d v / dt
In order to prevent a decrease in tolerance, the
), a shorting electrode 31 may be provided on the second auxiliary emitter portion 25b, which serves as a shorting hole for shorting the inner P-type semiconductor layer of the first auxiliary emitter portion 25a.

によれば、ターンオン時のフィンガー電圧を小さい値に
抑えると共に、di/dt耐量の向上を達成できるもの
である。
According to the invention, it is possible to suppress the finger voltage at turn-on to a small value and to improve di/dt tolerance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図隊)は、従来の半導体装置の平面図、同図(B)
は、同実施例のB−B線に沿う断面図、同図(Qは、同
実施例のC−C線に白う断面図、同図(貸は、同実施例
の壁部の平向図、第2図(A)は、本発明の一実施例の
要部の平面図、同図(B)は、同実施例のB−B線に沿
う断面図、第3図は、本発明の他の実施例の要部の平面
図、第4図(A)は、短絡エミッタ部を有する本発明の
他の実施例の要部の平面図、同図(B)は、同他の実施
例のB−B線に沿う断面図である。 20・・・P形半導体層、2ノ・・・アノード電極、2
2・・・N形半導体層、23・・・P形半導体層、24
・・・主エミツタ領域、25・・・補助エミッタ領域、
25a・・・第1の補助エミッタ部分、25b・・・第
2の補助エミッタ部分、26・・・主電極、第 (A) う (B) (C) 297 1図
Figure 1) is a plan view of a conventional semiconductor device;
is a cross-sectional view taken along line B-B of the same example; Q is a cross-sectional view taken along line C-C of the same example; 2(A) is a plan view of essential parts of an embodiment of the present invention, FIG. 2(B) is a sectional view of the same embodiment along line B-B, and FIG. FIG. 4(A) is a plan view of the main part of another embodiment of the present invention having a short-circuit emitter section, and FIG. 4(B) is a plan view of the main part of another embodiment of the present invention. It is a sectional view taken along the line B-B of the example. 20...P-type semiconductor layer, 2no...Anode electrode, 2
2... N-type semiconductor layer, 23... P-type semiconductor layer, 24
...Main emitter region, 25...Auxiliary emitter region,
25a...First auxiliary emitter portion, 25b...Second auxiliary emitter portion, 26...Main electrode, (A) (B) (C) 297 Figure 1

Claims (1)

【特許請求の範囲】 1、 Q 電型の半導体基板と、その半導体基板の両生
面にそれぞれ設けられた反対導電型半尋体層と、その一
方の半導体層に設けられた一導市、型の主エミツタ領域
と、前記一方の半導体層に前記主エミツタ領域と対向し
て設けられたケート電極と、前記主エミツタ領域と前記
ゲート’1% 池との対向部において、前記主エミツタ
領域および前記ゲート電極と離間して設けられた夕!1
の部分および前記対向部において、前記ケート電極と離
間し、かつ前記主エミツタ領域と接続する第2の部分を
有する一導電型の補助エミッタ領域と、その補助エミッ
タ領域の前記第1の部分と前記一方の半導体層とを前記
主エミツタ領域側で短絡する補助電極と、前記主エミツ
タ領域に前記補助エミッタ領域と非接触に設けられたカ
ソード電極と、他方の前記半導体層に設けられたアノー
ド電極とを具備することを特徴とする半導体制御整流素
子。 2、前記補助エミッタ領域の第一の部分内に露出する前
記一方の半導体層を短絡する短絡電極を具備することを
特徴とする特許請求の範囲第1項記載の半導体制御整流
素子。 3、前記補助エミッタの第1の部と第2の部分が前記一
方の半導体層により分離されていることを特徴とする特
許請求の範囲2g1項記載の半導体i1r制御整流素子
[Scope of Claims] 1. A semiconductor substrate of Q type, half-layers of opposite conductivity type provided on both sides of the semiconductor substrate, and a semiconductor layer of one conductivity type provided on one of the semiconductor layers. a main emitter region, a gate electrode provided on the one semiconductor layer to face the main emitter region; Evening spaced apart from the gate electrode! 1
and the opposing portion, an auxiliary emitter region of one conductivity type having a second portion spaced apart from the gate electrode and connected to the main emitter region; an auxiliary electrode that short-circuits one semiconductor layer on the main emitter region side; a cathode electrode provided in the main emitter region without contacting the auxiliary emitter region; and an anode electrode provided in the other semiconductor layer. A semiconductor-controlled rectifying element characterized by comprising: 2. The semiconductor-controlled rectifier device according to claim 1, further comprising a short-circuiting electrode that short-circuits the one semiconductor layer exposed in the first portion of the auxiliary emitter region. 3. The semiconductor i1r control rectifier element according to claim 2g1, wherein the first and second parts of the auxiliary emitter are separated by the one semiconductor layer.
JP13262583A 1983-07-20 1983-07-20 Semiconductor controlled rectifying element Pending JPS6024060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13262583A JPS6024060A (en) 1983-07-20 1983-07-20 Semiconductor controlled rectifying element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13262583A JPS6024060A (en) 1983-07-20 1983-07-20 Semiconductor controlled rectifying element

Publications (1)

Publication Number Publication Date
JPS6024060A true JPS6024060A (en) 1985-02-06

Family

ID=15085694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13262583A Pending JPS6024060A (en) 1983-07-20 1983-07-20 Semiconductor controlled rectifying element

Country Status (1)

Country Link
JP (1) JPS6024060A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7074732B2 (en) 1999-12-04 2006-07-11 Schott Glas Zinc-containing optical glass materials

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7074732B2 (en) 1999-12-04 2006-07-11 Schott Glas Zinc-containing optical glass materials

Similar Documents

Publication Publication Date Title
JP3417013B2 (en) Insulated gate bipolar transistor
JPH07105496B2 (en) Insulated gate bipolar transistor
JP2950025B2 (en) Insulated gate bipolar transistor
JP2766071B2 (en) Composite semiconductor device and power conversion device using the same
JPS60186068A (en) Insulated gate field effect transistor
JPS6024060A (en) Semiconductor controlled rectifying element
JP3249891B2 (en) Semiconductor device and method of using the same
JP2557367B2 (en) Insulated gate type self turn-off thyristor
JPS62283669A (en) Conductivity modulation type mosfet
JP2511018B2 (en) Insulation gate type thyristor electrode wiring structure
JP2907504B2 (en) Semiconductor device
JP3789580B2 (en) High voltage semiconductor device
JPS6276557A (en) Insulated gate type self-turn-off element
JP2679292B2 (en) Method for manufacturing semiconductor device
JPH02156572A (en) Mos type semiconductor device
JP2760984B2 (en) Insulated gate thyristor
JPS6327865B2 (en)
JPS63288064A (en) Composite thyristor
JPS59211272A (en) High withstand voltage semiconductor device
JP2797890B2 (en) Composite semiconductor device
JPS60154564A (en) Semiconductor device
JPS639670B2 (en)
JPS60144019A (en) Phototransistor circuit
JPS6252967A (en) Gto thyristor
JPS6128224B2 (en)