JPS60239336A - Heat-treatment of quartz-based parent material for porous glass - Google Patents
Heat-treatment of quartz-based parent material for porous glassInfo
- Publication number
- JPS60239336A JPS60239336A JP9424884A JP9424884A JPS60239336A JP S60239336 A JPS60239336 A JP S60239336A JP 9424884 A JP9424884 A JP 9424884A JP 9424884 A JP9424884 A JP 9424884A JP S60239336 A JPS60239336 A JP S60239336A
- Authority
- JP
- Japan
- Prior art keywords
- base material
- heat
- glass
- quartz
- porous glass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/01446—Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2203/00—Fibre product details, e.g. structure, shape
- C03B2203/10—Internal structure or shape details
- C03B2203/22—Radial profile of refractive index, composition or softening point
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Thermal Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Glass Melting And Manufacturing (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は光ファイバ、イメージガイド、ライトガイドな
ど、所要の光伝送体用としてつくられた石英系多孔質ガ
ラス母材の熱処理方法に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for heat treating a silica-based porous glass base material made for use in required optical transmission bodies such as optical fibers, image guides, and light guides.
(従来の技術)
既知のVAD法、OVD法などにより作製された石英系
の多孔質ガラス母材をSOC+ 2とHeとの混合ガス
雰囲気中で熱処理して透明ガラス化し、該透明ガラス化
後の母材外周に天然石英製または合成石英製のガラスパ
イプをジャケットして紡糸すると、光ファイバが得られ
る。(Prior art) A quartz-based porous glass base material produced by the known VAD method, OVD method, etc. is heat-treated in a mixed gas atmosphere of SOC + 2 and He to make it transparent vitrified. An optical fiber is obtained by jacketing a glass pipe made of natural quartz or synthetic quartz around the outer periphery of the base material and spinning it.
第5図は上記のようにして得られた光ファイバにつき、
その屈折率分布を測定して示したものであり、同図のn
lはコアの屈折率、n2はクラッドの屈折率、n3はジ
ャケット層の屈折率である。Figure 5 shows the optical fiber obtained as described above.
The refractive index distribution is measured and shown.
l is the refractive index of the core, n2 is the refractive index of the cladding, and n3 is the refractive index of the jacket layer.
ここで、nl)n2となるのは当然であるが、前記にお
いて市販の石英製ガラスパイプを用いたことにより、n
2と13の関係がn2)n3となり、具体的には比屈折
率でn2がn3を0.04%上回ってしまい、そのため
クラッドにも光が伝播するといった現象が生じている。Here, it is natural that nl)n2, but by using a commercially available quartz glass pipe in the above, n
The relationship between 2 and 13 is n2)n3, and specifically, n2 exceeds n3 by 0.04% in terms of relative refractive index, which causes a phenomenon in which light also propagates through the cladding.
特に既製の石英製ガラスパイプによりジャケット層を形
成する場合では、単一モード光ファイバを作製する際の
低損失化が実現できないという問題が起こりがちであり
、GT型光2アイ八では低損失のものが得がたい。In particular, when forming a jacket layer using a ready-made quartz glass pipe, there tends to be a problem that low loss cannot be achieved when manufacturing a single mode optical fiber. Things are hard to obtain.
上記クラッドの比屈折率差が高くなる原因を調べるため
、その光ファイバ(ガラス)の含有元素をXklAマイ
クロアナライザにより線分析したところ、第6図のごと
き結果が得られた。In order to investigate the cause of the increase in the relative refractive index difference of the cladding, the elements contained in the optical fiber (glass) were line analyzed using an XklA microanalyzer, and the results shown in FIG. 6 were obtained.
第6図で明らかなように、クラッドには異常に高濃度の
塩素がドープされている。As is clear from FIG. 6, the cladding is doped with an abnormally high concentration of chlorine.
この現象と比屈折率が高いこととがよ〈一致しており、
これによりクラッドの比屈折率差は塩素ドープにより高
くなることが明らかとなった。This phenomenon is in good agreement with the high relative refractive index.
This revealed that the relative refractive index difference of the cladding increases with chlorine doping.
(発明が解決しようとする問題点)
本発明は上記検討結果に基づき、伝送特性、帯域特性な
どの低下がなく、天然石英製、合成石英製など、既製の
ガラスパイプをジャケットした場合でもクラッドモード
の伝播が生じることのない光伝送体の母材が得られる石
英系多孔質ガラス母材の熱処理方法を提供しようとする
ものである。(Problems to be Solved by the Invention) Based on the above study results, the present invention has been developed to prevent deterioration of transmission characteristics, band characteristics, etc., even when a ready-made glass pipe made of natural quartz or synthetic quartz is jacketed. It is an object of the present invention to provide a method for heat treatment of a silica-based porous glass base material, which can obtain a base material for an optical transmission body in which no propagation of light occurs.
(問題点を解決しようとする手段)
本発明は石英系の多孔質ガラス母材を5OC12とH8
との混合ガス雰囲気中にて透明ガラス化温度未満の温度
で熱処理する工程と、該熱処理工程後の1 母材を酸素
の存在する雰囲気中で熱処理する工程とを備なえ、これ
を問題解決手段としている。(Means for solving the problem) The present invention uses a quartz-based porous glass base material of 5OC12 and H8.
This problem is solved by heat treating the base material in an atmosphere containing oxygen at a temperature below the transparent vitrification temperature in a mixed gas atmosphere with It is used as a means.
(作用)
Si02+5OC12→ 5iOC12+502− ・
台 会 ・ (1)Ge02+2SOCI2− Ge
C:I4+2S02’ −−−(2)SiOC:12+
1/202→5102・・φΦ・・・(3)GeC:
I4+02+ ’ G[ICI2+2CI2* * *
* 11 @ (4)GeO2+2CI2: GeG
14+02* * * e a * (5)本発明方法
において先行する熱処理工程を所定雰囲気中で実施する
とき、5OC12の効果により上記(1)式の反応が生
じて石英ガラス中に塩素がドープされると考えられ、さ
らに当該塩化チオニルの効果として例えば上記(2)式
のごと〈Sin2−Gem2系母材外周のドーパントが
揮散し、クラッド用ガラス層(純S i 02 )が形
成される。(Function) Si02+5OC12→ 5iOC12+502- ・
Table ・ (1) Ge02+2SOCI2- Ge
C:I4+2S02'---(2)SiOC:12+
1/202→5102...φΦ...(3) GeC:
I4+02+ ' G[ICI2+2CI2* * *
* 11 @ (4) GeO2+2CI2: GeG
14+02* * * e a * (5) When the preceding heat treatment step in the method of the present invention is carried out in a predetermined atmosphere, the reaction of the above formula (1) occurs due to the effect of 5OC12, and chlorine is doped into the quartz glass. Furthermore, as an effect of the thionyl chloride, for example, as shown in the above equation (2), the dopant on the outer periphery of the Sin2-Gem2 base material evaporates, and a cladding glass layer (pure Si 02 ) is formed.
本発明方法における後行の熱処理では、先行の熱処理を
終えた母材を酸素の存在する雰囲気中でさらに熱処理す
るのであり、この際、既述の(3)式により母材中の塩
素が除去されると推定され、したがって当該後行の熱処
理を受けた母材からは各種特性の優れた光ファイバ等が
製造できることとなる。In the subsequent heat treatment in the method of the present invention, the base material that has undergone the previous heat treatment is further heat treated in an atmosphere where oxygen exists, and at this time, chlorine in the base material is removed using equation (3) described above. Therefore, optical fibers and the like having various excellent properties can be manufactured from the base material that has undergone the subsequent heat treatment.
後行の熱処理に関連する事項として、この工程での雰囲
気中には、5OC12、C12のごときドーパントを揮
散させるガスを共存させないのがよく、例えばドーパン
トがG e 02、雰囲気ガスがC12の場合では、上
記(5)式の可逆反応によるドーパントの拡散により、
裾垂れと称する屈折率の不整が生じるためコア用ガラス
層、クラッド用ガラス層相互の境界が不明瞭となり、C
I型光ファイバの母材としては帯域特性が、単一光ファ
イバの母材としては伝送特性が十分に期待できなくなる
。As a matter related to the subsequent heat treatment, it is best not to coexist gases that volatilize dopants such as 5OC12 and C12 in the atmosphere in this step. For example, when the dopant is G e 02 and the atmospheric gas is C12, , due to the diffusion of the dopant by the reversible reaction of equation (5) above,
Due to irregularities in the refractive index called sag, the boundary between the core glass layer and the cladding glass layer becomes unclear, resulting in C.
As a base material for an I-type optical fiber, sufficient band characteristics cannot be expected, and as a base material for a single optical fiber, sufficient transmission characteristics cannot be expected.
(実 施 例) 以下本発明の実施例につき、図面を参照して説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.
第1図(イ)は本発明方法により熱処理される石英系の
多孔質ガラス母材1、同図(ロ)は所定の熱処理により
透明ガラス化された透明ガラス母材2、さらに同図(ハ
)はそのガラス母材2の外周に被せる無水あるいは有水
の合成石英製ジャケットパイプ3をそれぞれ示し、該ジ
ャケットパイプ3としてはスブラジルなどの商品名で販
売されているものなどが1例として採用される。FIG. 1(A) shows a quartz-based porous glass base material 1 that is heat-treated by the method of the present invention, FIG. ) indicates a jacket pipe 3 made of anhydrous or water-containing synthetic quartz that covers the outer periphery of the glass base material 2, and as the jacket pipe 3, one sold under a trade name such as SBRAZIL is used as an example. be done.
上記多孔質ガラス母材lはVAD法、OVD法などの火
炎加水分解法、酸化分解法、ゾル−ゲル法などを介して
作製されたものであり、該多孔質ガラス母材1は510
2を主成分とし、Ge、 P 、 B、A1. Sb、
Tiなどの酸化物をドーパントとして含有している。The porous glass base material 1 is produced by a flame hydrolysis method such as a VAD method or an OVD method, an oxidative decomposition method, a sol-gel method, etc.
2 as the main component, Ge, P, B, A1. Sb,
It contains an oxide such as Ti as a dopant.
多孔質ガラス母材1 t−VAD法により作製するとき
、第2図に例示する方法が実施される。When producing the porous glass base material 1 by the t-VAD method, the method illustrated in FIG. 2 is carried out.
第2図において、4は石英ガラス製の反応容器であり、
5.8.7はそれぞれ先端が反応容器4内に挿着された
多重管構造のバーナ、8は反応容器の排気管である。In FIG. 2, 4 is a reaction vessel made of quartz glass;
Numerals 5, 8, and 7 are multi-tube structure burners whose tips are inserted into the reaction vessel 4, and 8 is an exhaust pipe of the reaction vessel.
反応容器4内でVAD法を実施するとき、バーナ5には
燃焼ガス(N2)、支燃ガス(02)、緩衝ガス(Ar
)、主原料(SICI4) 、ドープ原料(GeCla
)が所定量供給されるとともにバーナ6.7にはそれぞ
れ燃焼ガス(N2)、支燃ガス(02)、緩衝ガス(A
r)、主原料(S+C:14)が所定量供給され、これ
らの火炎加水分解反応により生成されたスート状のガラ
ス微粒子が所定形状に堆積されて多孔質ガラス母材1が
形成される。When carrying out the VAD method in the reaction vessel 4, the burner 5 is filled with combustion gas (N2), combustion supporting gas (02), and buffer gas (Ar).
), main raw material (SICI4), dope raw material (GeCla
) is supplied in a predetermined amount, and combustion gas (N2), combustion supporting gas (02), and buffer gas (A
r) A predetermined amount of the main raw materials (S+C: 14) is supplied, and the soot-like glass particles produced by the flame hydrolysis reaction are deposited in a predetermined shape to form the porous glass base material 1.
はじめ、上記多孔質ガラス母材1を熱処理するときの雰
囲気は5OC12とHeとによる混合ガス雰囲気とする
が、その雰囲気中には酸素が含まれていない。Initially, the atmosphere in which the porous glass base material 1 is heat-treated is a mixed gas atmosphere of 5OC12 and He, but the atmosphere does not contain oxygen.
上記雰囲気中で多孔質ガラス母材1を熱処理するときの
温度としては、該多孔質ガラス母材1が上記雰囲気中で
多孔質ガラス母材1を熱処理す1 るときの温度として
は、該多孔質ガラス母材1が透明ガラス化する温度未満
であり、具体的な温度は700℃以上、1400℃以下
であるが、これは多孔質ガラス母材1の組成により適宜
設定する。The temperature at which the porous glass base material 1 is heat treated in the above atmosphere is the temperature at which the porous glass base material 1 is heat treated in the above atmosphere. The temperature is lower than the temperature at which the porous glass base material 1 becomes transparent vitrified, and the specific temperature is 700° C. or more and 1400° C. or less, but this is appropriately set depending on the composition of the porous glass base material 1.
熱処理雰囲気中のSOC12濃度は0.25〜2.5マ
ol駕程度であり、望ましい範囲は1マoH以下である
。The SOC12 concentration in the heat treatment atmosphere is about 0.25 to 2.5 MaoH, and the preferable range is 1 MaoH or less.
熱処理温度を上記温度範囲の低温域で実施するときは5
OC12を上記濃度範囲よりもさらに高くしてよい。5 when heat treatment is carried out at a low temperature within the above temperature range.
OC12 may be higher than the above concentration range.
この雰囲気中にはC12,CCl2のような塩素化合物
ガス、N2、Arのような不活性ガスがHeとともに含
有されてもよい。This atmosphere may contain chlorine compound gases such as C12 and CCl2, and inert gases such as N2 and Ar, together with He.
上記雰囲気中へ多孔質ガラス母材1を挿入するときの母
材移動速度は10−1000+i+a/時の範囲内で設
定する。The base material movement speed when inserting the porous glass base material 1 into the above atmosphere is set within the range of 10-1000+i+a/hour.
第3図は多孔質ガラス母材lを熱処理するための加熱炉
11を例示したもので、この加熱炉11はガス入口12
を有する下部筒I3と、ガス出口】4を有する上部筒1
5と、その下部筒13および上部筒15間に介在された
中間筒16と、該中間筒1Bの外周に設けられたカーボ
ン酸のヒータ17とからなる。FIG. 3 shows an example of a heating furnace 11 for heat-treating a porous glass base material l, and this heating furnace 11 has a gas inlet 12
a lower cylinder I3 having a gas outlet; and an upper cylinder 1 having a gas outlet ]4.
5, an intermediate cylinder 16 interposed between the lower cylinder 13 and the upper cylinder 15, and a carbon acid heater 17 provided on the outer periphery of the intermediate cylinder 1B.
この加熱炉11を用いて多孔質ガラス母材1を熱処理す
るとき、ガス入口12からガス出口14にわたる各筒内
へSOC:I2. Heを供給するとともに、電気ヒー
タ17を介して加熱される中間筒1θ内を前記透明ガラ
ス化温度未満に保持し、その後、多孔質ガラス母材1を
回転状態としながら加熱炉11の上方から下方、すなわ
ち中間筒lB内へと移動させ、これにより当該母材1を
上記雰囲気中で熱処理して透明ガラス化前の焼結状態と
する。When heat treating the porous glass base material 1 using this heating furnace 11, SOC:I2. While supplying He, the interior of the intermediate cylinder 1θ heated via the electric heater 17 is maintained below the transparent vitrification temperature, and then, while the porous glass base material 1 is in a rotating state, the heating furnace 11 is heated from above to below. That is, the base material 1 is moved into the intermediate cylinder IB, and thereby the base material 1 is heat-treated in the above atmosphere to bring it into a sintered state before becoming transparent and vitrified.
つぎに先行熱処理後の上記母材1を酸素の存在する雰囲
気中で熱処理してその母材1から塩素を除去するが、こ
の際の熱処理も加熱炉11内で実施でき、前記と同様、
当該加熱炉ll内に所定雰囲気ガスを供給すればよい。Next, the base material 1 after the preliminary heat treatment is heat treated in an atmosphere containing oxygen to remove chlorine from the base material 1, but the heat treatment at this time can also be carried out in the heating furnace 11, and as described above,
A predetermined atmospheric gas may be supplied into the heating furnace 11.
後行の熱処理温度は700°C以上が望ましく、この工
程で母材lを透明ガラス化するときはその温度を130
0℃以上とする。The subsequent heat treatment temperature is preferably 700°C or higher, and when converting the base material l into transparent glass in this step, the temperature should be set at 130°C or higher.
The temperature shall be 0°C or higher.
さらに後行の熱処理において、その主たる雰囲気ガス0
2の濃度は高い方がよく、これはHe、 Ar、N2な
どの不活性ガスにより希釈される。Furthermore, in the subsequent heat treatment, the main atmospheric gas is 0.
The higher the concentration of 2, the better, and this can be diluted with an inert gas such as He, Ar, or N2.
この工程において母材lを透明ガラス化するとき、雰囲
気ガス02の希釈ガスとしてHeを70マo1%以上含
有させ、その透明ガラス母材中に気泡が内包されないよ
うにする。When converting the base material 1 into transparent glass in this step, 70 MaO1% or more of He is contained as a diluent gas in the atmospheric gas 02 to prevent air bubbles from being included in the transparent glass base material.
この工程において母材1が透明ガラス化前の焼結状態を
呈しているとき、爾後の熱処理によりこれを透明ガラス
化する。In this step, when the base material 1 is in a sintered state before being made into transparent vitrification, it is made into transparent vitrification by subsequent heat treatment.
先行の熱処理工程、後行の熱処理工程、透明ガラス化工
程など、これらは上記加熱炉11を用いて連続的に実施
してもよく、また、別々に実施してもよく、連続実施の
場合は加熱炉ll内を工程が変わるごとにパージする。The preceding heat treatment step, the subsequent heat treatment step, the transparent vitrification step, etc. may be carried out continuously using the heating furnace 11, or may be carried out separately. The inside of the heating furnace 1 is purged every time a process changes.
かくて第1図(イ)の多孔質ガラス母材lは、コア用ガ
ラス層2aとクラッド用ガラス層2bとを有する同図(
ロ)の透明ガラス母材2になる。Thus, the porous glass base material l shown in FIG. 1(A) has a core glass layer 2a and a cladding glass layer 2b.
It becomes the transparent glass base material 2 of b).
上記熱処理により得られた透明ガラス母材2の外周には
第1図(ハ)に示す天然石英製または合成石英製からな
るジャケット用のガラスパイプ3が被され、これらが紡
糸されてコア、クラッド、ジャケット層を有する光ファ
イバとなる。The outer periphery of the transparent glass base material 2 obtained by the above heat treatment is covered with a jacket glass pipe 3 made of natural quartz or synthetic quartz as shown in FIG. , resulting in an optical fiber with a jacket layer.
もちろんガラスパイプ3をジャケットすることなく透明
ガラス母材2を紡糸しても光ファイバは得られる。Of course, an optical fiber can also be obtained by spinning the transparent glass preform 2 without jacketing the glass pipe 3.
本発明方法により得られた母材の場合、帯域特性、伝送
特性の向上、ガラスパイプをジャケットした場合のクラ
ッドモードの伝播阻止などが十分に期待できるほか、当
該母材には塩素がほとんど含有されていないので、耐環
境性、耐食性なども期待でき、したがって塩素含有量の
少ない天然石英、合成石英などで母材を保護ジャケット
することを特に要しない。In the case of the base material obtained by the method of the present invention, it can be fully expected to improve the band characteristics and transmission characteristics, and prevent the propagation of cladding mode when jacketing a glass pipe.In addition, the base material contains almost no chlorine. Therefore, environmental resistance and corrosion resistance can be expected, and therefore there is no particular need to cover the base material with a protective jacket such as natural quartz or synthetic quartz with low chlorine content.
つぎに塩素のドープとその除去につき、被ドープ材とし
て純S + 02を用いた実験例を説明する。Next, an experimental example using pure S + 02 as the material to be doped will be explained regarding chlorine doping and its removal.
実験例I
S + CI 4ガスの火炎加水分解反応により生成し
たガラス微粒子を軸方向に堆積させてS 102からな
る多孔質ガラス母材をつくり、該母材を、0.88vo
lχ、 osOc:l、、 t、trHeヵ、7□o9
3いゎ、1480’O[て透明ガラス化した。Experimental Example I A porous glass base material made of S102 was created by depositing glass particles generated by a flame hydrolysis reaction of S + CI 4 gas in the axial direction.
lχ, osOc:l,, t, trHeka, 7□o9
It was made into transparent glass at 3°C and 1480°C.
これにより得られた純5102ガラスは、天然石英ガラ
スに比べ、0.04%屈折率が高く、塩素が11000
pp含まれていた。The resulting pure 5102 glass has a refractive index 0.04% higher than that of natural silica glass, and has a chlorine content of 11000%.
pp was included.
実験例2
実験例1と同じ多孔質ガラス母材を、0.88vo1%
の5OC12含むHeガス雰囲気中に入れて1100°
Cで焼結した後、その雰囲気中の塩化物をHeガスで−
たんパージし、ついで該雰囲気内を、8.3vol$の
02を含むHeガス雰囲気とし、温度1460℃として
上記焼結ガラス母材を透明ガラス化した。Experimental Example 2 The same porous glass base material as Experimental Example 1 was used at 0.88vo1%.
1100° in a He gas atmosphere containing 5OC12.
After sintering with C, chloride in the atmosphere is removed with He gas.
After purging, the atmosphere was changed to a He gas atmosphere containing 02 at 8.3 vol$, and the temperature was set at 1460° C. to turn the sintered glass base material into transparent vitrification.
これにより得られた純S + 02ガラスは、天然石英
ガラスとほぼ同じ屈折率を有し、塩素含有量が50pp
mであった。The resulting pure S+02 glass has approximately the same refractive index as natural silica glass and has a chlorine content of 50 ppp.
It was m.
実験例3
実験例1と同じ多孔質ガラス母材を、0.88マolX
の012を含むHeガス雰囲気中に入れて1460℃で
透明ガラス化した。Experimental Example 3 The same porous glass base material as Experimental Example 1 was mixed with 0.88 Maol
The sample was placed in a He gas atmosphere containing 012 of 1,460° C. and turned into transparent glass at 1,460° C.
これにより得られた純S iO2ガラスは、天然石英ガ
ラスとほぼ同じ屈折率を有していた。The pure SiO2 glass thus obtained had approximately the same refractive index as natural silica glass.
このように012とHeとの雰囲気中で熱処理するとき
、屈折率に関して望まいしいかにみえるが、母材中のド
ーパントを揮散させてクラッド用ガラス層を形成する点
、すなわち合成りラッド形成能に関して、CI2”He
とSCL:12”Heとでは全く異なり、C12”He
は以下の実験例で明らかなようにクラッド形成能がきわ
めて乏しい。When heat-treated in an atmosphere of 012 and He as described above, it seems desirable in terms of refractive index, but in terms of forming a cladding glass layer by volatilizing the dopant in the base material, that is, in terms of the ability to form a synthetic cladding. CI2”He
and SCL:12”He are completely different, and C12”He
has extremely poor cladding ability, as is clear from the following experimental examples.
実験例4
S + C14ガスおよびGeCl4ガスの火炎加水分
解反応により生成したガラス微粒子を軸方向に堆積させ
てSIO’2−G[!02系からなる多孔質ガラス母材
をつくり、これを、0.88vo1%(7)SOCl2
を含むHeガス雰囲気中に入れて1460℃で透明ガラ
ス化した。Experimental Example 4 SIO'2-G [! A porous glass base material made of 02 series was made, and this was mixed with 0.88vo1% (7) SOCl2
The sample was placed in a He gas atmosphere containing 1,460° C. and turned into transparent glass.
これにより得たれた母材の場合、クラッド用ガラス層は
その母材外周面側から40%もの領域に達していた。In the case of the base material obtained in this manner, the cladding glass layer reached as much as 40% of the area from the outer peripheral surface of the base material.
実験例5
実験例4と同じ多孔質ガラス母材を、0.88vol$
のC12を含むHeガス雰囲気中に入れて1460℃で
透明ガラス化した。Experimental Example 5 The same porous glass base material as Experimental Example 4 was used at 0.88 vol$.
The sample was placed in a He gas atmosphere containing C12 and turned into transparent vitrification at 1460°C.
これにより得たれた母材の場合、クラッド用ガラス層は
その母材外周面側かられずか4zであり、裾垂れと称す
る既述の屈折率不良も生じた。In the case of the base material obtained in this way, the glass layer for cladding was only 4z from the outer circumferential surface of the base material, and the above-mentioned refractive index defect called sagging also occurred.
これらの実験からも、屈折率に関する本発明方法の有効
性が窺がえる。These experiments also demonstrate the effectiveness of the method of the present invention regarding refractive index.
つぎに本発明の具体例とその比較例について説明する。Next, specific examples of the present invention and comparative examples thereof will be explained.
具体例1
第2図に例示したVAD法を実施するとき、各バーナ5
.6.7には表1に示す各種ガスを供給し、これらの火
炎加水分解反応により生成したガラス微粒子を所定形状
に堆積させて外径90mmの多孔質ガラス母材1を作製
した。Specific example 1 When implementing the VAD method illustrated in Fig. 2, each burner 5
.. Various gases shown in Table 1 were supplied to 6.7, and the glass particles produced by these flame hydrolysis reactions were deposited in a predetermined shape to produce a porous glass base material 1 having an outer diameter of 90 mm.
この多孔質ガラス母材1はコア用多孔質ガラス層がS
+ 02−G e 02からなり、クラッド用多孔質ガ
ラス層がS + 02からなる。This porous glass base material 1 has a core porous glass layer of S
+ 02-G e 02, and the porous glass layer for cladding is made of S + 02.
表 1
上記多孔質ガラス母材1を第3図の加熱炉11により熱
′処理するとき、これを表2に示す条件1で行ない、つ
ぎに該加熱炉ll内をHeによりパージしながら−たん
炉外へ退去させ、その後、表2の条件2で上記焼結母材
を透明ガラス化し、透明ガラス母材2を得た。Table 1 When the above-mentioned porous glass preform 1 is heat-treated in the heating furnace 11 shown in FIG. 3, this is carried out under the conditions 1 shown in Table 2. The sintered base material was removed from the furnace, and then the sintered base material was made into transparent glass under Condition 2 in Table 2 to obtain a transparent glass base material 2.
この具体例1により得られた透明ガラス母材2は第4図
のごとき良好な屈折率分布を有し、そのクラッド用ガラ
ス層2bは天然石英の屈折率と同じであった。The transparent glass base material 2 obtained in Example 1 had a good refractive index distribution as shown in FIG. 4, and the cladding glass layer 2b had the same refractive index as natural quartz.
比較例
具体例1と同様の多孔質ガラス母材を上記加熱1 炉1
1により熱処理するとき、これを前記と同じく表2の条
件lで行ない、つぎに該加熱炉ll内をHeによりパー
ジしながら−たん炉外へ退去させ、その後、表2の条件
3で上記焼結母材を透明ガラス化し、透明ガラス母材を
得た。Comparative Example The same porous glass base material as in Specific Example 1 was heated as described above in Furnace 1.
When the heat treatment is carried out under 1, this is carried out under the same conditions 1 in Table 2 as above, and then the inside of the heating furnace 1 is purged with He while being removed from the furnace. The bonding matrix was made into transparent glass to obtain a transparent glass matrix.
この比較例により得られた透明ガラス母材の屈折率分布
を測定したところ、第5図のごとき屈折率となっており
、予測した通りの悪い結果であった。When the refractive index distribution of the transparent glass base material obtained in this comparative example was measured, the refractive index was as shown in FIG. 5, which was a poor result as expected.
これは条件2において02が存在し、C12がドープさ
れないことによるといえる。This can be said to be due to the presence of 02 in condition 2 and the fact that C12 is not doped.
表 2
具体例2
1本の多重管バーナを用いたVAD法を実施するとき、
該バーナには表3に示す各種ガスを供給し、これらの火
炎加水分解反応により生成したガラス微粒子を所定形状
に堆積させて外径58鵬履の多孔質ガラス母材1を作製
した。Table 2 Specific example 2 When implementing the VAD method using one multi-tube burner,
Various gases shown in Table 3 were supplied to the burner, and glass fine particles produced by these flame hydrolysis reactions were deposited in a predetermined shape to produce a porous glass base material 1 having an outer diameter of 58 mm.
上記多孔質ガラス母材lを第3図の加熱炉11により熱
処理するとき、これを表4に示す条件lで行ない、つぎ
に該加熱炉ll内をHeによりパージしながら−たん炉
外へ退去させ、その後、表4の条件2で上記焼結母材を
透明ガラス化し、透明ガラス母材2を得た。When the above-mentioned porous glass base material 1 is heat-treated in the heating furnace 11 shown in FIG. 3, this is carried out under the conditions 1 shown in Table 4, and then the inside of the heating furnace 1 is purged with He and removed from the -tan furnace. Thereafter, the sintered base material was made into transparent glass under Condition 2 in Table 4 to obtain a transparent glass base material 2.
この具体例1により得られた透明ガラス母材2の屈折率
分布を測定したところ、そのクラッド用ガラス層2bは
天然石英の屈折率と同じであった。When the refractive index distribution of the transparent glass base material 2 obtained in Example 1 was measured, the refractive index of the cladding glass layer 2b was the same as that of natural quartz.
表3
表 4
(発明の効果)
以上説明した通り、本発明方法によるときは、石英系の
多孔質ガラス母材を5OC12とHeとの混合ガス雰囲
気中にて透明ガラス化温度未満の温度で熱処理する工程
と、該熱処理工程後の母材を酸素の存在する雰囲気中で
熱処理する工程とを備なえているから、当該方法により
処理した後の母材外周に天然石英製、合成石英製など、
既製のカラスパイプをジャケットした場合でもクラッド
用ガラス層の屈折率がジャケット層の屈折率を上回るこ
とがなく、したがってクラッドモードの伝播が生じるこ
とのない、しかも低損失、広帯域の光伝送体用母材が得
られるようになり、その光伝送体の耐環境性、耐食性な
ども期待できる。Table 3 Table 4 (Effects of the invention) As explained above, when using the method of the present invention, a quartz-based porous glass base material is heat-treated at a temperature below the transparent vitrification temperature in a mixed gas atmosphere of 5OC12 and He. and a step of heat-treating the base material after the heat treatment step in an atmosphere containing oxygen, so that the outer periphery of the base material after being treated by the method is coated with natural quartz, synthetic quartz, etc.
Even when a ready-made glass pipe is jacketed, the refractive index of the cladding glass layer does not exceed the refractive index of the jacket layer, and therefore the propagation of the cladding mode does not occur, and the material is a low-loss, broadband optical transmission material. Now that the material can be obtained, it is expected that the optical transmission material will have environmental resistance and corrosion resistance.
【図面の簡単な説明】
第1図(イ)(ロ)(ハ)は本発明方法における多孔質
ガラス母材、透明ガラス母材、ジャケット用] のガラ
スパイプをそれぞれ示した説明図、第2図は本発明での
VAD法を略示した説明図、第3図は本発明方法による
熱処理例を略示した説明図、第4図は本発明方法の具体
例における透明ガラス母材の屈折率分布を示した図、第
5図は従来例における光ファイバの屈折率分布図、第6
図は上記光ファイバの組成分析図である。
l ・・・多孔質ガラス母材
2 Φ・・透明ガラス母材
2a・・争コア用ガラス層
2b・・・クラッド用ガラス層
3 争・φガラスパイプ
11・・・加熱炉
代理人 弁理士 斎 藤 義 雄
第1図
第3図 第2図
第4図
屈fσ牟
第5図
屈緯申
第1頁の続き
■Int、C1,’ 識別記号 庁内整理番号0発 明
者 折 茂 勝 巳 市原市へ幡海岸通製造所内[Brief explanation of the drawings] Figure 1 (a), (b), and (c) are explanatory diagrams showing the porous glass base material, transparent glass base material, and glass pipe for jacket in the method of the present invention, respectively. The figure is an explanatory diagram schematically showing the VAD method of the present invention, Figure 3 is an explanatory diagram schematically showing an example of heat treatment by the method of the present invention, and Figure 4 is the refractive index of a transparent glass base material in a specific example of the method of the present invention. Figure 5 is a diagram showing the refractive index distribution of an optical fiber in a conventional example, and Figure 6 is a diagram showing the distribution of the refractive index of an optical fiber in a conventional example.
The figure is a compositional analysis diagram of the optical fiber. l...Porous glass base material 2 Φ...Transparent glass base material 2a...Glass layer for core 2b...Glass layer for cladding 3 Glass pipe 11...Heating furnace agent Patent attorney Sai Yoshio Fuji Figure 1 Figure 3 Figure 2 Figure 4 Kfσm Figure 5 Continuation of page 1 ■Int, C1,' Identification code Internal reference number 0 Inventor Katsumi Orishige To Ichihara City Inside Hatakaigandori Factory
Claims (1)
混合ガス雰囲気中にて透明ガラス化温度未満の温度で熱
処理する工程と、該熱処理工程後の母材を酸素の存在す
る雰囲気中で熱処理する工程とを備なえている石英系多
孔質ガラス母材の熱処理方法。A step of heat-treating a quartz-based porous glass base material in a mixed gas atmosphere of SOC + 2 and He at a temperature below the transparent vitrification temperature, and heat-treating the base material after the heat treatment step in an atmosphere containing oxygen. A heat treatment method for a quartz-based porous glass base material, the method comprising a heat treatment step.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9424884A JPS60239336A (en) | 1984-05-11 | 1984-05-11 | Heat-treatment of quartz-based parent material for porous glass |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9424884A JPS60239336A (en) | 1984-05-11 | 1984-05-11 | Heat-treatment of quartz-based parent material for porous glass |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60239336A true JPS60239336A (en) | 1985-11-28 |
Family
ID=14104999
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9424884A Pending JPS60239336A (en) | 1984-05-11 | 1984-05-11 | Heat-treatment of quartz-based parent material for porous glass |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60239336A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4978378A (en) * | 1988-06-28 | 1990-12-18 | Sumitomo Electric Industries, Ltd. | Method for producing glass preform for optical fiber |
JP2001199735A (en) * | 1999-11-15 | 2001-07-24 | Shinetsu Quartz Prod Co Ltd | Quartz glass body for optical part and method for producing the same |
JP2013083982A (en) * | 2011-10-05 | 2013-05-09 | Sumitomo Electric Ind Ltd | Multimode optical fiber |
-
1984
- 1984-05-11 JP JP9424884A patent/JPS60239336A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4978378A (en) * | 1988-06-28 | 1990-12-18 | Sumitomo Electric Industries, Ltd. | Method for producing glass preform for optical fiber |
JP2001199735A (en) * | 1999-11-15 | 2001-07-24 | Shinetsu Quartz Prod Co Ltd | Quartz glass body for optical part and method for producing the same |
JP2013083982A (en) * | 2011-10-05 | 2013-05-09 | Sumitomo Electric Ind Ltd | Multimode optical fiber |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS60161347A (en) | Preparation of parent material for optical fiber glass | |
JPS60257408A (en) | Optical fiber and its production | |
JPS647015B2 (en) | ||
JPH05351B2 (en) | ||
DK163658B (en) | PROCEDURE FOR MANUFACTURING A GLASS FRAME FOR OPTICAL FIBERS | |
JPS60239336A (en) | Heat-treatment of quartz-based parent material for porous glass | |
KR890001124B1 (en) | Method for producing glass preform | |
JP4079204B2 (en) | Quartz glass tube for optical fiber preform and manufacturing method thereof | |
Plotnichenko et al. | Influence of molecular hydrogen diffusion on concentration and distribution of hydroxyl groups in silica fibers | |
EP1337483A1 (en) | Process for drying porous glass preforms | |
JPS6131324A (en) | Production of base material for optical fiber | |
JPS62108744A (en) | Transparent vitrification method of porous glass base material | |
JPS60231434A (en) | Heat treatment of quartz porous glass base material | |
WO2024157800A1 (en) | Method for manufacturing optical fiber preform, and optical fiber manufacturing method | |
JPH0463365B2 (en) | ||
JPS632900B2 (en) | ||
JPS60215536A (en) | Treatment of porous quartz glass preform | |
JPH0551542B2 (en) | ||
JP2635563B2 (en) | Manufacturing method of glass material for optical transmission body | |
JPH0469569B2 (en) | ||
JPH038743A (en) | Optical fiber preform and preparation thereof | |
JPH07157328A (en) | Production of optical fiber | |
JPS6140843A (en) | Optical fiber | |
JPS63315531A (en) | Production of optical fiber preform | |
JPS638054B2 (en) |