JPS63227717A - Production of high-silicon steel sheet - Google Patents

Production of high-silicon steel sheet

Info

Publication number
JPS63227717A
JPS63227717A JP26044487A JP26044487A JPS63227717A JP S63227717 A JPS63227717 A JP S63227717A JP 26044487 A JP26044487 A JP 26044487A JP 26044487 A JP26044487 A JP 26044487A JP S63227717 A JPS63227717 A JP S63227717A
Authority
JP
Japan
Prior art keywords
rolling
hot
temperature
sheet
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26044487A
Other languages
Japanese (ja)
Other versions
JPH0668131B2 (en
Inventor
Junichi Inagaki
淳一 稲垣
Yoshiichi Takada
高田 芳一
Fumio Fujita
文夫 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP62260444A priority Critical patent/JPH0668131B2/en
Publication of JPS63227717A publication Critical patent/JPS63227717A/en
Publication of JPH0668131B2 publication Critical patent/JPH0668131B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling

Abstract

PURPOSE:To develop the title silicon steel sheet having excellent soft magnetic characteristic and permeability and a low iron loss by hot-rolling a high-silicon steel slab into a sheet having a fine unrecrystallized laminar structure, and the quasi-hot-rolling the sheet under specified conditions. CONSTITUTION:A high-silicon steel slab contg. 4.0-7.0wt.% Si is soaked at 1,180 deg.C, and hot-rolled into a hot-rolled coil having 2.5mm thickness. The hot- rolling finish temp. is controlled to 720-850 deg.C, winding is carried out at 550-650 deg.C, and an unrecrystallized laminar structure is imparted to perform the succeeding hot rolling at <=500 deg.C. The scale formed on the surface during hot rolling is then removed, and the sheet is quasi-hot-rolled in the temp. range from room temp. to 500 deg.C into a thin sheet having 0.5mm thickness. Heat treatment is carried out at 100-500 deg.C for 1sec-120min between the passes in the hot rolling. An annealing separation agent is then coated, the sheet is annealed at >=800 deg.C, and finally an insulating film is formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高珪素鉄板の製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing a high-silicon iron plate.

〔従来の技術及びその問題点〕[Conventional technology and its problems]

従来から、珪素を4.0wt% 未満含有する鉄板は、
方向性珪素鋼板、無方向性珪素鋼板と呼ばれ、主として
各種電磁誘導機器用の積層鉄芯や巻鉄芯、あるいは電磁
シールド用のケースなどに加工成型され実用に供されて
いる。
Conventionally, iron plates containing less than 4.0 wt% of silicon,
They are called oriented silicon steel sheets or non-oriented silicon steel sheets, and are mainly used in practical applications by being processed and formed into laminated iron cores and wound iron cores for various electromagnetic induction devices, and cases for electromagnetic shielding.

近年、省資源、省エネルギー等の観点から電磁電子部品
の小形化や高効率化が強く要請され、軟磁気特性の優れ
た、とりわけ鉄損が低く透磁率が高い材料が要求される
ようになってきた。珪素鉄合金系において珪素の含有量
が増すと鉄損は低下し、そのうえ6.5vt%付近では
透磁率が極大となりざら化磁歪がほぼゼロとなる等優れ
た軟磁気特性を示すことが知られている。しかしながら
、珪素の含有量が4.0wt% 以上になると加工性が
著しく劣化し、このため従来では熱間圧延−冷間圧延の
組み合わせからなる圧延法によって工業的に製造するこ
とは困難とされ、その製造法としては、たとえば特開昭
55−69223号公報で示されるような超急冷凝固法
等が開示されているにすぎな力1つた。しかし、この超
急冷凝固法により製造される高珪素箔帯は圧延製品と比
較して表面性状や表面の平坦度が劣り、しかも幅広・厚
物材の製造が困難である等、電磁電子部品の素材として
実用化する上で数多くの問題点を有している。
In recent years, there has been a strong demand for smaller and more efficient electromagnetic and electronic components from the viewpoint of resource and energy conservation, and materials with excellent soft magnetic properties, especially low iron loss and high magnetic permeability, have been required. Ta. It is known that in silicon-iron alloy systems, iron loss decreases as the silicon content increases, and that magnetic permeability reaches a maximum at around 6.5vt%, exhibiting excellent soft magnetic properties such as roughening magnetostriction becoming almost zero. ing. However, when the silicon content exceeds 4.0 wt%, the workability deteriorates significantly, and for this reason, it has been difficult to industrially manufacture the silicon by the conventional rolling method consisting of a combination of hot rolling and cold rolling. As a manufacturing method, there is only one method disclosed, for example, an ultra-rapid solidification method as shown in Japanese Patent Application Laid-Open No. 55-69223. However, the high-silicon foil strip produced by this ultra-rapid solidification method has inferior surface properties and surface flatness compared to rolled products, and it is difficult to manufacture wide and thick materials, making it difficult to manufacture electromagnetic and electronic components. There are many problems in putting it into practical use as a material.

このようななかで本発明者等は、珪素含有量が4.0w
t% 以上の高珪素鉄板の圧延による製造法について検
討を進めてきた。そしてその結果、熱間圧延条件等の選
択により圧延による高珪素鉄板の製造が可能であること
が判ってきた。すなわち本発明者等は、熱間圧延により
微細な未再結晶層状組織を形成することにより、その後
の圧延が可能となることを見い出した。このような圧延
法により製造された高珪素鉄板は表両性状に優れるため
積層鉄芯や巻鉄芯を製造する際占積率が高く、しかも厚
物材が容易に製造できることから電磁電子部品の組み立
て工程を大幅に簡略化できるなど極めて有利な特徴を有
している。
Under these circumstances, the present inventors have determined that the silicon content is 4.0w.
We have been studying methods for producing high-silicon steel sheets by rolling. As a result, it has been found that it is possible to manufacture high-silicon steel sheets by rolling by selecting hot rolling conditions and the like. That is, the present inventors have discovered that subsequent rolling becomes possible by forming a fine unrecrystallized layered structure through hot rolling. High-silicon steel sheets manufactured by this rolling method have excellent surface properties, so they have a high space factor when manufacturing laminated iron cores and wound iron cores, and thick materials can be easily manufactured, so they are used for electromagnetic and electronic components. It has extremely advantageous features such as being able to greatly simplify the assembly process.

C問題を解決するための手段〕 このような高珪素鉄板の製造に右いて、本発明者等は高
珪素鉄合金系が本来備えている優れた磁気特性を効果的
に発揮させ得る方法ζζついて検討を重ねたものであり
、この結果、熱間圧延材を冷間ないし準温間圧延すると
ともに、この圧延途中においてパス間回復処理を行うこ
とにより、優れた磁気特性が得られることが判った。
Means for Solving Problem C] In order to manufacture such a high-silicon iron plate, the present inventors have devised a method that can effectively utilize the excellent magnetic properties inherent to the high-silicon iron alloy system. As a result of repeated studies, it was found that excellent magnetic properties can be obtained by cold or semi-warm rolling the hot rolled material and performing inter-pass recovery treatment during this rolling. .

すなわち本発明は、81 : 4.0〜7.Ovrt%
を含む高珪素鉄合金スラブを熱間圧延して、微細な未再
結晶層状組織を形成後、脱スケール処理、圧延、脱脂処
理、焼鈍及び絶縁皮膜処理を順次節して高珪素鉄板を製
造するに当り、上記圧延を、板温を室温〜SOO℃の温
度範囲に保って行うとともに、圧延パス間において10
0〜500℃の温度に1秒〜120分保持することをそ
の基本的特徴とする。
That is, the present invention has a ratio of 81:4.0 to 7. Ovrt%
After hot rolling a high-silicon iron alloy slab to form a fine unrecrystallized layered structure, a high-silicon iron plate is manufactured by sequentially performing descaling, rolling, degreasing, annealing, and insulation coating. For this purpose, the above-mentioned rolling is carried out while keeping the plate temperature within the temperature range of room temperature to SOO℃, and 10
Its basic feature is that it is maintained at a temperature of 0 to 500°C for 1 second to 120 minutes.

以下、本発明の内容を詳細に説明する。Hereinafter, the content of the present invention will be explained in detail.

本発明が対象とする珪素鉄板は、珪素を4.0〜?、0
wt%含有する。前述したようtこ珪素i2固有電気抵
抗を高めて渦電流損を減らし、鉄損を低下させるのに有
効な元素である。珪素が4.0wt% 未満では相対的
に鉄損が高く。
The silicon iron plate targeted by the present invention has a silicon content of 4.0 to ? ,0
Contains wt%. As mentioned above, silicon is an effective element for increasing the specific electrical resistance, reducing eddy current loss, and lowering iron loss. If the silicon content is less than 4.0 wt%, iron loss is relatively high.

最大透磁率等信の軟磁気特性も良好でない。The soft magnetic properties of the maximum magnetic permeability are also not good.

一方、珪素が7.0wt% を超えると磁歪の上昇、飽
和磁束密度や最大透磁率の低下など磁気特性が却って劣
化する上、加工性も悪くなる。以上の理由から本発明で
は珪素含有量を4.0〜7.0wt% と規定する。
On the other hand, if the silicon content exceeds 7.0 wt%, the magnetic properties will deteriorate, such as an increase in magnetostriction and a decrease in saturation magnetic flux density and maximum magnetic permeability, and workability will also deteriorate. For the above reasons, the silicon content is defined as 4.0 to 7.0 wt% in the present invention.

本発明法によれば、このような珪素含有量の珪素鉄合金
スラブは、熱間圧延により、最終的に5〜1■厚の板と
される。この熱間圧延では、後に行われる500℃以下
の圧延を可能とするため特定の組織とすることが必要で
ある。すなわち、このような500℃以下の圧延は、熱
間圧延により微細な未再結晶層状組織とすることにより
はじめて可能となる。
According to the method of the present invention, a silicon-iron alloy slab having such a silicon content is finally formed into a plate having a thickness of 5 to 1 inch by hot rolling. In this hot rolling, it is necessary to have a specific structure in order to enable subsequent rolling at 500° C. or lower. That is, such rolling at 500° C. or lower becomes possible only by forming a fine unrecrystallized layered structure by hot rolling.

組織の細かさは板厚方向平均粒界間隔で表わされ、圧延
を可能とするためには、これをSt量によって決まる臨
界値以下とすることが必要である。この臨界値は、 1.90−0.2 fs X 81 (wt%)〔醜〕
で与えられる。熱間圧延により製造された板(帯)は、
酸洗或いは表面研削等の手段により脱スケール処理が施
され、さらに必要に応じてスリッティング、トリミング
等の処理が施された後、圧延される。
The fineness of the structure is expressed by the average grain boundary spacing in the plate thickness direction, and in order to enable rolling, it is necessary to keep this below a critical value determined by the amount of St. This critical value is 1.90-0.2 fs x 81 (wt%) [ugly]
is given by The plate (strip) manufactured by hot rolling is
After descaling treatment is performed by means such as pickling or surface grinding, and further treatment such as slitting and trimming is performed as necessary, the sheet is rolled.

この圧延は準温間圧延であって、室温〜SOO℃(板温
)の温度域で行われる。室温を超える温度での卑湿関圧
延は、冷間圧延機の入側(リバース式の場合は人出側)
においてバーナー、輻射あるいは誘導加熱等の手段によ
りストリップあるいはコイル全体を加熱し、圧延時の板
温を所定の温度*囲内に保ちつつ行われる。このような
準温間圧延を行うことにより圧延性が改善される。
This rolling is semi-warm rolling, and is performed in a temperature range from room temperature to SOO°C (plate temperature). Humid rolling at temperatures above room temperature is performed on the entry side of the cold rolling mill (in the case of a reverse type, the exit side)
The entire strip or coil is heated by means such as a burner, radiation, or induction heating, and the temperature of the strip during rolling is maintained within a predetermined temperature range. Rollability is improved by performing such semi-warm rolling.

本発明ではこのような圧延において、パス間回復処理、
すなわち、パス間においてストリップを所定温度範囲に
所定時間保持する処理を行うものであり、これが本発明
の大きな特徴である。第1図(1)〜(、)は、このパ
ス間回復処理のヒートパターンを示すもので、パス間回
復処理はこのいずれのヒートパターンでも実施すること
ができる。このうち、(a)はパス間に加熱均熱処理を
施す場合、(b)はパス間均熱温度が圧延温度と等しい
場合、(C)は高温で圧延を行い圧延温度よりも低い温
度で均熱を行う場合、(d)は均熱は行わず圧延時スト
リップのもつ顕熱を利用して回復処理を行う場合、(e
)は加熱後の冷却途中に複数回のパスを行う場合を示し
ている。
In the present invention, in such rolling, inter-pass recovery treatment,
That is, the strip is held within a predetermined temperature range for a predetermined time between passes, and this is a major feature of the present invention. FIGS. 1(1) to 1(,) show heat patterns for this inter-pass recovery process, and the inter-pass recovery process can be performed using any of these heat patterns. Among these, (a) is when heating and soaking treatment is performed between passes, (b) is when the soaking temperature between passes is equal to the rolling temperature, and (C) is when rolling is performed at a high temperature and equalized at a temperature lower than the rolling temperature. When heating is performed, (d) is a recovery process using the sensible heat of the strip during rolling without soaking, (e
) indicates the case where multiple passes are performed during cooling after heating.

以下、実験データをもとに本発明の内容を祥述する。第
2図は、IL48wt%珪素鉄合金熱延コイル(板厚2
.5■、板厚方向平均粒界間隔80μm)を切断・酸洗
した後、以下に述べる種々の条件でパス間回復処理を含
む冷間圧延を施し、電絡板厚を0.5 mとした後、水
素雰囲気中で1時間の焼鈍を行い、リング状サンプルの
最大透磁率を測定した結果を示している。ここで、酸洗
後の熱延板は、リバース式圧延機によって圧延された後
、出側に設置された加熱装置内で所定の温度に加熱され
、所定時間均熱された後室温まで冷却され、再度冷間圧
延されたものである(第1図(、)のヒートパターンに
相当)。またパス間加熱時間とは、圧延後の鉄板が10
0℃に達してから冷却時に100℃以下になるまでの時
間を意味している。なお、比較のため!a (24℃)
においてもパス間に鉄板を所定の時間放置し、圧延を行
った。
The contents of the present invention will be described below based on experimental data. Figure 2 shows an IL48wt% silicon-iron alloy hot-rolled coil (thickness 2
.. 5. After cutting and pickling the average grain boundary spacing in the plate thickness direction of 80 μm, cold rolling including inter-pass recovery treatment was performed under various conditions described below to give an electrical circuit plate thickness of 0.5 m. The ring-shaped sample was then annealed for 1 hour in a hydrogen atmosphere, and the maximum magnetic permeability of the ring-shaped sample was measured. Here, the hot-rolled sheet after pickling is rolled by a reverse rolling mill, heated to a predetermined temperature in a heating device installed on the exit side, soaked for a predetermined time, and then cooled to room temperature. , which was cold-rolled again (corresponding to the heat pattern in Figure 1 (, )). Also, the inter-pass heating time means that the iron plate after rolling is 10
It means the time from when the temperature reaches 0°C to when the temperature drops to 100°C or less during cooling. By the way, for comparison! a (24℃)
Also, rolling was performed by leaving the iron plate for a predetermined time between passes.

第2図から、パス間で熱処理を施すことにより最大透磁
率が改善されることが明らかになった。さらに、最大透
磁率の加熱温度及び時間依存性を見ると、低温域での加
熱では長時間側に、また、高温域での加熱では短時間側
において最大透磁率が著しく改善される条件が存在する
ことがわかる。このような最大透磁率の改善メカニズム
については必ずしも明らかではないが、圧延時に組織中
に導入された歪が、続く低温加熱処理によって適度に解
放され、この歪導入と適度の歪解放とが繰り返されるこ
とを通じて最終製品の集合組織が変化し、この結果、軟
磁気特性が改善されたものと推定される。このような考
えから、本発明においてはこの加熱処理をパス間回復処
理と呼ぶ。
From FIG. 2, it is clear that the maximum magnetic permeability is improved by performing heat treatment between passes. Furthermore, when looking at the heating temperature and time dependence of maximum magnetic permeability, there are conditions in which the maximum magnetic permeability is significantly improved when heating in a low temperature range for a long time, and when heating in a high temperature range on a short time side. I understand that. Although the mechanism for improving maximum magnetic permeability is not necessarily clear, the strain introduced into the structure during rolling is moderately released by the subsequent low-temperature heat treatment, and this strain introduction and moderate strain release are repeated. Through this process, the texture of the final product changed, and as a result, it is presumed that the soft magnetic properties were improved. Based on this idea, in the present invention, this heat treatment is referred to as inter-pass recovery treatment.

前述したように高珪素鉄を準温間圧延する場合、圧延時
の板温の上昇とともに圧延性はより改善されることが知
られている。そこで、圧延温度を上昇させた場合のパス
間回復処理の効果について調査した。第3図は第2図と
同様の方法で得られた最大透磁率のパス間回復温度(=
圧延温度)依存性を示している。
As mentioned above, when high-silicon iron is semi-warm rolled, it is known that the rolling properties are further improved as the sheet temperature during rolling increases. Therefore, we investigated the effect of interpass recovery treatment when the rolling temperature was increased. Figure 3 shows the inter-pass recovery temperature (=
(rolling temperature) dependence.

ここで酸洗後の熱延板はリバース若しくはタンデム圧延
機の入側に設置された加熱装置内で所定の圧延温度に加
熱された後圧延され、圧延機出側の加熱装置内で1秒間
、10分間及び120分間圧延温度と等しい温度に加熱
、均熱された後再圧延された。そしてこのように所定の
温度に加熱した熱延板に対して圧延〜加熱−均熱なる工
穆を繰り返すことにより最終板厚とした(第1 r!g
J(b)のヒートパターンに相当)。なお、ここでパス
間回復時間が1秒とはタンデムミルによる準温間圧延の
場合を示している。丈た、比較のため室温(24℃)に
おいてもパス間に鉄板を所定時間放置し、圧延を行った
。第3図から、パス開園復温!!t(圧延温度)が上昇
するにつれて最大透磁率は改善され、150℃以上の温
度においてほぼ一定となることがわかる。さらに詳細に
みると、Zoo−1i50℃程度の低温域においても最
大透磁率の改善効果がみられる。ここでは時間の効果が
顕著であり、パス間回復時間が長くなるほど高い最大透
磁率が得られている。
Here, the hot-rolled sheet after pickling is heated to a predetermined rolling temperature in a heating device installed on the entry side of a reverse or tandem rolling mill, and then rolled for 1 second in a heating device on the exit side of the rolling mill. It was heated to a temperature equal to the rolling temperature for 10 minutes and 120 minutes, soaked, and then re-rolled. Then, the hot-rolled sheet heated to a predetermined temperature was repeatedly subjected to the steps of rolling, heating, and soaking to obtain the final sheet thickness (1st r!g).
(corresponds to the heat pattern of J(b)). Note that here, the inter-pass recovery time of 1 second indicates the case of semi-warm rolling using a tandem mill. For comparison, the iron plate was left for a predetermined period of time between passes and rolled at room temperature (24°C). From Figure 3, the path is open and the temperature is back! ! It can be seen that the maximum magnetic permeability improves as t (rolling temperature) increases, and becomes almost constant at temperatures of 150° C. or higher. Looking more closely, the effect of improving the maximum magnetic permeability can be seen even in the low temperature range of about 50°C in Zoo-1i. The effect of time is significant here, with the longer the interpass recovery time, the higher the maximum permeability obtained.

第4図は圧延温度を変化させた場合のパス間回復処理(
300℃)の効果を同様に調査した結果を示している。
Figure 4 shows the inter-pass recovery process (
300°C).

この図から室温以上500℃以下の圧延温度範囲におい
て最大透磁率の改善効果が認められる。
From this figure, the effect of improving the maximum magnetic permeability is recognized in the rolling temperature range from room temperature to 500°C.

なお、圧延時に導入された歪の解放は圧延後の冷却途中
にも起こるため、第1図(、)〜(18)のヒートパタ
ーンにおいても最大透磁率の改善効果がある。
Note that since the release of the strain introduced during rolling also occurs during cooling after rolling, the heat patterns shown in FIGS. 1(,) to (18) also have the effect of improving the maximum magnetic permeability.

次に、本発明の限定理由について詳細に説明する。まず
、圧延温度は高温はど圧延性−は改善されるが、圧延中
の表面酸化をiえ、しかも板厚プロファイルの精度を確
保する意味で500℃以下、好ましくは400℃以下と
限定される。また、下限は室温とする。
Next, the reasons for the limitations of the present invention will be explained in detail. First, the rolling temperature is limited to 500°C or less, preferably 400°C or less, in order to avoid surface oxidation during rolling and to ensure accuracy of the plate thickness profile, although rolling properties are improved at higher temperatures. . Also, the lower limit is room temperature.

次に、パス間回復処理条件1ζついては、第3図におい
て100℃×1秒という条件においても軟磁気特性の改
善がみられたため下限を100℃及び1秒とした。また
、回復処理時間の上限については、120分を超、え、
る長時間処理を行うと作業効率が落ち、製造コストも上
昇するため120分とし、回復処理温度の上限は前述し
たように加熱中の過度の酸化を防止するため、500℃
以下好ましくは400℃以下と限定する。
Next, regarding the inter-pass recovery processing condition 1ζ, the lower limit was set to 100° C. and 1 second because improvement in the soft magnetic properties was observed even under the conditions of 100° C. and 1 second in FIG. Also, regarding the upper limit of recovery processing time, it is more than 120 minutes.
Since long-term processing reduces work efficiency and increases manufacturing costs, the upper limit of the recovery processing temperature is 500°C to prevent excessive oxidation during heating, as mentioned above.
Hereinafter, the temperature is preferably limited to 400°C or less.

なお、第3図で示したように低温でパス間回復処理を行
う場合には処理時間を長くし、反対に高温で行う場合に
は短くすることが軟磁性の改善には望ましい。
Note that, as shown in FIG. 3, it is desirable to lengthen the treatment time when performing the inter-pass recovery treatment at a low temperature, and to shorten it when performing the interpass recovery treatment at a high temperature, in order to improve soft magnetism.

また、本発明を実施する際、圧延温度及びパス間回復温
度は本発明の規定する範囲内であれば一連の圧延工程中
変化してもよい。したがって、例えばタンデム圧延機の
入側及び必要に応じてスタンド間に加熱設備を設は一連
の圧延を行う場合や、圧延機の入側でストリップを加熱
し、所定の温度で準温間圧延を行った後、直ちにコイル
を巻取り一定時間徐冷した後再び加熱・圧延を繰り返す
場合等も金談れる。
Furthermore, when carrying out the present invention, the rolling temperature and the interpass recovery temperature may vary during a series of rolling steps as long as they are within the range defined by the present invention. Therefore, for example, heating equipment may be installed on the entry side of a tandem rolling mill and between the stands if necessary to perform a series of rolling, or the strip may be heated at the entry side of the rolling mill and semi-warm rolled at a predetermined temperature. It is also possible to immediately wind the coil, allow it to slowly cool for a certain period of time, and then repeat heating and rolling again.

以上述べた圧延により最終板厚とされた高珪素鉄板は、
必要に応じて焼鈍分離剤を塗布された後800℃以上の
温度で焼鈍され、さらに絶縁皮膜を塗布された後必要に
応じて焼付処理される。
The high-silicon steel plate whose final thickness was obtained by rolling as described above is
After being coated with an annealing separator if necessary, it is annealed at a temperature of 800° C. or higher, further coated with an insulating film, and then subjected to a baking treatment if necessary.

〔実施例〕〔Example〕

実施例(1) 0.0028wt%C−6,48wt%81 −0.0
8 wt%鳩 なる組成の高珪素鉄合金を、真空溶解炉
で溶製後、鋳造し、インゴットとした。このインゴット
を1180℃で3時間均熱後、分塊圧延し、スラブとし
た後再び1180℃に1時間均熱し、熱間圧延機により
板厚2.5■の熱延コイルとした。この時、熱延仕上温
度は850〜720℃2巻取温度は6150〜550℃
であり、得られた熱延コイルの板厚方向平均粒界間隔は
40pmであった。この熱延コイルを酸洗後スリッター
ラインにより分割し、人出側に加熱設備を備えたリバー
ス型冷間圧延機により第1表に示す条件で準温間圧延し
た。
Example (1) 0.0028wt%C-6,48wt%81 -0.0
A high-silicon iron alloy having a composition of 8 wt% was melted in a vacuum melting furnace and then cast to form an ingot. This ingot was soaked at 1180° C. for 3 hours, then bloomed into a slab, soaked again at 1180° C. for 1 hour, and made into a hot-rolled coil with a plate thickness of 2.5 mm using a hot rolling mill. At this time, the hot rolling finishing temperature is 850 to 720℃ 2 The coiling temperature is 6150 to 550℃
The average grain boundary spacing in the plate thickness direction of the obtained hot rolled coil was 40 pm. After pickling, this hot-rolled coil was divided by a slitter line and semi-warm rolled by a reverse type cold rolling mill equipped with heating equipment on the exit side under the conditions shown in Table 1.

な詔、目標板厚は0.5−とした。The target plate thickness was set at 0.5-.

第  1  表 次に、これらのコイルを水素ガス雰囲気中において12
00℃で1時間焼鈍し、コイル中央部からサンプル採取
後、SOO℃で平坦化焼鈍を行い、さらに幅方向中央部
から磁気測定用リング状サンプルを打抜き、その軟磁気
持性を調査した。その結果を第2表に示す。
Table 1 Next, these coils were heated for 12 hours in a hydrogen gas atmosphere.
After annealing at 00°C for 1 hour, a sample was taken from the center of the coil, flattening annealing was performed at SOO°C, and a ring-shaped sample for magnetic measurement was punched from the center in the width direction, and its soft magnetic property was investigated. The results are shown in Table 2.

実施例(2) 第3表に示す組成の高珪素鉄熱延板(板厚2.0閣、板
厚方向平均粒界間隔6:500.#m。
Example (2) High-silicon iron hot-rolled plate having the composition shown in Table 3 (thickness: 2.0 mm, average grain boundary spacing in the thickness direction: 6:500.#m).

b: 310 pm 、 c: 16011m * d
:60μm)を酸洗した後、350℃×5分間のパス間
回復処理(lパス毎)を含む冷間圧延(圧延温度25℃
)を行い、板厚0.3諺の圧延板とした。
b: 310 pm, c: 16011 m * d
: 60 μm), then cold rolling (rolling temperature 25°C) including interpass recovery treatment (every 1 pass) at 350°C for 5 minutes.
) to obtain a rolled plate with a thickness of 0.3.

また、比較のためパス間回復処理を行わない冷間圧延板
も作成した。
For comparison, a cold rolled plate without interpass recovery treatment was also produced.

これらのコイル中央部からサンプルを切断して、表面に
StO,系の焼鈍分離剤を塗布した後、5 X 10す
Torrの真空焼鈍炉内で1180’CX3時間焼鈍し
た。
Samples were cut from the center of these coils, and after applying a StO-based annealing separator to the surface, they were annealed at 1180'CX for 3 hours in a vacuum annealing furnace at 5 x 10 Torr.

さらに、幅方向中央部から、外径20箇。Furthermore, there are 20 outer diameters from the center in the width direction.

内径10■のリング状磁気測定サンプルを打抜いた後、
直流磁気特性を測定した。その結果を第4表に示す。
After punching out a ring-shaped magnetic measurement sample with an inner diameter of 10cm,
The DC magnetic properties were measured. The results are shown in Table 4.

第  4  表 米・・・本発明法=350℃×5分間のパス間回復処理
を含む冷間圧延 比較法二通常の冷間圧延
Table 4: Invention method = Cold rolling including interpass recovery treatment at 350°C for 5 minutes Comparative method 2 Conventional cold rolling

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(、)〜(、)は本発明で採り得るヒートパター
ンを例示したものである。第2図は高珪素鉄板のパス間
回復温度(圧延温度:室温)が最終焼鈍後に得られる磁
気特性に及ぼす影響を示すものである。第3図は高珪素
鉄板のパス間回復温度(=圧延温度)が最終焼鈍後に得
られる磁気特性に及ぼす影響を示すものである。第4図
は高珪素鉄板のパス間回復処理の効果を圧延温度と磁気
特性との関係で示すものである。
FIGS. 1(,) to (,) illustrate heat patterns that can be adopted in the present invention. FIG. 2 shows the influence of the interpass recovery temperature (rolling temperature: room temperature) of a high-silicon iron plate on the magnetic properties obtained after final annealing. FIG. 3 shows the influence of the interpass recovery temperature (=rolling temperature) of a high-silicon iron plate on the magnetic properties obtained after final annealing. FIG. 4 shows the effect of inter-pass recovery treatment on a high-silicon iron plate in terms of the relationship between rolling temperature and magnetic properties.

Claims (1)

【特許請求の範囲】 Si:4.0〜7.0wt%を含む高珪素鉄合金スラブ
を熱間圧延して微細な未再結晶層状 組織を形成後、脱スケール処理、圧延、脱 脂処理、焼鈍及び絶縁皮膜処理を順次施し て高珪素鉄板を製造するに当り、上記圧延 を、板温を室温〜500℃の温度範囲に保 つて行う準温間圧延とするとともに、圧延 パス間において100〜500℃の温度に1秒〜120
分保持することを特徴とする高 珪素鉄板の製造方法。
[Claims] After hot rolling a high-silicon iron alloy slab containing Si: 4.0 to 7.0 wt% to form a fine unrecrystallized layered structure, descaling, rolling, degreasing, and annealing. In producing a high-silicon iron plate by sequentially applying and insulating film treatment, the above-mentioned rolling is semi-warm rolling performed by keeping the plate temperature in the temperature range of room temperature to 500°C, and the rolling process is carried out at 100 to 500°C between rolling passes. 1 second to 120℃ temperature
A method for manufacturing a high-silicon iron plate, which is characterized by maintaining a high silicon content.
JP62260444A 1986-10-17 1987-10-15 Method for manufacturing high silicon iron plate Expired - Fee Related JPH0668131B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62260444A JPH0668131B2 (en) 1986-10-17 1987-10-15 Method for manufacturing high silicon iron plate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP24534386 1986-10-17
JP61-245343 1986-10-17
JP62260444A JPH0668131B2 (en) 1986-10-17 1987-10-15 Method for manufacturing high silicon iron plate

Publications (2)

Publication Number Publication Date
JPS63227717A true JPS63227717A (en) 1988-09-22
JPH0668131B2 JPH0668131B2 (en) 1994-08-31

Family

ID=26537191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62260444A Expired - Fee Related JPH0668131B2 (en) 1986-10-17 1987-10-15 Method for manufacturing high silicon iron plate

Country Status (1)

Country Link
JP (1) JPH0668131B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60238421A (en) * 1984-05-10 1985-11-27 Kawasaki Steel Corp Production of high tensile non-oriented electrical steel sheet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60238421A (en) * 1984-05-10 1985-11-27 Kawasaki Steel Corp Production of high tensile non-oriented electrical steel sheet

Also Published As

Publication number Publication date
JPH0668131B2 (en) 1994-08-31

Similar Documents

Publication Publication Date Title
WO2019182154A1 (en) Grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet
EP2933348B1 (en) Grain-oriented electrical steel sheet
CN108779509B (en) Method for producing grain-oriented electromagnetic steel sheet and production facility line
JPWO2020203928A1 (en) Directional electrical steel sheet and its manufacturing method
WO2019182004A1 (en) Production method for grain-oriented electrical steel sheet, and grain-oriented electrical steel sheet
JP4714637B2 (en) Method for producing grain-oriented electrical steel sheet with high magnetic flux density
JP3921806B2 (en) Method for producing grain-oriented silicon steel sheet
JP2014074210A (en) Method of manufacturing grain-oriented electromagnetic steel sheet
US5637157A (en) Method for making non-oriented magnetic steel sheet
US3932235A (en) Method of improving the core-loss characteristics of cube-on-edge oriented silicon-iron
JPH055126A (en) Production of nonoriented silicon steel sheet
JPS63227717A (en) Production of high-silicon steel sheet
JPS63227716A (en) Production of high-silicon steel sheet
JPH02107722A (en) Production of grain-oriented electrical steel easy to punch and having metallic luster
JPS62270723A (en) Production of electromagnetic electronic parts using high-silicon iron sheet
JP2724094B2 (en) Manufacturing method of grain-oriented silicon steel sheet
JPH06192731A (en) Production of non-oriented electrical steel sheet high in magnetic flux density and low in core loss
WO2022004752A1 (en) Method for producing grain-oriented electromagnetic steel sheet
WO2023074908A1 (en) Method of manufacturing grain-oriented magnetic steel sheet, and grain-oriented magnetic steel sheet
EP4265349A1 (en) Method for manufacturing oriented electromagnetic steel sheet and rolling equipment for manufacturing electromagnetic steel sheet
JPH11241120A (en) Production of grain-oriented silicon steel sheet having uniform forsterite film
JPH0615705B2 (en) High silicon iron plate with excellent workability
KR101077167B1 (en) Method for manufacturing non-oriented electrical steel sheets with improved magnetic property
JP2717009B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
JPS6086242A (en) Single surface coated one directional silicon steel plate and preparation thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees