JPS60238421A - Production of high tensile non-oriented electrical steel sheet - Google Patents

Production of high tensile non-oriented electrical steel sheet

Info

Publication number
JPS60238421A
JPS60238421A JP9374084A JP9374084A JPS60238421A JP S60238421 A JPS60238421 A JP S60238421A JP 9374084 A JP9374084 A JP 9374084A JP 9374084 A JP9374084 A JP 9374084A JP S60238421 A JPS60238421 A JP S60238421A
Authority
JP
Japan
Prior art keywords
sheet
rolled
rolling
steel sheet
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9374084A
Other languages
Japanese (ja)
Inventor
Hiroshi Anato
穴戸 浩
Takahiro Suga
菅 孝宏
Satoshi Goto
聡志 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP9374084A priority Critical patent/JPS60238421A/en
Publication of JPS60238421A publication Critical patent/JPS60238421A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To obtain a titled steel sheet exhibiting high tensile strength and having excellent soft magnetic characteristics such as low high-frequency iron loss and low coercive force by hot-rolling a blank slab of a silicon steel having a specific component compsn. to a hot-rolled steel sheet then subjecting repeatedly the sheet to warm-rolling in a prescribed temp. range to form the sheet into a final thickness and subjecting such sheet to final finish annealing. CONSTITUTION:The blank slab of a silicon steel contg., by weight %, 3.5-7.0 as well as <=20.0 1 kinds among 0.05-3.0 Ti, 0.05-3.0 Mo, 0.1-11.5 Mn, 0.1-20.0 Ni, 0.5-20.0 Co and 0.5-13.0 Al is treated in the following way. The slab is hot-rolled at 800-1,350 deg.C and is thereafter subjected to normalizing annealing at 750-1,100 deg.C according to need. The hot-rolled sheet after annealing is subjected repeatedly to warm-rolling at 100-600 deg.C and is rolled down to 0.1-0.35mm. final thickness. The steel sheet rolled to the final thickness is annealed at 850-1,200 deg.C by which the high-tensile non-oriented electrical steel sheet satisfying >=50kg/mm.<2> tensile strength, >=1.5T magnetic flux density B50 and <=100W/kg iron loss W10/ 1,000 is obtd.

Description

【発明の詳細な説明】 技術分野 高抗張力無方向性電磁鋼板の製造方法に関して、この明
細書で述べる技術内容祉、無方向性電磁鋼板につき、そ
の成分組成の調整さらには熱延後の圧延加工に工夫を加
えることによって、軟磁気特性の劣化を招くことなしに
抗張力の改善を図るこ・・・とに関連している。
[Detailed Description of the Invention] Technical field The technical content described in this specification regarding the method for manufacturing high tensile strength non-oriented electrical steel sheets, adjustment of the component composition of non-oriented electrical steel sheets, and rolling processing after hot rolling. It is related to improving the tensile strength without causing deterioration of soft magnetic properties by adding innovations to the magnetic properties.

技術背景 近年、エレクトロニクスを初めとする電気・電子機器の
発展には目ざましいものがあるが、かよ1うな発展をよ
り一層助長する因子の一つとして回転機器の高速運動化
をあけることができる。というのは、これまでの回転機
器において要求されていた回転数は・高々10万rpm
程度であったが、・れるようになったからである。
Technical Background In recent years, there have been remarkable developments in electrical and electronic equipment, including electronics, and one of the factors that will further promote such development is the increase in the high-speed motion of rotating equipment. This is because the rotation speed required for conventional rotating equipment was 100,000 rpm at most.
It was only a matter of time, but I was able to do so.

ところでかような回転機器における高速回転化を実現す
るためには、当然のことながらかかる高速回転に耐え得
る素材の開発が問題となる。すなわち回転機器回転子の
回転数が20〜80万rpmにも高速化すると、該回転
子に加わる遠心力は従来に比較してはるかに大きくなる
ため、現行の材料では回転子が破壊に至る危険性が高い
からである。
By the way, in order to realize high-speed rotation in such rotating equipment, it is a matter of course that the development of materials that can withstand such high-speed rotation becomes a problem. In other words, when the rotation speed of the rotor of a rotating equipment increases to 200,000 to 800,000 rpm, the centrifugal force applied to the rotor becomes much larger than before, so there is a risk that the rotor may be destroyed using current materials. This is because it is highly sensitive.

ここに遠心力Fは、たとえば第1図に示し次ような形状
の円板を回転させた場合には、次式で近似される。
Here, the centrifugal force F is approximated by the following equation when, for example, a disk shown in FIG. 1 and having the following shape is rotated.

ここで、γ:材料の密度、r :円板外径、r□二円板
内径、W:角速度、g:重力の加速度、m:ポアソン比 上掲式から明らかなように、円板にはその回転数の2乗
に比例して遠心力が加わるわけであるから、回転機器が
高速回転化されたとすると、回転”/am9f超えるこ
とも考えられ、ここにかように苛酷な回転遠心力に耐え
得る高抗張力の素材が必要とされている朴けである。
Here, γ: density of material, r: outer diameter of disk, r□ inner diameter of disk, W: angular velocity, g: acceleration of gravity, m: Poisson's ratio As is clear from the above equation, the disk has Centrifugal force is applied in proportion to the square of the number of rotations, so if rotating equipment is made to rotate at high speed, it is possible that the rotation speed will exceed 9 f/am, and such severe rotational centrifugal force This is a material that requires a high tensile strength material that can withstand it.

3!P′″2 また回転機器や磁気軸受の回転子は、電磁気現象を利用
するものであることから、磁気特性それも軟磁気特注に
優れていることも重要である。実際、誘導モータなどの
回転子では高周波鉄損に優れていることが、また磁気軸
受などの軸受回転子では保磁力が小さいことが必要とさ
れる。
3! P'''2 In addition, since the rotors of rotating equipment and magnetic bearings utilize electromagnetic phenomena, it is important that they have excellent magnetic properties and are custom-made with soft magnetism. A bearing rotor such as a magnetic bearing is required to have a low coercive force.

ここに(ロ)転機器の回転子回転数(NJと周波数f)
との関係は、次式のとおりに表わされる。
Here (b) rotor rotation speed of the rotating equipment (NJ and frequency f)
The relationship with is expressed as follows.

f= ””/ 12o(1−8) ここでP:回転機極数 S:すべり 従ってたとえば、2極回転機器を20〜8o万rpmで
回転した場合を考えると、換算周波数は数KHz〜数1
0 KHzの範囲になるから、素材としては上記の周波
数範囲で鉄損の低い磁性材料を用い−・2・・ることが
有利なわけである。
f = "" / 12o (1-8) where P: Number of poles of rotating machine S: Slip Therefore, for example, if we consider a case where a two-pole rotating machine rotates at 200,000 to 80,000 rpm, the converted frequency is several KHz to several KHz. 1
0 KHz range, it is advantageous to use a magnetic material with low iron loss in the above frequency range as the material.

このように高速回転機器、中でも回転子に用いる素材と
しては、機械的には高抗張力、高強度を有し、一方磁気
的には低保磁力や低鉄損という軟磁気特性を満足するも
のでなければならない。しかしながら一般的に、かかる
機械的特注と軟磁気特注とは相反する関係にあるため、
両性質を誉備させることは以下に述べるとおシ極めて難
しかったのである。
In this way, materials used for high-speed rotating equipment, especially rotors, have high tensile strength and high strength mechanically, while magnetically satisfying soft magnetic properties such as low coercive force and low iron loss. There must be. However, in general, such mechanical customization and soft magnetic customization have a contradictory relationship, so
As stated below, it was extremely difficult to cultivate both qualities.

さて金属材料の機械的強度を高める方法としては、代表
的なものに下表1に示したような強化法が知られている
Now, as a method for increasing the mechanical strength of metal materials, the strengthening methods shown in Table 1 below are known as typical methods.

表1 し〃・シながら上掲の各強化法の強化機構は、格子歪の
増加、結晶粒径の微細化、加工歪および相変態などを利
用するものであって、いずれも強磁1−囲体の磁壁移動
を困難にさせるものであるため、強度の増〃0に伴い軟
磁気tfj性を劣化させていたのでおる。
Table 1 The strengthening mechanism of each of the above strengthening methods utilizes increases in lattice strain, refinement of crystal grain size, processing strain, phase transformation, etc. Since this makes it difficult for the domain wall of the enclosure to move, the soft magnetic tfj properties deteriorate as the strength increases to zero.

発明の目的 この発明は、高い抗張力を呈するだけでなく、低い高周
波鉄損や低保磁力など軟磁気特性にも優れた材料、具体
的には抗張カニ 50 ”9/lo”以上で、かつ磁束
密度B、o: 1.5 T以上、鉄損w1o/1゜oo
:100W/−以下を満足する高抗張力無方向性電磁鋼
板の製造方法を提案することを、目的とする。
Purpose of the Invention This invention provides a material that not only exhibits high tensile strength but also has excellent soft magnetic properties such as low high-frequency iron loss and low coercive force, specifically, a material with a tensile strength of 50 "9/lo" or more and Magnetic flux density B, o: 1.5 T or more, iron loss w1o/1゜oo
The purpose of the present invention is to propose a method for producing a high tensile strength non-oriented electrical steel sheet that satisfies the following: 100 W/- or less.

発明の端緒 この発明は、前掲表1に示した種々の強化法を再検討し
た結果開発されたもので、各種強化法のは、その製造工
程に工夫を加えることによって十分に補償し得ることの
新規知見に立脚する。
Introduction to the Invention This invention was developed as a result of reconsidering the various strengthening methods shown in Table 1 above. Based on new knowledge.

第2図および第8図に、4 % Si −Ire合金に
、W 、 Mo 、 Ti 、 In 、 Ni 、 
AJおよびco ’1それぞれ5%までの範囲で添加し
た組成になる各鋼スラブを、それぞれ1200”0に加
熱したのち、熱間圧・延を施して2關厚の熱延板とし、
ついて900℃で組織均一化の穴めのノルマライジング
焼鈍を施したのち、冷間圧延を施して最終板厚0.15
mgの冷延板とし、しかるのち950°C110分間の
焼鈍を施して得た各無方向性電磁鋼板の、鉄損” ”/
1oooおよび抗張力につhて調べた結果をそれぞれ示
す。なお鉄損については4枚エプスタイン法によシ、ま
た抗張力についてはJIS 1号試験片をインストロン
により測定した。
In FIG. 2 and FIG. 8, W, Mo, Ti, In, Ni,
Each steel slab having a composition containing up to 5% of AJ and co '1 was heated to 1200"0, hot rolled and rolled into a 2-inch thick hot rolled plate,
After that, it was subjected to normalizing annealing at 900℃ to make the structure uniform, and then cold rolled to a final thickness of 0.15.
Iron loss of each non-oriented electrical steel sheet obtained by cold-rolling the sheet and then annealing it at 950°C for 110 minutes.
The results of examinations regarding 1ooo and tensile strength are shown, respectively. The iron loss was measured using the 4-piece Epstein method, and the tensile strength was measured using a JIS No. 1 test piece using an Instron.

第2.8図より明らかなように、各固溶体強化元素の添
加量が増すにつれて抗張力は向上するが、鉄損特性は逆
に劣化する。
As is clear from Fig. 2.8, as the amount of each solid solution strengthening element added increases, the tensile strength improves, but the iron loss characteristics deteriorate.

ところが上記の製造工程中、冷間圧延にかえて150℃
の温度での繰返し温間圧延を適用したところ、鉄損特性
の劣化抑止につき第4図に示したように、望外の成果が
得られたのである。
However, during the above manufacturing process, instead of cold rolling, 150℃
When repeated warm rolling at a temperature of

この発明は、上記−の知見に由来するものである。This invention is derived from the above-mentioned knowledge.

発明の構成 この発明は、Si : 8.5〜7.0重量%(以下単
 ・・に係で示す)を含み−5かつ Ti : 0.05〜8.0%、 W : 0.05〜
3.0%。
Structure of the Invention This invention contains Si: 8.5 to 7.0% by weight (hereinafter referred to as "..."), Ti: 0.05 to 8.0%, W: 0.05 to
3.0%.

No : 0.05〜8.0 % 、 In : 0.
1〜11.5%。
No: 0.05-8.0%, In: 0.
1-11.5%.

Ni : 0.1〜20.0%、 Co : 0.5〜
20.0チおよびAl: 0.5〜18.0%のうちか
ら選んだ一種または二種以上を20.0 %’を超えな
い範囲において含有するけい素鋼素材スラブを、熱間圧
延によって熱延板としたのち、300〜600℃の温度
範囲における温間圧延を施して0.1〜0.85mmの
最終板厚とし、しかるのち850〜1250℃の温度範
囲で仕上げ焼鈍を施すことを特許とする高抗張力無方向
性電磁鋼板の製造方法である。
Ni: 0.1~20.0%, Co: 0.5~
20.0% and Al: A silicon steel material slab containing one or more selected from 0.5 to 18.0% within a range not exceeding 20.0% is heated by hot rolling. The patent states that after the sheet is rolled, it is subjected to warm rolling at a temperature range of 300 to 600°C to obtain a final sheet thickness of 0.1 to 0.85 mm, and then final annealed at a temperature range of 850 to 1250°C. This is a method for manufacturing a high tensile strength non-oriented electrical steel sheet.

以下この発明を具体的に説明する。This invention will be explained in detail below.

まず成分組成範囲を上記のとおりに限定した理由につい
て述べる。
First, the reason for limiting the component composition range as described above will be described.

si : 8.5〜7.0% Si量が8.5%より少いと、γ→α相変態が生じ、電
磁%性を著しく損うすなわち電気抵抗が低下して高周波
鉄損が劣化すると同時”に、機械的性質としても高強度
に方7.−−劣S1暢≠;7.0鴫より・多いと鋼板が
急激に脆くなって、歩留り、生産性′が悪化するととも
に、飽和磁束密度も低下する。
si: 8.5 to 7.0% If the Si amount is less than 8.5%, γ→α phase transformation occurs, which significantly impairs electromagnetic properties, that is, electrical resistance decreases and high frequency iron loss deteriorates. ``In terms of mechanical properties, it is better to have high strength 7.--Poor S1 ≠; If it is higher than 7.0, the steel plate will suddenly become brittle, the yield and productivity will deteriorate, and the saturation magnetic flux density will decrease. also decreases.

よってSi含有量は、8.5〜7.0%の範囲に限定し
た。
Therefore, the Si content was limited to a range of 8.5 to 7.0%.

Ti 、 W 、 MO、In 、 Ni 、 Goお
よびAJは、固溶体強化成分として均等である。
Ti, W, MO, In, Ni, Go and AJ are equivalent as solid solution strengthening components.

T1 二 〇、05〜3.0 % Tl量が、 0.05%に満たないと抗張力の改善効果
に乏しく、一方8.0%を超えると磁気特注が劣化する
ので、0.05〜8.0%の範囲に限戻したOW : 
0.05〜8.0% W量が・0.05%、l:、!l)少いと抗張力kaめ
る効果が弱く、一方3.0%より多いと磁気特注が著し
く劣化するので、0.05〜8.0%の範囲に限定した
O No : 0.05〜8.0% No袖が、0.05%に満たないと抗張力の改善は勘待
できず、一方3.0%を超えると磁気特注が劣化するの
で、0.05〜3.0%の範囲に限定した。
T1 20.05-3.0% If the Tl amount is less than 0.05%, the effect of improving tensile strength will be poor, while if it exceeds 8.0%, the magnetic customization will deteriorate, so it should be 0.05-8. OW returned to 0% range:
0.05~8.0% W amount is ・0.05%, l:,! l) If it is less than 3.0%, the effect of reducing the tensile strength is weak, while if it is more than 3.0%, the magnetic customization will deteriorate significantly, so O No. is limited to the range of 0.05 to 8.0%: 0.05 to 8. If the 0% No sleeve content is less than 0.05%, the improvement in tensile strength cannot be underestimated, while if it exceeds 3.0%, the magnetic customization will deteriorate, so it is limited to a range of 0.05 to 3.0%. did.

Mn : 0.1〜11.5% ・ In量が、0.1係より少量であると抗張力の改善
効果に乏しく、一方11.5%より多量になるとα→γ
変態を起こし、非磁性r相の体積率が増大して磁気特注
が著しく劣化すると同時に脆くなシ、歩留り、生産性が
悪化するので、0.1〜11.5%の範囲に限定した。
Mn: 0.1 to 11.5% - If the In amount is less than 0.1%, the tensile strength improvement effect will be poor, while if it is more than 11.5%, α → γ
It is limited to a range of 0.1 to 11.5% because transformation occurs and the volume fraction of the non-magnetic r phase increases, significantly deteriorating the magnetic customization, and at the same time decreasing brittleness, yield, and productivity.

Ni : 0.1〜20.0% Nl量が、0.1%に満たないと抗張力改善効果がel
とんど気持できず、一方20%を超えるとα→γ相変態
を生じ、非磁性γ相が増大して磁気特注が劣化するので
、0.1〜20.0%の範囲に限定した。
Ni: 0.1-20.0% If the amount of Nl is less than 0.1%, the tensile strength improvement effect will be poor.
On the other hand, if it exceeds 20%, α→γ phase transformation occurs, the nonmagnetic γ phase increases, and the magnetic customization deteriorates, so the content was limited to a range of 0.1 to 20.0%.

Co : 0.5〜20.0% Co量が、0.6%未満では抗張力改善効果かはとんと
認められず、一方20.0%を超えると不経済であると
同時に硬磁性も呈するようになるので、0.5〜20.
0%の範囲に限定した。
Co: 0.5-20.0% If the Co amount is less than 0.6%, the tensile strength improvement effect cannot be recognized at all, while if it exceeds 20.0%, it is uneconomical and at the same time exhibits hard magnetism. Therefore, 0.5 to 20.
It was limited to a range of 0%.

Ajt’: 0.5〜18.0% An量が、0.5%に満たないと抗張力改善効果″が期
待できず、一方18%を超え・ると脆くなってに限定し
た。
Ajt': 0.5 to 18.0% If the An content is less than 0.5%, no tensile strength improvement effect can be expected, whereas if it exceeds 18%, the product becomes brittle and is limited to the following.

なお上掲した固溶体強化元素は、それぞれ単独でもまた
複合して添加することもできるが、複合添加の場合、そ
の添加量が20.0%を超えると飽−利磁束密度が低下
し、磁気特性が劣化するので、20.0%以下の範囲で
添加することが肝要である。
The above-mentioned solid solution strengthening elements can be added either singly or in combination, but in the case of combined addition, if the amount added exceeds 20.0%, the saturation magnetic flux density will decrease and the magnetic properties will deteriorate. Since it deteriorates, it is important to add it within a range of 20.0% or less.

さて上記の適正範囲に成分調整された溶鋼は、造塊−分
塊法または連続鋳造法で鋼スラブとされたのち、熱間圧
延が施される。この熱間圧延において、熱延温度がso
o℃に満たないと割れが生じ易く・一方1850 ’O
’に超えるとスラブ表面が溶解することもあplまた不
経済でもあるので、熱延温度は800〜1850″0の
範囲が好ましい。′つぎに必要に応じて、組織均一化の
ためにノルマライジング焼鈍を施すが、焼鈍温度が75
0℃未満では均一化に長時間を要し、一方1100”0
を超えると焼鈍時間は短くて済むものの結晶粒径が不均
一に粗大化するおそれが大きくなるので、焼鈍温度は7
50〜1100’Oの範囲とするのが好まし・い。
Now, the molten steel whose composition has been adjusted to the above-mentioned appropriate range is made into a steel slab by an ingot-blowing method or a continuous casting method, and then hot-rolled. In this hot rolling, the hot rolling temperature is so
If the temperature is less than 0°C, cracks will easily occur.On the other hand, if the temperature is 1850'O
The hot rolling temperature is preferably in the range of 800 to 1,850 mm, because if it exceeds 100 mm, the slab surface may melt and it is also uneconomical. Annealing is performed, but the annealing temperature is 75
Below 0°C, it takes a long time to homogenize;
If the annealing temperature exceeds 7, the annealing time can be shortened, but there is a greater risk that the crystal grain size will become unevenly coarsened.
It is preferably in the range of 50 to 1100'O.

ついで得られた熱延板に温間圧延を施すわけであるが、
このとき圧延温度が100℃未満では鉄損の改善効果に
乏しく、また600”0を超えると不経済にもなるので
、温間圧延温度は100〜 ′600℃の範囲とする必
要がある。
The obtained hot rolled sheet is then subjected to warm rolling.
At this time, if the rolling temperature is less than 100°C, the iron loss improvement effect will be poor, and if it exceeds 600"0, it will become uneconomical, so the warm rolling temperature should be in the range of 100 to 600°C.

かかる温間圧延によって、製品の高周波領域における鉄
損が効果的に改善されるわけであるが、その理由は次の
とおりと考えられる。
Such warm rolling effectively improves the core loss of the product in the high frequency range, and the reason is considered to be as follows.

すなわち通常の冷間圧延では、圧下率が上昇するにつれ
て転位密度が増加するため、集合組織的には冷延の最終
安定方位を呈し、また仕上げ焼鈍後の結晶粒径は磁気%
注を向上させるほど大きくはならないが、温間圧延の場
合は、冷間圧延に較べて圧延による転位の集積は疎とな
るため、集合組織が尖鋭化することはなく、圧延方向に
対して無方向性になり、また結晶粒も大きいものが得ら
れ易い。
In other words, in normal cold rolling, the dislocation density increases as the reduction rate increases, so the texture exhibits the final stable orientation of cold rolling, and the grain size after final annealing is magnetic%.
However, in the case of warm rolling, the accumulation of dislocations due to rolling is sparser than that of cold rolling, so the texture does not become sharp and there is no dislocation in the rolling direction. It is easy to obtain crystal grains with good directionality and large crystal grains.

なおこの温間圧延によって、熱延板を最終板厚・0.1
絹より薄くしても磁気特注を向上させる効果゛は小さく
、一方0.85朋よりも厚いと高周波鉄損%性の劣化が
大きくなるからである。
By this warm rolling, the hot rolled sheet has a final thickness of 0.1
This is because even if the thickness is made thinner than silk, the effect of improving magnetic customization is small, while if it is thicker than 0.85 mm, the deterioration of the high frequency iron loss percentage increases.

しかるのち850〜1250”0の温度範囲で仕上げ焼
鈍を施す。焼鈍温度を上記の範囲としたのは、゛850
℃未満では所定の磁性を得るのに長時間を要し・一方1
260°Cを超えると鋼板表面が溶解するおそれが大き
いだけでなく、不経済でもあるからである。
After that, finish annealing is performed at a temperature range of 850 to 1250"0.The reason why the annealing temperature is set to the above range is
Below ℃, it takes a long time to obtain the desired magnetism.
This is because if the temperature exceeds 260°C, there is not only a large possibility that the surface of the steel plate will melt, but also it is uneconomical.

実施例 実施例1 下表1に示す成分組成になる各鋼スラブを、1800”
Cに加熱してから熱間圧延を施して1.0朋厚の熱延板
としたのち、900°0でノルマライジング焼鈍を行っ
た。ついで400℃の温度で温間圧延を繰返し施して最
終的に0.1朋の板厚としたのち、この板に対して90
0℃温度で最終焼鈍を施した。
Examples Example 1 Each steel slab having the composition shown in Table 1 below was
After heating to C and hot rolling to obtain a hot rolled sheet with a thickness of 1.0 mm, normalizing annealing was performed at 900°0. Then, after repeatedly performing warm rolling at a temperature of 400°C to a final thickness of 0.1 mm, this plate was rolled at 90 mm.
Final annealing was performed at a temperature of 0°C.

得られた各無方向性電磁鋼板の抗張力ならびに鉄損Wl
o/1nnnおよび磁束密1fB−について聰べ・た結
果全表1に併記する。なお比較のため従来法′に従い冷
間圧延を施して得た鋼板についても同様な調査全行い、
その結果も表1に示す。
Tensile strength and iron loss Wl of each non-oriented electrical steel sheet obtained
The results obtained for o/1nnn and magnetic flux density 1fB- are also listed in Table 1. For comparison, a similar investigation was also carried out on steel sheets obtained by cold rolling according to the conventional method.
The results are also shown in Table 1.

・ 表1に示した成績から明らかなように、この発1明
に従い得られた無方向性電磁鋼板は、従来材に比べて・
磁気特性がさほと劣化することなしに抗張力が大幅に向
上している。
- As is clear from the results shown in Table 1, the non-oriented electrical steel sheet obtained according to the present invention has -
Tensile strength has been significantly improved without any significant deterioration in magnetic properties.

実施例2 下表2に示した成分組成になる各鋼スラブを、1260
”Cに加熱してから熱間圧延を施して板厚1.5開の熱
延板とした。ついで900℃のノルマライジング焼鈍を
施したのち、150℃の温度で温間圧#;全繰返し施し
て最終板厚0.15朋の板材とした。これらの板材に9
80℃、2分間の最終焼鈍を施して得た各無方向性電磁
鋼板の抗張力。
Example 2 Each steel slab having the composition shown in Table 2 below was prepared using 1260
After heating to C, hot rolling was performed to obtain a hot rolled sheet with a thickness of 1.5 mm.Next, normalizing annealing was performed at 900°C, and warm pressure #; was fully repeated at a temperature of 150°C. The final plate thickness was 0.15 mm.
Tensile strength of each non-oriented electrical steel sheet obtained by final annealing at 80°C for 2 minutes.

鉄損W10/ および磁束密度B5oについて調べ00
0 た結果を表2に併記する。
Examine iron loss W10/ and magnetic flux density B5o00
The results are also listed in Table 2.

発明の効果 以上述べたようにこの発明によれば、無方向性電磁鋼板
につき、その磁気性q’tさほど劣化させることなしに
抗張力を格段に向上させることができる。
Effects of the Invention As described above, according to the present invention, the tensile strength of a non-oriented electrical steel sheet can be significantly improved without significantly deteriorating its magnetic properties q't.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、内径r工、外径r2の円板の平面図、第2図
は、種々の固溶体強化元素が鉄損WIQ/1000に及
はす影響を示したグラフ、 第3図は、同じく種々の固溶体強化元素が抗張力に与え
る影響を示したグラフ・ 第4図は、この発明に従って得られた無方向性電磁鋼板
の各強化元素の添加量と鉄損W 10/1゜。0との関
係を示したグラフである。 第3図
Figure 1 is a plan view of a disk with an inner diameter of r and an outer diameter of r2, Figure 2 is a graph showing the influence of various solid solution strengthening elements on iron loss WIQ/1000, and Figure 3 is Similarly, FIG. 4 is a graph showing the influence of various solid solution strengthening elements on tensile strength, and shows the amount of each strengthening element added and the iron loss W 10/1° of a non-oriented electrical steel sheet obtained according to the present invention. It is a graph showing the relationship with 0. Figure 3

Claims (1)

【特許請求の範囲】 L si:8.5〜7.0重1チ を會み、かつ Ti−: 0.05〜8.0重量%、 W:0.05〜8.0重量%、 No : 0.05〜8.0Ti%、 Mn : 0.1〜11.5重量%、 Ni : 0.1〜20.0重量%、 00 : 0.5〜20.0重量%訃よびAJ : 0
.5〜18.0重量% のうちから選んだ一種または二種以上を20.0重量%
を超えない範囲において含有するけい素鋼索材スラブを
、熱間圧延によって熱延板としたのち、100〜600
℃の温度範囲における温間圧延を繰返し施すことによっ
て0.1〜0.85111の最終板厚とし、しかるのち
850とを特徴とする高抗張力無方向性電磁鋼板の゛°
製造方法。
[Claims] L si: 8.5 to 7.0 weight 1 inch, Ti-: 0.05 to 8.0 weight%, W: 0.05 to 8.0 weight%, No. : 0.05-8.0Ti%, Mn: 0.1-11.5% by weight, Ni: 0.1-20.0% by weight, 00: 0.5-20.0% by weight and AJ: 0
.. 20.0% by weight of one or more selected from 5 to 18.0% by weight
After hot-rolling a silicon steel cable slab containing silicon steel cable in a range not exceeding 100 to 600
A final plate thickness of 0.1 to 0.85111 is obtained by repeatedly performing warm rolling in the temperature range of ℃, and then 850℃.
Production method.
JP9374084A 1984-05-10 1984-05-10 Production of high tensile non-oriented electrical steel sheet Pending JPS60238421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9374084A JPS60238421A (en) 1984-05-10 1984-05-10 Production of high tensile non-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9374084A JPS60238421A (en) 1984-05-10 1984-05-10 Production of high tensile non-oriented electrical steel sheet

Publications (1)

Publication Number Publication Date
JPS60238421A true JPS60238421A (en) 1985-11-27

Family

ID=14090804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9374084A Pending JPS60238421A (en) 1984-05-10 1984-05-10 Production of high tensile non-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JPS60238421A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62256917A (en) * 1986-04-28 1987-11-09 Nippon Steel Corp High-tensile non-oriented electrical steel sheet for rotating machine and its production
JPS6336906A (en) * 1986-07-31 1988-02-17 Nippon Kokan Kk <Nkk> Rolling method for high-silicon iron sheet
JPS6360225A (en) * 1986-08-29 1988-03-16 Nippon Kokan Kk <Nkk> Manufacture of high-silicon iron sheet having superior soft magnetic characteristic
JPS63105925A (en) * 1986-05-23 1988-05-11 Nkk Corp Manufacture of high silicon iron sheet having superior high frequency magnetic characteristic and workability
JPS63227717A (en) * 1986-10-17 1988-09-22 Nkk Corp Production of high-silicon steel sheet
US5084112A (en) * 1988-07-12 1992-01-28 Nippon Steel Corporation High strength non-oriented electrical steel sheet and method of manufacturing same
US7513959B2 (en) 2002-12-05 2009-04-07 Jfe Steel Corporation Non-oriented electrical steel sheet and method for manufacturing the same
US7608154B2 (en) * 2004-09-22 2009-10-27 Nippon Steel Corporation Nonoriented electrical steel sheet excellent in core loss
WO2010084847A1 (en) 2009-01-26 2010-07-29 新日本製鐵株式会社 Non-oriented electromagnetic steel sheet
US7922834B2 (en) 2005-07-07 2011-04-12 Sumitomo Metal Industries, Ltd. Non-oriented electrical steel sheet and production process thereof
WO2012114383A1 (en) 2011-02-24 2012-08-30 Jfeスチール株式会社 Non-oriented electromagnetic steel sheet and method for manufacturing same
WO2014024222A1 (en) 2012-08-08 2014-02-13 Jfeスチール株式会社 High-strength electromagnetic steel sheet and method for producing same
KR20140113738A (en) 2012-02-23 2014-09-24 제이에프이 스틸 가부시키가이샤 Method for producing electrical steel sheet
CN104073715B (en) * 2014-06-19 2016-04-20 马钢(集团)控股有限公司 A kind of manufacture method of high-magnetic strength non-oriented electrical steel
US9637812B2 (en) 2009-09-03 2017-05-02 Nippon Steel & Sumitomo Metal Corporation Non-oriented electrical steel sheet
WO2018164185A1 (en) 2017-03-07 2018-09-13 新日鐵住金株式会社 Non-oriented electromagnetic steel sheet and method for manufacturing non-oriented electromagnetic steel sheet
WO2020166718A1 (en) 2019-02-14 2020-08-20 日本製鉄株式会社 Non-oriented electromagnetic steel sheet
WO2022210530A1 (en) 2021-03-31 2022-10-06 日本製鉄株式会社 Non-oriented electromagnetic steel sheet, motor core, production method for non-oriented electromagnetic steel sheet, and production method for motor core

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58181822A (en) * 1982-04-16 1983-10-24 Kawasaki Steel Corp Manufacture of non-oriented silicon steel sheet having low iron loss

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58181822A (en) * 1982-04-16 1983-10-24 Kawasaki Steel Corp Manufacture of non-oriented silicon steel sheet having low iron loss

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62256917A (en) * 1986-04-28 1987-11-09 Nippon Steel Corp High-tensile non-oriented electrical steel sheet for rotating machine and its production
JPH0425346B2 (en) * 1986-04-28 1992-04-30 Nippon Steel Corp
JPS63105925A (en) * 1986-05-23 1988-05-11 Nkk Corp Manufacture of high silicon iron sheet having superior high frequency magnetic characteristic and workability
JPS6336906A (en) * 1986-07-31 1988-02-17 Nippon Kokan Kk <Nkk> Rolling method for high-silicon iron sheet
JPS6360225A (en) * 1986-08-29 1988-03-16 Nippon Kokan Kk <Nkk> Manufacture of high-silicon iron sheet having superior soft magnetic characteristic
JPS63227717A (en) * 1986-10-17 1988-09-22 Nkk Corp Production of high-silicon steel sheet
US5084112A (en) * 1988-07-12 1992-01-28 Nippon Steel Corporation High strength non-oriented electrical steel sheet and method of manufacturing same
EP2489753A1 (en) 2002-12-05 2012-08-22 JFE Steel Corporation Non-oriented magnetic steel sheet and method for production thereof
US7513959B2 (en) 2002-12-05 2009-04-07 Jfe Steel Corporation Non-oriented electrical steel sheet and method for manufacturing the same
US7608154B2 (en) * 2004-09-22 2009-10-27 Nippon Steel Corporation Nonoriented electrical steel sheet excellent in core loss
US7922834B2 (en) 2005-07-07 2011-04-12 Sumitomo Metal Industries, Ltd. Non-oriented electrical steel sheet and production process thereof
US8157928B2 (en) 2005-07-07 2012-04-17 Sumitomo Metal Industries, Ltd. Non-oriented electrical steel sheet and production process thereof
WO2010084847A1 (en) 2009-01-26 2010-07-29 新日本製鐵株式会社 Non-oriented electromagnetic steel sheet
US9637812B2 (en) 2009-09-03 2017-05-02 Nippon Steel & Sumitomo Metal Corporation Non-oriented electrical steel sheet
WO2012114383A1 (en) 2011-02-24 2012-08-30 Jfeスチール株式会社 Non-oriented electromagnetic steel sheet and method for manufacturing same
KR20140113738A (en) 2012-02-23 2014-09-24 제이에프이 스틸 가부시키가이샤 Method for producing electrical steel sheet
US9761359B2 (en) 2012-02-23 2017-09-12 Jfe Steel Corporation Method of producing electrical steel sheet
US10242782B2 (en) 2012-08-08 2019-03-26 Jfe Steel Corporation High-strength electrical steel sheet and method of producing the same
WO2014024222A1 (en) 2012-08-08 2014-02-13 Jfeスチール株式会社 High-strength electromagnetic steel sheet and method for producing same
CN104073715B (en) * 2014-06-19 2016-04-20 马钢(集团)控股有限公司 A kind of manufacture method of high-magnetic strength non-oriented electrical steel
WO2018164185A1 (en) 2017-03-07 2018-09-13 新日鐵住金株式会社 Non-oriented electromagnetic steel sheet and method for manufacturing non-oriented electromagnetic steel sheet
KR20190112757A (en) 2017-03-07 2019-10-07 닛폰세이테츠 가부시키가이샤 Manufacturing method of non-oriented electrical steel sheet and non-oriented electrical steel sheet
US11124854B2 (en) 2017-03-07 2021-09-21 Nippon Steel Corporation Non-oriented electrical steel sheet and method for manufacturing non-oriented electrical steel sheet
WO2020166718A1 (en) 2019-02-14 2020-08-20 日本製鉄株式会社 Non-oriented electromagnetic steel sheet
KR20210112365A (en) 2019-02-14 2021-09-14 닛폰세이테츠 가부시키가이샤 non-oriented electrical steel sheet
WO2022210530A1 (en) 2021-03-31 2022-10-06 日本製鉄株式会社 Non-oriented electromagnetic steel sheet, motor core, production method for non-oriented electromagnetic steel sheet, and production method for motor core
KR20230134148A (en) 2021-03-31 2023-09-20 닛폰세이테츠 가부시키가이샤 Non-oriented electrical steel sheet, motor core, manufacturing method of non-oriented electrical steel sheet, and manufacturing method of motor core

Similar Documents

Publication Publication Date Title
JPS60238421A (en) Production of high tensile non-oriented electrical steel sheet
US5501747A (en) High strength iron-cobalt-vanadium alloy article
US3977919A (en) Method of producing doubly oriented cobalt iron alloys
KR930001948B1 (en) Ultra-rapid annealing of nonoriented electrical steel
JPS6323262B2 (en)
JP2001158950A (en) Silicon steel sheet for small-size electrical equipment, and its manufacturing method
JP3855554B2 (en) Method for producing non-oriented electrical steel sheet
US3868278A (en) Doubly oriented cobalt iron alloys
JP6623533B2 (en) Fe-based metal plate
JP2639227B2 (en) Manufacturing method of non-oriented electrical steel sheet
JPS62112723A (en) Manufacture of high tension soft magnetic steel sheet
US3793092A (en) Fine-grained, completely decrystallized, annealed cobalt-iron-vanadium articles and method
JPH0456109B2 (en)
JPH0315323B2 (en)
JPS6312936B2 (en)
JPH086135B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
JP4047502B2 (en) Steel plate for magnetic shield structure and manufacturing method thereof
JPS6232267B2 (en)
JP7184226B1 (en) Rotating electric machine, stator core and rotor core set, method for manufacturing rotating electric machine, method for manufacturing non-oriented electrical steel sheet, method for manufacturing rotor and stator of rotating electrical machine, and set of non-oriented electrical steel sheet
JPS619520A (en) Manufacture of rapidly cooled thin strip having high tensile strength and non-orientation
KR101594393B1 (en) Manufacturing process of electrical steel sheet having the goss texture by asymmetric rolling
JPS6253571B2 (en)
JP6221406B2 (en) Fe-based metal plate and manufacturing method thereof
JP7428872B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JPS5983723A (en) Preparation of non-directional electric iron plate having high magnetic flux density