JPS60230537A - Air-fuel ratio controller - Google Patents

Air-fuel ratio controller

Info

Publication number
JPS60230537A
JPS60230537A JP59088115A JP8811584A JPS60230537A JP S60230537 A JPS60230537 A JP S60230537A JP 59088115 A JP59088115 A JP 59088115A JP 8811584 A JP8811584 A JP 8811584A JP S60230537 A JPS60230537 A JP S60230537A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
pump
oxygen
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59088115A
Other languages
Japanese (ja)
Other versions
JPH0428899B2 (en
Inventor
Takeshi Kitahara
剛 北原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP59088115A priority Critical patent/JPS60230537A/en
Priority to DE19853515588 priority patent/DE3515588A1/en
Priority to US06/729,058 priority patent/US4658790A/en
Publication of JPS60230537A publication Critical patent/JPS60230537A/en
Publication of JPH0428899B2 publication Critical patent/JPH0428899B2/ja
Granted legal-status Critical Current

Links

Classifications

    • Y02T10/47

Abstract

PURPOSE:To control air-fuel ratio in a wide range by constituting an O2 sensor from a sensor part which sharply varies the output voltage with the air-fuel ratio corresponding to the O2 concentration in exhaust gas and a pump part which maintains the measuring-electrode environment of the sensor part at a prescribed O2 concentration by the flowing-in electric current. CONSTITUTION:An O2 sensor 41 is constituted of a sensor part 39 consisting of the first solid electrolyte 25, measuring electrode 28, and a standard electrode 29, and a pump part 40 consisting of the second solid electrolyte 27, pump anode 32, and a pump cathode 33. The electromotive force E corresponding to the oxygen partial pressure between the electrodes 28 and 29 is generated from the sensor part 39, and a flowing-in electric current Ip is supplied into the pump part 40 from an electric-current detecting means. When the electric current Ip flows between electrodes 32 and 33, oxygen ions transfer in the reverse direction to the electric current Ip in the solid electrolyte 27. Therefore, either of the flowing-in electric current or the pump voltage is selected according to the aimed air-fuel ratio, and the air-fuel ratio is controlled on the basis of the differential value between the output and the aimed air-fuel ratio.

Description

【発明の詳細な説明】 (技術分野) 本発明は、エンジンの空燃比制御装置、詳しくは、酸素
センサを用いた空燃比のフィードバック制御装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to an air-fuel ratio control device for an engine, and more particularly to an air-fuel ratio feedback control device using an oxygen sensor.

(従来技術) 近時、エンジンの吸入混合気の空燃比を精度よく目標値
に制御するために、排気系に酸素センサを設けて、空燃
比と相関関係をもつ排気中の酸素濃度に応じて燃料供給
量をフィードバンク制御している。
(Prior art) Recently, in order to accurately control the air-fuel ratio of the engine intake air-fuel mixture to a target value, an oxygen sensor has been installed in the exhaust system to control the air-fuel ratio in the exhaust gas, which has a correlation with the air-fuel ratio. Feedbank control of fuel supply amount.

このような酸素センサとしては、例えば、本出願人が先
に特許出願した「空燃比検出方法」 (特開昭56−8
9051号)に記載されたものがあり、第1図のように
示される。第1図において、1は酸素センサであり、酸
素センサ1は酸素濃度に応じて起電力を発生する一種の
酸素濃淡電池の原理を応用したものである。2はアルミ
ナ基板であり、アルミナ基板2上には内側電極(基準電
極)3が設けられている。内側電極3は酸素イオン伝導
性の固体電解質4で包持されており、この固体電解質4
を挾さんで内側電極3と対向する位置に外側電極(酸素
測定電極)5が積層されている。そして、これらアルミ
ナ基板2、内側電極3、固体電解質4および外側電極5
は酸素分子の拡散を制限する多孔質保護層6によって被
覆され□ており、アルミナ基板2内には固体電解質4の
活性を保つように適温に加熱するヒータ7が内蔵されて
いる。
Such oxygen sensors include, for example, the ``Air-fuel ratio detection method'' (Japanese Unexamined Patent Publication No. 56-8-8) for which the present applicant previously applied for a patent.
No. 9051) and is shown in FIG. In FIG. 1, reference numeral 1 denotes an oxygen sensor, and the oxygen sensor 1 applies the principle of a type of oxygen concentration battery that generates an electromotive force depending on the oxygen concentration. 2 is an alumina substrate, and an inner electrode (reference electrode) 3 is provided on the alumina substrate 2. The inner electrode 3 is surrounded by an oxygen ion conductive solid electrolyte 4.
An outer electrode (oxygen measurement electrode) 5 is laminated at a position opposite to the inner electrode 3 with the electrodes sandwiched between them. These alumina substrate 2, inner electrode 3, solid electrolyte 4 and outer electrode 5
is covered with a porous protective layer 6 that restricts the diffusion of oxygen molecules, and a heater 7 is built in the alumina substrate 2 to heat the solid electrolyte 4 to an appropriate temperature so as to maintain its activity.

内側電極3には流し込み電流Isが供給されており、こ
の流し込み電流Isは酸素イオンを移動させることによ
り内側電極3に基準酸素分圧Paを発生させる。一方、
酸素電極における酸素分圧pbは被測定ガスの有する酸
素分圧であり、これらの酸素分圧P a ’−,P b
に基づいて両電極間に、 E= (RT/4F) ・j!n (Pa’/Pb)−
−−−−一■ 但し、R:気体定数、T:絶対温度、 F:ファラディ定数なるネルンストの式によって表わさ
れる起電力Eが発生する。この起電力Eは、所定の空燃
比を境として希薄側から過濃側に切り換ったとき、プラ
ス側へ大きく急変化し、その切り換り空燃比は前記流し
込み電流■Sの値により変化する。
An inflow current Is is supplied to the inner electrode 3, and this inflow current Is generates a reference oxygen partial pressure Pa in the inner electrode 3 by moving oxygen ions. on the other hand,
The oxygen partial pressure pb at the oxygen electrode is the oxygen partial pressure of the gas to be measured, and these oxygen partial pressures P a '-, P b
Between both electrodes based on E= (RT/4F) ・j! n (Pa'/Pb)-
----1■ However, an electromotive force E is generated, which is expressed by the Nernst equation, where R: gas constant, T: absolute temperature, and F: Faraday constant. When this electromotive force E switches from the lean side to the rich side with a predetermined air-fuel ratio as the boundary, it changes greatly and suddenly to the positive side, and the switching air-fuel ratio changes depending on the value of the inflow current ■S. do.

そして、このような酸素センサ1を用いて、構成した空
燃比制御装置としては図示は略すが、前述した公報に開
示されている。この装置は目標空燃比において酸素セン
サ1の出力Vsが急変化するように流し込み電流Isの
大きさを変えており、この出力Vsの急変化に基づいて
空燃比を目標空燃比に制御している。
An air-fuel ratio control device configured using such an oxygen sensor 1 is disclosed in the above-mentioned publication, although not shown. This device changes the magnitude of the injected current Is so that the output Vs of the oxygen sensor 1 suddenly changes at the target air-fuel ratio, and controls the air-fuel ratio to the target air-fuel ratio based on this sudden change in the output Vs. .

しかしながら、このような従来の空燃比制御装置にあっ
ては、酸素センサ出力を比較基準値と比較することによ
り、現在の空燃比が目標空燃比よリッチであるかリーン
であるかを判別して空燃比を制御する構成となっており
、目標からのずれの大きさを判別することができない。
However, such conventional air-fuel ratio control devices determine whether the current air-fuel ratio is richer or leaner than the target air-fuel ratio by comparing the oxygen sensor output with a comparison reference value. The configuration is such that the air-fuel ratio is controlled, and the magnitude of the deviation from the target cannot be determined.

したがって、ずれの程度に応じた補正割合で空燃比を制
御することができず応答性に欠けていた。
Therefore, the air-fuel ratio could not be controlled at a correction rate according to the degree of deviation, resulting in a lack of responsiveness.

そこで、本発明の出願人は先に「空燃比制御装置」 (
特願昭58−190129号参照)を出願しており、第
2図のように示される。第2図において、1は酸素セン
サであり、酸素センサ1は電流値検出回路11に接続さ
れている。
Therefore, the applicant of the present invention first proposed an "air-fuel ratio control device" (
(See Japanese Patent Application No. 58-190129), as shown in Figure 2. In FIG. 2, 1 is an oxygen sensor, and the oxygen sensor 1 is connected to a current value detection circuit 11.

電流値検出回路11は酸素センサ出力Vsが目標電圧V
a(酸素センサ出力■sの切り換り空燃比における急変
電圧の略中間値)となるように流し込み電流Isを供給
するとともに、この流し込み電流Isの値を検出して切
り換り空燃比を表す電圧信号Viを出力する。この電圧
信号Viは第3図に示すように空燃比(A/F)に一義
的に対応している(以下、これらの関係をVi−A/F
特性という)。電圧信号Viは差動アンプ12に入力さ
れており、差動アンプ12にはさらに目標値設定手段1
3からの基準電圧Vfが入力されている。目標値設定手
段13は運転状態に応じて目標空燃比を設定し、この目
標空燃比に対応する基準電圧Vfを出力する。差動アン
プ12は電圧信号Viから基準電圧Vfを減算して差値
Δ■(Δ=Vi−Vf)を補正係数設定回路14に出力
している。この差値ΔVは現空燃比の目標空燃比からの
ずれの大きさを表して゛いる。補正係数設定回路14は
積分回路により構成されており、差値ΔVを所定の積分
定数で積分して空燃比を目標空燃比に補正する補正係数
αを演算している。なお、補正係数αは積分(■)制御
による演算に限らず、例えば微分(D)制御あるいは比
例(P)制御により演算してもよい。補正係数αは燃料
量補正回路15に入力されており、燃料量補正回路15
には、さらに燃料量演算回路16から基本噴射量’rp
が入力されている。燃料量演算回路16はエンジンの運
転状態、例えば吸入空気量Qaと回転数Nに基づいて基
本噴射量Tp (Tp =K −Qa/N、但しに:定
数)を演算する。燃料量補正回路15は基本噴射量’r
pに補正係数αを乗じて最終噴射量Tiを算出して燃料
供給手段17に出力する。燃料供給手段17は例えば、
エンジンの吸気管に取り付けられたインジェクタであり
、燃料量補正回路15からの信号に基づいて作動し最終
噴射量Tiの燃料をエンジンに供給する。
In the current value detection circuit 11, the oxygen sensor output Vs is set to the target voltage V.
A (substantially the intermediate value of the sudden change voltage at the switching air-fuel ratio of the oxygen sensor output ■s) is supplied, and the value of this flowing current Is is detected to represent the switching air-fuel ratio. Outputs a voltage signal Vi. This voltage signal Vi uniquely corresponds to the air-fuel ratio (A/F) as shown in FIG.
characteristics). The voltage signal Vi is input to the differential amplifier 12, and the differential amplifier 12 further includes a target value setting means 1.
The reference voltage Vf from No. 3 is input. The target value setting means 13 sets a target air-fuel ratio according to the operating state, and outputs a reference voltage Vf corresponding to this target air-fuel ratio. The differential amplifier 12 subtracts the reference voltage Vf from the voltage signal Vi and outputs a difference value Δ■ (Δ=Vi−Vf) to the correction coefficient setting circuit 14. This difference value ΔV represents the magnitude of deviation of the current air-fuel ratio from the target air-fuel ratio. The correction coefficient setting circuit 14 is constituted by an integral circuit, and calculates a correction coefficient α for correcting the air-fuel ratio to the target air-fuel ratio by integrating the difference value ΔV with a predetermined integral constant. Note that the correction coefficient α is not limited to calculation by integral (■) control, but may be calculated by, for example, differential (D) control or proportional (P) control. The correction coefficient α is input to the fuel amount correction circuit 15;
In addition, the basic injection amount 'rp is input from the fuel amount calculation circuit 16.
is entered. The fuel amount calculating circuit 16 calculates a basic injection amount Tp (Tp = K - Qa/N, where: constant) based on the operating state of the engine, for example, the intake air amount Qa and the rotation speed N. The fuel amount correction circuit 15 adjusts the basic injection amount 'r
A final injection amount Ti is calculated by multiplying p by a correction coefficient α and outputted to the fuel supply means 17. The fuel supply means 17 is, for example,
This injector is attached to the intake pipe of the engine, and operates based on a signal from the fuel amount correction circuit 15 to supply the final injection amount Ti of fuel to the engine.

したがって、目標空燃比からのずれの大きさに基づいて
補正係数αが設定され、このずれの大きさに応じた速度
で空燃比が目標空燃比に制御される。
Therefore, the correction coefficient α is set based on the magnitude of the deviation from the target air-fuel ratio, and the air-fuel ratio is controlled to the target air-fuel ratio at a speed corresponding to the magnitude of this deviation.

ところで、このような先願の空燃比制御装置にあっては
、多孔質保護層を拡散する酸素分子の拡散量を流し込み
電流Isの値、すなわち電圧信号Viとして検出し現空
燃比を判断する構成となっていたため、理論空燃比より
リーンな空燃比(以下、リーン空燃比という)にフィー
ドバック制御する場合には好適であるが、その他の空燃
比、例えば、理論空燃比あるいは理論空燃比よりリッチ
な空燃比(以下、リッチ空燃比という)に制御しようと
する場合には空燃比制御の精度が低下するおそれがある
By the way, in the air-fuel ratio control device of the prior application, the current air-fuel ratio is determined by detecting the amount of oxygen molecules diffused through the porous protective layer as the value of the current Is, that is, the voltage signal Vi. Therefore, it is suitable for feedback control to an air-fuel ratio that is leaner than the stoichiometric air-fuel ratio (hereinafter referred to as a lean air-fuel ratio), but it is suitable for controlling other air-fuel ratios, such as the stoichiometric air-fuel ratio or the air-fuel ratio richer than the stoichiometric air-fuel ratio. When attempting to control the air-fuel ratio to a rich air-fuel ratio (hereinafter referred to as a rich air-fuel ratio), there is a risk that the accuracy of air-fuel ratio control may decrease.

すなわち、電圧信号Viは第3図に示すように、理論空
燃比やリッチ空燃比ではその値が小さくなっており、例
えば、雑音等の影響を受けやすく空燃比の検出精度が低
下する。したがって、このような電圧信号Viに基づい
て現空燃比の目標空燃比からのずれを判断すると、その
判断誤差が大きくなり空燃比制御の精度が低下する。ま
た、電圧信号Viは酸素分子の拡散量に対応しているこ
とから、空燃比の急激な変化に対して比較的応答性が遅
い。このため、例えば特に応答性や制御精度の高いこと
が要求される三元触媒を備えたエンジンに本装置を適用
して空燃比をフィードバック制御しようとする場合、適
応性に欠ける。
That is, as shown in FIG. 3, the voltage signal Vi has a small value at a stoichiometric air-fuel ratio or a rich air-fuel ratio, and is susceptible to the influence of noise, for example, resulting in a decrease in air-fuel ratio detection accuracy. Therefore, if the deviation of the current air-fuel ratio from the target air-fuel ratio is determined based on such a voltage signal Vi, the error in the determination increases and the accuracy of air-fuel ratio control decreases. Furthermore, since the voltage signal Vi corresponds to the amount of diffusion of oxygen molecules, it has a relatively slow response to sudden changes in the air-fuel ratio. For this reason, for example, when this device is applied to an engine equipped with a three-way catalyst that requires particularly high responsiveness and control accuracy to perform feedback control of the air-fuel ratio, it lacks adaptability.

(発明の目的) そこで本発明は、酸素センサを、排気中の酸素濃度に対
応した空燃比で出力電圧の急変するセンサ部と、流し込
み電流により該センサ部の測定電極雰囲気を所定酸素濃
度に維持するともに所定空燃比でその両電極間の電圧(
ポンプ電圧)が急変するポンプ部と、で構成し、目標空
燃比の値に応じて流し込み電流あるいはポンプ電圧の値
を択一的に選択して空燃比を判断することにより、リッ
チ域からリーン域までの広範囲に亘る空燃比を連続して
精度よく検出するとともに、所定空燃比における応答性
と検出精度を高めて、空燃比制御の精度を向上させるこ
とを目的としている。
(Object of the Invention) Therefore, the present invention provides an oxygen sensor with a sensor part whose output voltage changes suddenly at an air-fuel ratio corresponding to the oxygen concentration in exhaust gas, and a measurement electrode atmosphere of the sensor part that is maintained at a predetermined oxygen concentration by flowing current. At a given air-fuel ratio, the voltage between both electrodes (
It consists of a pump part where the pump voltage (pump voltage) changes suddenly, and the air-fuel ratio is determined by selectively selecting the value of the injected current or pump voltage according to the value of the target air-fuel ratio. The purpose of this invention is to continuously and accurately detect air-fuel ratios over a wide range of ranges, and to improve the accuracy of air-fuel ratio control by increasing responsiveness and detection accuracy at a predetermined air-fuel ratio.

(発明の構成) 本発明による空燃比制御装置は、その全体構成図を第4
図に示すように、酸素イオン伝導性の固体電解質を挾さ
んで、一定酸素濃度の基準ガスに接する基準電極と酸素
層に接する測定電極とが配設され、両電極間の酸素分圧
比に応じた電圧を出力するセンサ部と、測定電極を覆い
測定電極の囲りに酸素層を画成するとともに該酸素層と
被測定ガスとの間の酸素分子の拡散量を制限する酸素層
画成部材と、ポンプ電極間に供給される流し込み電流の
値に応じて酸素層の酸素分圧を決定するポンプ部と、を
有する酸素センサと、前記センサ部の出力電圧が所定値
となるようにポンプ部に流し込み電流を供給するととも
に、この流し込み電流の値を検出する電流値検出手段と
、前記ポンプ電極間の電圧の値を検出するポンプ電圧検
出手段と、運転状態に応じて目標空燃比を設定する目標
値設定手段と、目標空燃比の値に応じて電流値検出手段
あるいはポンプ電圧検出手段を択一的に選択する選択手
段と、選択手段および目標値設定手段の出力に基づいて
現空燃比の目標空燃比からのずれの大きさを演算する差
値演算手段と、差値演算手段の出力に基づいて空燃比を
フィードバック制御する空燃比制御手段と、を備えてお
り、所定空燃比における応答性と制御精度を高めるもの
である。
(Structure of the Invention) The air-fuel ratio control device according to the present invention is shown in the fourth diagram.
As shown in the figure, a reference electrode in contact with a reference gas with a constant oxygen concentration and a measurement electrode in contact with an oxygen layer are placed between the oxygen ion conductive solid electrolyte, and the oxygen partial pressure ratio between the two electrodes is adjusted. an oxygen layer defining member that covers the measuring electrode and defines an oxygen layer around the measuring electrode and limits the amount of diffusion of oxygen molecules between the oxygen layer and the gas to be measured. and a pump section that determines the partial pressure of oxygen in the oxygen layer according to the value of the injected current supplied between the pump electrodes; a current value detection means for supplying an inflow current to the pump and detecting the value of the inflow current; a pump voltage detection means for detecting a voltage value between the pump electrodes; a target value setting means; a selection means for selectively selecting the current value detection means or the pump voltage detection means according to the value of the target air-fuel ratio; It is equipped with a difference value calculation means for calculating the magnitude of deviation from the target air-fuel ratio, and an air-fuel ratio control means for feedback-controlling the air-fuel ratio based on the output of the difference value calculation means. This improves control accuracy.

(実施例) 以下、本発明を図面に基づいて説明する。(Example) Hereinafter, the present invention will be explained based on the drawings.

第5〜10図は本発明の第1実施例を示す図である。ま
ず、構成を説明すると、第5図は酸素センサの分解斜視
図、第6図は酸素センサの断面図である。これらの図に
おいて、21は電気絶縁性の高い平板状のアルミナ基板
であり、アルミナ基板21の上面(図中上方の端面)に
はヒータ22を挾さんで基準ガス導入板23が積層され
る。基準ガス導入板上の上面には基準ガス導入溝24が
形成されており、また基準ガス導入板上の上面側には平
板状の第1固体電解質25、隔壁板26および第2固体
電解質27が略平行に順次積層される。第1、第2固体
電解質25.27は酸素イオン伝導性の酸化ジルコニウ
ム等を主成分としている。第1固体電解質部の上、下面
には何れも白金を主成分とする測定電極28および基準
電極29がそれぞれ印刷処理により積層されており、こ
れらの各電極28.29にはリード線30.31がそれ
ぞれ接続される。また、第2固体電解質汐の上、下面に
はそれぞれポンプ電極としてのポンプアノード32およ
びポンプカソード33が積層されており、これらの各電
極32.33にはそれぞれリード線34.35が接続さ
れる。基準ガス導入板23と第1固体電解質25は基準
ガス導入部36を画成しており、基準ガス導入部36に
は矢印AIRで示すように一定酸素濃度の基準ガス、本
実施例では大気が導かれる。
5 to 10 are diagrams showing a first embodiment of the present invention. First, to explain the configuration, FIG. 5 is an exploded perspective view of the oxygen sensor, and FIG. 6 is a sectional view of the oxygen sensor. In these figures, reference numeral 21 denotes a flat alumina substrate with high electrical insulation properties, and a reference gas introduction plate 23 is laminated on the upper surface of the alumina substrate 21 (upper end surface in the figures) with a heater 22 in between. A reference gas introduction groove 24 is formed on the upper surface of the reference gas introduction plate, and a flat first solid electrolyte 25, a partition plate 26, and a second solid electrolyte 27 are formed on the upper surface of the reference gas introduction plate. They are sequentially stacked approximately parallel to each other. The first and second solid electrolytes 25 and 27 mainly contain oxygen ion conductive zirconium oxide or the like. On the upper and lower surfaces of the first solid electrolyte section, a measuring electrode 28 and a reference electrode 29, each made of platinum as a main component, are laminated by a printing process, and lead wires 30, 31 are connected to each of these electrodes 28, 29. are connected to each other. Further, a pump anode 32 and a pump cathode 33 as pump electrodes are laminated on the upper and lower surfaces of the second solid electrolyte, respectively, and lead wires 34 and 35 are connected to each of these electrodes 32 and 33, respectively. . The reference gas introduction plate 23 and the first solid electrolyte 25 define a reference gas introduction part 36, and the reference gas introduction part 36 is filled with a reference gas having a constant oxygen concentration, in this example, the atmosphere, as shown by the arrow AIR. be guided.

一方、第1固体電解質δ、隔壁板26および第2固体電
解質27は測定電極間を覆ってこの測定電極28の囲り
に間隙部(酸素層)37を画成する酸素層画成部材38
を構成しており、この酸素層画成部材38の第6図中左
方に符号GASで示すように、被測定ガス、本実施例で
は排気が導かれる。なお、間隙部37の間隔りは極めて
狭く、例えばL ’0.1 mm程度に設定される。酸
素層画成部材38は排気中と間隙部37との間における
単位時間当りの酸素分子の拡散量を規制している。
On the other hand, the first solid electrolyte δ, the partition plate 26 and the second solid electrolyte 27 form an oxygen layer defining member 38 that covers between the measurement electrodes and defines a gap (oxygen layer) 37 around the measurement electrode 28.
As shown by the symbol GAS on the left side of this oxygen layer defining member 38 in FIG. 6, gas to be measured, in this embodiment, exhaust gas is guided. Note that the distance between the gap portions 37 is extremely narrow, and is set to approximately L'0.1 mm, for example. The oxygen layer defining member 38 regulates the amount of oxygen molecules diffused per unit time between the exhaust gas and the gap 37.

上記、第1固体電解質25、測定電極舘および基準電極
29はセンサ部39を構成しており、第2固体電解質2
7、ポンプアノード32およびポンプカソード33はポ
ンプ部40を構成している。したがって、センサ部39
はその基準電極29側が大気に接し、測定電極四側が間
隙部37に接する(すなわち、酸素層画成部材38を介
して排気に接する)こととなり、酸素濃淡電池を形成し
て両電極28.29間の酸素分圧比に応じた起電力Eを
発生する。この起電力Eはセンサ部39の出力VSとし
て外部に取り出される。また、ポンプ部40には後述す
る電流値検出手段から流し込み電流(以下、ポンプ電流
という)ipが供給されており、ポンプ電流Ipはポン
プ電極32.33間を流れる。このとき、第2固体電解
質27中をポンプ電流1pと逆方向に酸素イ芽ンが移動
し、その移動量はポンプ電流1pの値に比例する。
The first solid electrolyte 25, the measurement electrode plate and the reference electrode 29 constitute a sensor section 39, and the second solid electrolyte plate 25 and the reference electrode 29 constitute a sensor section 39.
7. The pump anode 32 and the pump cathode 33 constitute a pump section 40. Therefore, the sensor section 39
The reference electrode 29 side is in contact with the atmosphere, and the measurement electrode 4 side is in contact with the gap 37 (that is, in contact with the exhaust gas via the oxygen layer defining member 38), forming an oxygen concentration cell and connecting both electrodes 28 and 29. An electromotive force E is generated according to the oxygen partial pressure ratio between the two. This electromotive force E is taken out to the outside as the output VS of the sensor section 39. Further, an inflow current (hereinafter referred to as pump current) ip is supplied to the pump section 40 from a current value detection means to be described later, and the pump current Ip flows between the pump electrodes 32 and 33. At this time, oxygen particles move in the second solid electrolyte 27 in a direction opposite to the pump current 1p, and the amount of movement is proportional to the value of the pump current 1p.

したがって、ポンプ部40はポンプ電流Ipの値に応じ
て排気と間隙部37との間で酸素分子を移動させる(す
なわち、酸素ポンプ作用を行う)。
Therefore, the pump section 40 moves oxygen molecules between the exhaust gas and the gap section 37 according to the value of the pump current Ip (that is, performs an oxygen pumping action).

これらのセンサ部39、ポンプ部40、酸素層画成部材
38および基準ガス導入板上は全体として酸素センサ4
1を構成している。なお、ヒータ22は第1、第2固体
電解質5.27を適温に加熱しそれらの活性を保ってい
る。
The sensor section 39, the pump section 40, the oxygen layer defining member 38, and the reference gas introduction plate are arranged as a whole on the oxygen sensor 4.
1. Note that the heater 22 heats the first and second solid electrolytes 5.27 to an appropriate temperature to maintain their activity.

第7図は上記酸素センサ41を使用した空燃比制御装置
の回路図である。第7図において第2図に示す回路と同
一構成部分には同一符号を付してその説明を省略する。
FIG. 7 is a circuit diagram of an air-fuel ratio control device using the oxygen sensor 41. In FIG. 7, the same components as those in the circuit shown in FIG. 2 are given the same reference numerals, and their explanation will be omitted.

第7図において、酸素センサ41はリード線30.31
.34.35を介して電流値検出手段51に接続されて
おり、電流値検出手段51は、例えば第8図に詳細を示
すように構成される。
In FIG. 7, the oxygen sensor 41 is connected to the lead wire 30.31.
.. 34 and 35 to the current value detection means 51, and the current value detection means 51 is configured as shown in detail in FIG. 8, for example.

第8図において、酸素センサ41のポンプ部40には電
流供給回路52からポンプ電流rpが供給されており、
このポンプ電流Ipの値は電流値検出回路53により検
出されている。電流値検出回路53はオペアンプOPI
、OP2、抵抗R1、R2、R3、R4、R5およびコ
ンデンサC1により構成されており、ポンプ電流Ipの
値を抵抗R1の両端間の電圧降下として検出し電圧信号
Viを出力している。この電圧信号Viはポンプ電流1
pが図中矢印IL方向に供給されるとき正の値、矢印I
R力方向供給されるとき負の値となる(なお、第6図参
照)。電流供給回路52はオペアンプOP3、トランジ
スタQ1、Q2、ダイオードD1、D2、コンデンサC
2および抵抗R6により構成されており、差値検出回路
54の出力ΔVsaの値に応じてポンプ電流1pの大き
さおよびその向きを制御している。すなわち、差値検出
回路54はオペアンプOP4、OP5、抵抗R7、R8
、R9、RIO。
In FIG. 8, a pump current rp is supplied to the pump section 40 of the oxygen sensor 41 from a current supply circuit 52.
The value of this pump current Ip is detected by a current value detection circuit 53. The current value detection circuit 53 is an operational amplifier OPI.
, OP2, resistors R1, R2, R3, R4, R5, and a capacitor C1, and detects the value of the pump current Ip as a voltage drop across the resistor R1 and outputs a voltage signal Vi. This voltage signal Vi is the pump current 1
When p is supplied in the direction of arrow IL in the figure, a positive value, arrow I
When the R force is supplied in the direction, it becomes a negative value (see FIG. 6). The current supply circuit 52 includes an operational amplifier OP3, transistors Q1 and Q2, diodes D1 and D2, and a capacitor C.
2 and a resistor R6, and controls the magnitude and direction of the pump current 1p according to the value of the output ΔVsa of the difference value detection circuit 54. That is, the difference value detection circuit 54 includes operational amplifiers OP4 and OP5, and resistors R7 and R8.
, R9, RIO.

R11、R12により構成されており、センサ部39の
出力電圧Vsから目標電圧Vaを減算して差値ΔVsa
(ΔVsa=K (Vs−Va) 、但しKは定数)を
電流供給回路52に出力している。この目標電圧Vaは
、間隙部37の酸素濃度が所定値に維持されているとき
のセンサ部出力Vsの急変する電圧値の上限と下限の中
間値であり、電源電圧15Vを抵抗R7、R8で分圧し
、例えば0.2Vという値に設定される。そして、セン
サ部出力Vsは間隙部37の酸素濃度に対応し、目標電
圧Vaは上記所定値に対応しているから、差値ΔVsa
は間隙部37における現酸素濃度の所定値からのずれの
大きさを表している。したがって、前記電流供給回路5
2は差値ΔVsaが零となるように、すなわちセンサ部
出力Vsが目標電圧Vaと一致するようにトランジスタ
Q1、Q2およびダイオードDI、D2によるコンプリ
メンタリ位相反転回路によりポンプ電流1pの大きさお
よび向きを制御する。上記電流供給回路52、電流値検
出回路53および差値検出回路54は電流値検出回路団
を構成しており、本実施例ではこの電流値検出手段55
がセンサ部39の出力電圧Vsが所定値(目標電圧Va
)となるようにポンプ部40にポンプ電流1pを供給す
るとともに、このポンプ電流1pの値を検出して空燃比
を算出している。
It is composed of R11 and R12, and subtracts the target voltage Va from the output voltage Vs of the sensor section 39 to obtain a difference value ΔVsa.
(ΔVsa=K (Vs-Va), where K is a constant) is output to the current supply circuit 52. This target voltage Va is an intermediate value between the upper and lower limits of the voltage value at which the sensor output Vs suddenly changes when the oxygen concentration in the gap 37 is maintained at a predetermined value. The voltage is divided and set to a value of 0.2V, for example. Since the sensor output Vs corresponds to the oxygen concentration in the gap 37 and the target voltage Va corresponds to the predetermined value, the difference value ΔVsa
represents the magnitude of the deviation of the current oxygen concentration in the gap 37 from the predetermined value. Therefore, the current supply circuit 5
2, the magnitude and direction of the pump current 1p are controlled by a complementary phase inversion circuit including transistors Q1 and Q2 and diodes DI and D2 so that the difference value ΔVsa becomes zero, that is, the sensor output Vs matches the target voltage Va. Control. The current supply circuit 52, the current value detection circuit 53, and the difference value detection circuit 54 constitute a current value detection circuit group, and in this embodiment, the current value detection means 55
, the output voltage Vs of the sensor section 39 is a predetermined value (target voltage Va
) is supplied to the pump section 40, and the value of this pump current 1p is detected to calculate the air-fuel ratio.

再び第7図において、56はポンプ電圧検出手段であり
、ポンプ電圧検出手段56は差動アンプにより構成され
、ポンプ部4oの各電極32.33間の電圧(以下、ポ
ンプ電圧という)Vpの値を検出している。電流値検出
手段51およびポンプ電圧検出手段56の各出力Vt、
Vpは選択手段57に入力されており、選択手段57は
アナログスイッチ5日および選択信号発生回路59によ
り構成されている。選択信号発生回路59には目標値設
定手段13からの基準電圧Vfが入力、されており、選
択信号発生回路59は目標空燃比の値に応じて(H)あ
るいは(L)レベルとなる選択信号Scをアナログスイ
ッチ58に出方する。選択信号Scは目標空燃比が理論
空燃比に設定されているとき(L、)となり、理論空燃
比以外に設定されているとき(H)となる。選択信号S
cはアナログスイッチ58に入力されており、アナログ
スイッチ58は選択信号Scが(H)のとき電圧信号V
iを、(L)のときポンプ電圧Vpを差値演算手段60
に出力する。差値演算手段6゜は差動アンプ12および
目標値変換回路61により構成されており、目標値変換
回路61は目標値設定手段13からの基準電圧Vfを上
記各電圧Vi、Vpと比較可能な電圧レベルに変換して
いる。
Again in FIG. 7, 56 is a pump voltage detection means, and the pump voltage detection means 56 is constituted by a differential amplifier, and the value of the voltage (hereinafter referred to as pump voltage) Vp between each electrode 32 and 33 of the pump section 4o is is being detected. Each output Vt of the current value detection means 51 and the pump voltage detection means 56,
Vp is input to selection means 57, which is comprised of an analog switch 5 and a selection signal generation circuit 59. The reference voltage Vf from the target value setting means 13 is input to the selection signal generation circuit 59, and the selection signal generation circuit 59 generates a selection signal that is at the (H) or (L) level depending on the value of the target air-fuel ratio. Sc is output to the analog switch 58. The selection signal Sc becomes (L,) when the target air-fuel ratio is set to the stoichiometric air-fuel ratio, and becomes (H) when the target air-fuel ratio is set to a value other than the stoichiometric air-fuel ratio. selection signal S
c is input to the analog switch 58, and the analog switch 58 outputs the voltage signal V when the selection signal Sc is (H).
When i is (L), the pump voltage Vp is calculated by the difference value calculation means 60.
Output to. The difference value calculation means 6° is composed of a differential amplifier 12 and a target value conversion circuit 61, and the target value conversion circuit 61 can compare the reference voltage Vf from the target value setting means 13 with the above-mentioned voltages Vi and Vp. Converting to voltage level.

差動アンプ12にはアナログスイッチ58からの出力(
ViあるいVp)および目標値変換回路61からの出力
Vfが入力される。したがうて、差値演算手段60は目
標空燃比が理論空燃比に設定されているときポンプ電圧
VPから基準電圧■fを減算し、理論空燃比以外に設定
されているとき電圧信号Viから基準電圧Vfを減算し
て差値Δ■(ΔV=Vp−VfあるいはΔV=V*−V
f)を空燃比制御手段62に出力する。空燃比制御手段
62は第2図に示したものと同様の機能を有する補正係
数設定回路14、燃料量補正回路15および燃料量演算
回路16により構成されている。
The differential amplifier 12 receives the output from the analog switch 58 (
Vi or Vp) and the output Vf from the target value conversion circuit 61 are input. Therefore, the difference value calculation means 60 subtracts the reference voltage f from the pump voltage VP when the target air-fuel ratio is set to the stoichiometric air-fuel ratio, and subtracts the reference voltage f from the voltage signal Vi when the target air-fuel ratio is set to a value other than the stoichiometric air-fuel ratio. Subtract Vf to obtain the difference value Δ■ (ΔV=Vp-Vf or ΔV=V*-V
f) is output to the air-fuel ratio control means 62. The air-fuel ratio control means 62 includes a correction coefficient setting circuit 14, a fuel amount correction circuit 15, and a fuel amount calculation circuit 16, which have the same functions as those shown in FIG.

次に作用を説明する。Next, the action will be explained.

一般に、拡散電流検出型の酸素センサは流し込み電流(
拡散電流)の酸素ポンプ作用によりセンサ部の各電極間
に所定の酸素濃度差を発生させ、そのときの流し込み電
流の値を被測定ガスの酸素濃度に一義的に対応させて、
酸素濃度を広範囲に検出するという原理に基づいている
。この場合、流し込み電流の値は所定の酸素濃度差を維
持するために必要なポンプエネルギの大きさを表してい
る。ところで、このようなポンプエネルギは、センサ部
の各電極が直接被測定ガスに接している場合、実際上か
なりの大きさが必要であることから、通常、センサ部の
一方の電極側に酸素分子の拡散を制限する制限部材(本
実施例では酸素層画成部材)を設けてポンプエネルギの
大きさを小さくして制御性や酸素センサの耐久性等を高
めている。しかしながら、制限部材を拡散する酸素分子
量の検出は時間的な遅れを伴うため応答性に欠け、また
その検出精度も高いものとはいえない。
In general, diffusion current detection type oxygen sensors inject current (
A predetermined oxygen concentration difference is generated between each electrode of the sensor section by the oxygen pumping action of the diffusion current, and the value of the injected current at that time is made to uniquely correspond to the oxygen concentration of the gas to be measured.
It is based on the principle of detecting oxygen concentration over a wide range. In this case, the value of the injected current represents the amount of pump energy required to maintain a predetermined oxygen concentration difference. By the way, such pump energy actually requires a considerable amount of energy when each electrode of the sensor section is in direct contact with the gas to be measured. A limiting member (in this embodiment, an oxygen layer defining member) is provided to limit the diffusion of oxygen, thereby reducing the amount of pump energy and improving controllability and durability of the oxygen sensor. However, detection of the molecular weight of oxygen diffusing through the restriction member is accompanied by a time delay, and therefore lacks responsiveness, and the detection accuracy cannot be said to be high.

そこで本実施例では、後述するように間隙部37の酸素
分圧を理論空燃比に対応する値に維持するようにポンプ
電流1pを供給しているときポンプ電圧Vpの値が理論
空燃比を境に急変するという特性と、この特性はいわゆ
る電圧検出型の酸素センサの出力特性と同様に応答性や
検出精度が高いという2点に着目して、目標空燃比の値
に応じてポンプ電流Ipあるいはポンプ電圧Vpを択一
的に選択して空燃比を判断することで、理論空燃比にお
ける応答性と検出精度を高めつつ、リッチからリーンま
での広範囲な空燃比を連続して検出し、空燃比制御の精
度を向上させている。
Therefore, in this embodiment, when the pump current 1p is supplied so as to maintain the oxygen partial pressure in the gap 37 at a value corresponding to the stoichiometric air-fuel ratio, as will be described later, the value of the pump voltage Vp crosses the stoichiometric air-fuel ratio. The pump current Ip or By selectively selecting the pump voltage Vp to judge the air-fuel ratio, it is possible to continuously detect a wide range of air-fuel ratios from rich to lean while improving responsiveness and detection accuracy at the stoichiometric air-fuel ratio. Control accuracy has been improved.

すなわち、Vs=Vaとなるように酸素センサ41にポ
ンプ電流1pを供給すると、ポンプ電流tpの酸素ポン
プ作用により間隙部37の酸素分圧が決定される。いま
、排気温度が1000”Kであるとき、例えばVa=5
00mVに設定し゛間隙部37の酸素分圧(測定電極間
の酸素分圧Pb)を理論空燃比に対応した値に維持しよ
うとする場合、その値Pbは前述したネルンストの式■
によりめられP b = 0.206 X 10 気圧
となる。このポンプ電流1pの値は間隙部37の酸素分
圧pbを理論空燃比に対応した上記所定値(P b =
0.206 XIO気圧)に維持するために必要なポン
プエネルギの大きさを表しており、ポンプ電流Ipの変
化は排気の酸素分圧、すなわち排気中の酸素濃度の変化
に対応したものとなる。そして、これら両者の関係は排
気中の酸素濃度を空燃比で表すと第9図に示すような■
p−A/F特性になり、ポンプ電流1pの値を電圧信号
Viとして検出することにより、空燃比を連続して測定
することができる。この電圧信号Viは、その大きさが
空燃比に対して緩やかに変化しており、理論空燃比で零
となる。なお、ポンプ電流xpの値は理論空燃比よりリ
ーン域では排気中の一酸素分子02の量に対応し、リッ
チ域では排気中のCOやHC等の量(これらが酸素分子
0□に変換されるため)に対応したものとなり、理論空
燃比を境に流れる方向が反転する。したがって、第3図
に示した先願例に比してリッチ域の空燃比を精度よく検
出することができる。
That is, when the pump current 1p is supplied to the oxygen sensor 41 so that Vs=Va, the oxygen partial pressure in the gap 37 is determined by the oxygen pumping action of the pump current tp. Now, when the exhaust temperature is 1000"K, for example, Va=5
00 mV to maintain the oxygen partial pressure in the gap 37 (oxygen partial pressure Pb between the measurement electrodes) at a value corresponding to the stoichiometric air-fuel ratio, the value Pb is determined by the Nernst equation
P b = 0.206 x 10 atmospheres. The value of this pump current 1p is determined by adjusting the oxygen partial pressure pb in the gap 37 to the above-mentioned predetermined value (P b =
It represents the amount of pump energy required to maintain the pressure at 0.206 XIO atmospheric pressure), and changes in the pump current Ip correspond to changes in the oxygen partial pressure of the exhaust gas, that is, the oxygen concentration in the exhaust gas. The relationship between these two is as shown in Figure 9 when the oxygen concentration in the exhaust gas is expressed as an air-fuel ratio.
It becomes a p-A/F characteristic, and by detecting the value of the pump current 1p as a voltage signal Vi, the air-fuel ratio can be continuously measured. The magnitude of this voltage signal Vi changes gradually with respect to the air-fuel ratio, and becomes zero at the stoichiometric air-fuel ratio. In addition, the value of the pump current ), and the direction of flow reverses at the stoichiometric air-fuel ratio. Therefore, the air-fuel ratio in the rich range can be detected with higher accuracy than in the prior application example shown in FIG.

一方、ポンプ電圧Vpの値は間隙部37と排気との間の
酸素分圧比に対応したものとなり、ポンプ電極32.3
3間に発生する起電力E、すなわちネルンストの式■に
おいてPa=排気中の酸素分圧、pb=間隙部37の酸
素分圧であるときの起電力Eを外部から測定して、次式
〇によって表される。
On the other hand, the value of the pump voltage Vp corresponds to the oxygen partial pressure ratio between the gap 37 and the exhaust gas, and the pump electrode 32.3
The electromotive force E generated between 3 and 3, that is, the electromotive force E when Pa=oxygen partial pressure in the exhaust gas and pb=oxygen partial pressure in the gap 37 in the Nernst equation (■), is measured externally and is expressed by the following formula 〇 Represented by

Vp=E+1p−Rp−−・−・■ 但し、Rp:ポンプ部40の内部抵抗、この場合、間隙
部37の酸素分圧はポンプ部40に供給されるポンプ電
流!pにより常に理論空燃圧、リーン域では約10 気
圧程度なる。したがって、ポンプ電圧Vpは第10図に
示すように理′論空燃比を境にその大きさが急変したも
の(以下、第10図に示す特性をVp−A/F特性とい
う)となり、その応答性は極めて速くかつ検出精度も高
い。これは、ポンプ部40のポンプアノード32が排気
に直接接しており、排気中の酸素濃度変化に対して即座
にかつ正確に反応するからである。
Vp=E+1p−Rp−−・−・■ However, Rp: internal resistance of the pump section 40; in this case, the oxygen partial pressure in the gap 37 is the pump current supplied to the pump section 40! The theoretical air/fuel pressure is always approximately 10 atm in the lean region due to p. Therefore, as shown in Fig. 10, the pump voltage Vp suddenly changes in magnitude after reaching the stoichiometric air-fuel ratio (hereinafter, the characteristic shown in Fig. 10 is referred to as the Vp-A/F characteristic), and its response is The detection is extremely fast and the detection accuracy is also high. This is because the pump anode 32 of the pump section 40 is in direct contact with the exhaust gas and reacts immediately and accurately to changes in the oxygen concentration in the exhaust gas.

なお、ポンプ部40の内部抵抗Rpは温度依存性が高い
ため、ポンプ部40の精密な温度制御を行わなければポ
ンプ電圧Vpによる理論空燃比以外の空燃比判断は不向
きである。
Note that, since the internal resistance Rp of the pump section 40 is highly temperature dependent, it is not suitable to judge air-fuel ratios other than the stoichiometric air-fuel ratio based on the pump voltage Vp unless precise temperature control of the pump section 40 is performed.

選択手段57は目標空燃比が理論空燃比以外に設定され
ているときには電圧信号Vtを差値演算手段60に出力
している。したがって、理論空燃比を除きリッチ域から
リーン域までの広範囲な空燃比を精度よく検出して、空
燃比を目標空燃比に精度よく制御することができる。
The selection means 57 outputs the voltage signal Vt to the difference value calculation means 60 when the target air-fuel ratio is set to a value other than the stoichiometric air-fuel ratio. Therefore, it is possible to accurately detect a wide range of air-fuel ratios from a rich range to a lean range, excluding the stoichiometric air-fuel ratio, and to accurately control the air-fuel ratio to the target air-fuel ratio.

一方、選択手段57は目標空燃比が理論空燃比に設定さ
れているときにはポンプ電圧Vpを差値演算手段60に
出力する。したがって、理論空燃比における応答性と検
出精度を高めて、空燃比を精度よく理論空燃比に制御す
ることができる。その結果、三元触媒を備えたエンジン
に本装置を適用した場合、例えば低速定常走行では空燃
比をリーン空燃比に制御して燃費の向上を図りつつ、必
要なときには応答性よくかつ高精度で空燃比を理論空燃
比にフィードバンク制御することができ、三元触媒の転
化率を高めて排気エミッションを低減させることができ
る。
On the other hand, the selection means 57 outputs the pump voltage Vp to the difference value calculation means 60 when the target air-fuel ratio is set to the stoichiometric air-fuel ratio. Therefore, the responsiveness and detection accuracy at the stoichiometric air-fuel ratio can be improved, and the air-fuel ratio can be accurately controlled to the stoichiometric air-fuel ratio. As a result, when this device is applied to an engine equipped with a three-way catalyst, it is possible to improve fuel efficiency by controlling the air-fuel ratio to a lean air-fuel ratio during low-speed, steady-state driving, while providing responsive and highly accurate control when necessary. It is possible to perform feedbank control of the air-fuel ratio to the stoichiometric air-fuel ratio, increase the conversion rate of the three-way catalyst, and reduce exhaust emissions.

第11図は本発明の第2実施例を示す図であり、本実施
例は酸素センサの構造を変更したものである。第11図
において、第1固体電解質5の上面側には隔壁板71お
よび第2固体電解質72が順次積層されており、第2固
体電解質72には小孔72aが、また、隔壁板71には
大きな矩形の貫通孔71aがそれぞれ形成されている。
FIG. 11 is a diagram showing a second embodiment of the present invention, in which the structure of the oxygen sensor is changed. In FIG. 11, a partition plate 71 and a second solid electrolyte 72 are sequentially laminated on the upper surface side of the first solid electrolyte 5, and the second solid electrolyte 72 has a small hole 72a, and the partition plate 71 has a small hole 72a. Large rectangular through holes 71a are formed respectively.

貫通孔71aに対向する第2固体電解質72の上、下面
にはそれぞれポンプ電極としてのポンプアノード73お
よびポンプカソード74が積層されており、これらの各
電極73.74は小孔72aと同一軸線上にそれぞれ小
孔73a、74aが形成されるとともにリード線75.
76が接続される。第2固体電解質72と隔壁板71は
測定電極部を覆ってこの電極28の囲りに空間部(酸素
層)77を画成しており、第2固体電解質72の図中上
方には符号GASで示すように排気が導かれる。前記小
孔72a〜74aは拡散孔78を構成しており、拡散孔
78は排気中と空間部77を連通している。隔壁板71
および第2固体電解質72は酸素層画成部材79を構成
しており、酸素層画成部材79は排気中と空間部77と
の間における単位時間当りの酸素分子の拡散量を規制し
ている。その他は第1実施例と同様である。
A pump anode 73 and a pump cathode 74 as pump electrodes are laminated on the upper and lower surfaces of the second solid electrolyte 72 facing the through hole 71a, respectively, and each of these electrodes 73 and 74 is on the same axis as the small hole 72a. Small holes 73a and 74a are formed in the lead wires 75. and 74a, respectively.
76 is connected. The second solid electrolyte 72 and the partition plate 71 cover the measurement electrode part and define a space (oxygen layer) 77 around the electrode 28. Exhaust air is directed as shown. The small holes 72a to 74a constitute a diffusion hole 78, and the diffusion hole 78 communicates the exhaust gas with the space 77. Partition plate 71
The second solid electrolyte 72 constitutes an oxygen layer defining member 79, and the oxygen layer defining member 79 regulates the amount of oxygen molecules diffused per unit time between the exhaust gas and the space 77. . The rest is the same as the first embodiment.

上記第2固体電解質72、ポンプアノード73およびポ
ンプカソード74はポンプ部80を構成しており、また
、ポンプ部80、センサ部39、酸素層画成部材79お
よび基準ガス導入板上は全体として酸素センサ81を構
成している。
The second solid electrolyte 72, the pump anode 73, and the pump cathode 74 constitute a pump section 80, and the pump section 80, the sensor section 39, the oxygen layer defining member 79, and the reference gas introduction plate are all oxygenated. A sensor 81 is configured.

したがって、本実施例においてはVs=Vaとなるよう
に供給されるポンプ電流1pにより空間部77の酸素分
圧が理論空燃比に対応した値に維持される。その結果、
ポンプ電流hpおよびポンプ電圧Vpの値を検出するこ
とにより第1実施例と同様に理論空燃比における応答性
と検出精度を高めつつ、空燃比を精度よ(目標空燃比に
制御することができる。
Therefore, in this embodiment, the oxygen partial pressure in the space 77 is maintained at a value corresponding to the stoichiometric air-fuel ratio by the pump current 1p supplied so that Vs=Va. the result,
By detecting the values of the pump current hp and the pump voltage Vp, the air-fuel ratio can be accurately controlled to the target air-fuel ratio while improving responsiveness and detection accuracy at the stoichiometric air-fuel ratio, as in the first embodiment.

(効果) 本発明によれば、所定空燃比における応答性と検出精度
を高めつつ空燃比をリッチ域からリーン域まで広範囲に
亘り精度よくフィードバンク制御することができ、特に
三元触媒を備えたエンジンへの適応性を高めることがで
きる。
(Effects) According to the present invention, it is possible to accurately feed bank control the air-fuel ratio over a wide range from a rich region to a lean region while improving responsiveness and detection accuracy at a predetermined air-fuel ratio. Adaptability to the engine can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の酸素センサの断面図、第2.3図は先願
の空燃比制御装置を示す図であり、第2図はその回路構
成図、第3図はそのVi−A/F特性を示す図、第4図
は本発明の全体構成図、第5〜10図は本発明の第1実
施例を示す図であり、第5図はその酸素センサの分解斜
視図、第6図はその酸素センサの断面図、第71に′:
はその回路構成図、第8図はその電流値検出手段の詳細
な回路図、第9図はそのVi−A/F特性を示す図、第
10図はそのVp−A/F特性を示す図、第11図は本
発明の第2実施例を示すその酸素センサの断面図である
。 13・−−−−一目標値設定手段、 41.81−−−−−−酸素センサ、 51−−−一電流値検出手段、 56−−−−−ポンプ電圧検出手段、 57−−一選択手段、 60−−−−−一差値演算手段、 62−−−一空燃比制御手段。 代理人弁理士 有我軍一部 第1図 第5図 第6図
Figure 1 is a sectional view of a conventional oxygen sensor, Figures 2 and 3 are diagrams showing the air-fuel ratio control device of the prior application, Figure 2 is its circuit configuration diagram, and Figure 3 is its Vi-A/F FIG. 4 is a diagram showing the characteristics, and FIG. 4 is an overall configuration diagram of the present invention. FIGS. 5 to 10 are diagrams showing the first embodiment of the present invention. FIG. 5 is an exploded perspective view of the oxygen sensor, and FIG. is a cross-sectional view of the oxygen sensor, No. 71':
8 is a detailed circuit diagram of the current value detection means, FIG. 9 is a diagram showing its Vi-A/F characteristics, and FIG. 10 is a diagram showing its Vp-A/F characteristics. , FIG. 11 is a sectional view of an oxygen sensor showing a second embodiment of the present invention. 13.----Target value setting means, 41.81--Oxygen sensor, 51--Current value detection means, 56--Pump voltage detection means, 57--Selection means, 60---one difference value calculation means, 62---one air fuel ratio control means. Representative Patent Attorney Agagun Part Figure 1 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 酸素イオン伝導性の固体電解質を挾さんで、一定酸素濃
度の基準ガスに接する基準電極と酸素層に接する測定電
極とが配設され、両電極間の酸素分圧比に応じた電圧を
出力するセンサ部と、測定電極を覆い測定電極の囲りに
酸素層を画成するとともに該酸素層と被測定ガスとの間
の酸素分子の拡散量を制限する酸素層画成部材と、ポン
プ電極間に供給される流し込み電流の値に応じて酸素層
の酸素分圧を決定するポンプ部と、を有する酸素センサ
と、前記センサ部の出力電圧が所定値となるようにポン
プ部に流し込み電流を供給するとともに、この流し込み
電流の値を検出する電流値検出手段と、前記ポンプ電極
間の電圧の値を検出するポンプ電圧検出手段と、運転状
態に応じて目標空燃比を設定する目標値設定手段と、目
標空燃比の値に応じて電流値検出手段あるいはポンプ電
圧検出手段を択一的に選択する選択手段と、選択手段お
よび目標値設定手段の出力に基づいて現空燃比の目標空
燃比からのずれの大きさを演算する差値演算手段と、差
値演算手段の出力に基づいて空燃比をフィードバック制
御する空燃比制御手段と、を備えたことを特徴゛とする
空燃比制御装置。
A sensor that sandwiches an oxygen ion conductive solid electrolyte and has a reference electrode in contact with a reference gas with a constant oxygen concentration and a measurement electrode in contact with an oxygen layer, and outputs a voltage according to the oxygen partial pressure ratio between the two electrodes. an oxygen layer defining member that covers the measuring electrode and defines an oxygen layer around the measuring electrode and limits the amount of diffusion of oxygen molecules between the oxygen layer and the gas to be measured, and the pump electrode. an oxygen sensor having a pump section that determines the partial pressure of oxygen in the oxygen layer according to the value of the supplied current; and supplying the current to the pump section so that the output voltage of the sensor section becomes a predetermined value. Also, current value detection means for detecting the value of the injected current, pump voltage detection means for detecting the value of the voltage between the pump electrodes, and target value setting means for setting the target air-fuel ratio according to the operating state. Selection means for selectively selecting either the current value detection means or the pump voltage detection means according to the value of the target air-fuel ratio, and the deviation of the current air-fuel ratio from the target air-fuel ratio based on the outputs of the selection means and the target value setting means. 1. An air-fuel ratio control device comprising: a difference value calculation means for calculating the magnitude of the difference value calculation means; and an air-fuel ratio control means for feedback-controlling the air-fuel ratio based on the output of the difference value calculation means.
JP59088115A 1984-05-01 1984-05-01 Air-fuel ratio controller Granted JPS60230537A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP59088115A JPS60230537A (en) 1984-05-01 1984-05-01 Air-fuel ratio controller
DE19853515588 DE3515588A1 (en) 1984-05-01 1985-04-30 AIR / FUEL RATIO DETECTOR AND THIS CONTROLLING SYSTEM
US06/729,058 US4658790A (en) 1984-05-01 1985-04-30 Air/fuel ratio detecting device and control system using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59088115A JPS60230537A (en) 1984-05-01 1984-05-01 Air-fuel ratio controller

Publications (2)

Publication Number Publication Date
JPS60230537A true JPS60230537A (en) 1985-11-16
JPH0428899B2 JPH0428899B2 (en) 1992-05-15

Family

ID=13933889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59088115A Granted JPS60230537A (en) 1984-05-01 1984-05-01 Air-fuel ratio controller

Country Status (1)

Country Link
JP (1) JPS60230537A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62203950A (en) * 1986-03-04 1987-09-08 Honda Motor Co Ltd Control method of oxygen concentration sensor
JPH03282250A (en) * 1990-02-28 1991-12-12 Mitsubishi Motors Corp Air-fuel-ratio detecting apparatus
JPH0469567A (en) * 1990-07-10 1992-03-04 Mitsubishi Motors Corp Fault decision device for air fuel ratio sensor
JPH0469565A (en) * 1990-07-10 1992-03-04 Mitsubishi Motors Corp Fault decision device for air fuel ratio sensor
JPH06137193A (en) * 1992-10-23 1994-05-17 Nippondenso Co Ltd Air-fuel ratio control device for internal combustion engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5859332A (en) * 1981-10-05 1983-04-08 Toyota Motor Corp Air-fuel ratio control device in internal-combustion engine
JPS58143108A (en) * 1982-02-19 1983-08-25 Toyota Motor Corp Air-fuel ratio control method for internal-combustion engine
JPS58153155A (en) * 1982-03-09 1983-09-12 Ngk Spark Plug Co Ltd Oxygen sensor
JPS5967455A (en) * 1982-10-08 1984-04-17 Hitachi Ltd Air/fuel ratio sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5859332A (en) * 1981-10-05 1983-04-08 Toyota Motor Corp Air-fuel ratio control device in internal-combustion engine
JPS58143108A (en) * 1982-02-19 1983-08-25 Toyota Motor Corp Air-fuel ratio control method for internal-combustion engine
JPS58153155A (en) * 1982-03-09 1983-09-12 Ngk Spark Plug Co Ltd Oxygen sensor
JPS5967455A (en) * 1982-10-08 1984-04-17 Hitachi Ltd Air/fuel ratio sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62203950A (en) * 1986-03-04 1987-09-08 Honda Motor Co Ltd Control method of oxygen concentration sensor
JPH03282250A (en) * 1990-02-28 1991-12-12 Mitsubishi Motors Corp Air-fuel-ratio detecting apparatus
JPH0469567A (en) * 1990-07-10 1992-03-04 Mitsubishi Motors Corp Fault decision device for air fuel ratio sensor
JPH0469565A (en) * 1990-07-10 1992-03-04 Mitsubishi Motors Corp Fault decision device for air fuel ratio sensor
JPH06137193A (en) * 1992-10-23 1994-05-17 Nippondenso Co Ltd Air-fuel ratio control device for internal combustion engine

Also Published As

Publication number Publication date
JPH0428899B2 (en) 1992-05-15

Similar Documents

Publication Publication Date Title
US4658790A (en) Air/fuel ratio detecting device and control system using same
US4905652A (en) Device for measuring a component of a gaseous mixture
JPH0454818B2 (en)
US4629535A (en) Method for detecting an air-fuel ratio
US7017567B2 (en) Device and method for measuring element temperature of air-fuel ratio sensor, and device and method for controlling heater of air-fuel ratio sensor
US4723521A (en) Air/fuel ratio control system for an internal combustion engine
JPS60230537A (en) Air-fuel ratio controller
JP2020003284A (en) Gas sensor
JP2929038B2 (en) Air-fuel ratio sensor drive circuit
JPS63138256A (en) Air-fuel ratio measuring method for exhaust gas of internal combustion engine
JPS60224051A (en) Air-fuel ratio detecting device
JPS60216043A (en) Air-fuel ratio controller
JPS60200162A (en) Apparatus for measuring concentration of oxygen
JPS61100651A (en) Apparatus for measuring concentration of oxygen
JPH0436341B2 (en)
JPS60144656A (en) Air-fuel ratio controller
JPS6080753A (en) Control device for air-fuel ratio
JPS59211737A (en) Air-fuel ratio control device
JPS60144655A (en) Air-fuel ratio detector
JPS60144657A (en) Air-fuel ratio controller
JP3734685B2 (en) Sensor element temperature detection device for air-fuel ratio sensor
JP2505399B2 (en) Air-fuel ratio control device
JPH0658339B2 (en) Oxygen concentration detector
JPH0713616B2 (en) Oxygen concentration detector
JPH04204371A (en) Driving circuit for air-fuel ratio sensor