JPH0428899B2 - - Google Patents

Info

Publication number
JPH0428899B2
JPH0428899B2 JP59088115A JP8811584A JPH0428899B2 JP H0428899 B2 JPH0428899 B2 JP H0428899B2 JP 59088115 A JP59088115 A JP 59088115A JP 8811584 A JP8811584 A JP 8811584A JP H0428899 B2 JPH0428899 B2 JP H0428899B2
Authority
JP
Japan
Prior art keywords
fuel ratio
air
oxygen
value
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59088115A
Other languages
Japanese (ja)
Other versions
JPS60230537A (en
Inventor
Takeshi Kitahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP59088115A priority Critical patent/JPS60230537A/en
Priority to US06/729,058 priority patent/US4658790A/en
Priority to DE19853515588 priority patent/DE3515588A1/en
Publication of JPS60230537A publication Critical patent/JPS60230537A/en
Publication of JPH0428899B2 publication Critical patent/JPH0428899B2/ja
Granted legal-status Critical Current

Links

Classifications

    • Y02T10/47

Description

【発明の詳細な説明】 (技術分野) 本発明は、エンジンの空燃比制御装置、詳しく
は、酸素センサを用いた空燃比のフイードバツク
制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to an air-fuel ratio control device for an engine, and more particularly to an air-fuel ratio feedback control device using an oxygen sensor.

(従来技術) 近時、エンジンの吸入混合気の空燃比を精度よ
く目標値に制御するために、排気系に酸素センサ
を設けて、空燃比と相関関係をもつ排気中の酸素
濃度に応じて燃料供給量をフイードバツク制御し
ている。
(Prior art) Recently, in order to accurately control the air-fuel ratio of the engine intake air-fuel mixture to a target value, an oxygen sensor has been installed in the exhaust system to control the air-fuel ratio in the exhaust gas, which has a correlation with the air-fuel ratio. The fuel supply amount is controlled by feedback.

このような酸素センサとしては、例えば、本出
願人が先に特許出願した「空燃比検出方法」(特
開昭56−89051号)に記載されたものがあり、第
1図のように示される。第1図において、1は酸
素センサであり、酸素センサ1は酸素濃度に応じ
て起電力を発生する一種の酸素濃淡電池の原理を
応用したものである。2はアルミナ基板であり、
アルミナ基板2上には内側電極(基準電極)3が
設けられている。内側電極3は酸素イオン伝導性
の固体電解質4で包持されており、この固体電解
質4を挟さんで内側電極3と対向する位置に外側
電極(酸素測定電極)5が積層されている。そし
て、これらアルミナ基板2、内側電極3、固体電
解質4および外側電極5は酸素分子の拡散を制限
する多孔質保護層6によつて被覆されており、ア
ルミナ基板2内には固体電解質4の活性を保つよ
うに適温に加熱するヒータ7が内蔵されている。
内側電極3には流し込み電流Isが供給されてお
り、この流し込み電流Isは酸素イオンを移動させ
ることにより内側電極3に基準酸素分圧Paを発
生させる。一方、酸素電極における酸素分圧Pb
は被測定ガスの有する酸素分圧であり、これらの
酸素分圧Pa、Pbに基づいて両電極間に、 E=(RT/4F)・ln(Pa/Pb) …… 但し、R:気体定数、T:絶対温度、F:フア
ラデイ定数なるネルンストの式によつて表わされ
る起電力Eが発生する。この起電力Eは、所定の
空燃比を境として希薄側から過濃側に切り換つた
とき、プラス側へ大きく急変化し、その切り換り
空燃比は前記流し込み電流Isの値により変化す
る。
As an example of such an oxygen sensor, there is one described in "Air-fuel ratio detection method" (Japanese Patent Application Laid-Open No. 89051/1989), which the present applicant previously applied for a patent, as shown in Fig. 1. . In FIG. 1, reference numeral 1 denotes an oxygen sensor, and the oxygen sensor 1 applies the principle of a type of oxygen concentration battery that generates an electromotive force depending on the oxygen concentration. 2 is an alumina substrate;
An inner electrode (reference electrode) 3 is provided on the alumina substrate 2 . The inner electrode 3 is surrounded by an oxygen ion conductive solid electrolyte 4, and an outer electrode (oxygen measurement electrode) 5 is laminated at a position facing the inner electrode 3 with the solid electrolyte 4 in between. These alumina substrate 2, inner electrode 3, solid electrolyte 4, and outer electrode 5 are covered with a porous protective layer 6 that restricts the diffusion of oxygen molecules. A heater 7 is built in to maintain the temperature at an appropriate temperature.
An inflow current Is is supplied to the inner electrode 3, and this inflow current Is generates a reference oxygen partial pressure Pa in the inner electrode 3 by moving oxygen ions. On the other hand, the oxygen partial pressure Pb at the oxygen electrode
is the oxygen partial pressure of the gas to be measured, and based on these oxygen partial pressures Pa and Pb, between the two electrodes, E=(RT/4F)・ln(Pa/Pb)...where, R: gas constant , T: absolute temperature, F: Faraday constant, an electromotive force E expressed by the Nernst equation is generated. When the electromotive force E switches from the lean side to the rich side at a predetermined air-fuel ratio, it changes sharply to the positive side, and the switching air-fuel ratio changes depending on the value of the inflow current Is.

そして、このような酸素センサ1を用いて、構
成した空燃比制御装置としては図示は略すが、前
述した公報に開示されている。この装置は目標空
燃比において酸素センサ1の出力Vsが急変化す
るように流し込み電流Isの大きさを変えており、
この出力Vsの急変化に基づいて空燃比を目標空
燃比に制御している。
An air-fuel ratio control device configured using such an oxygen sensor 1 is disclosed in the above-mentioned publication, although not shown. This device changes the magnitude of the injected current Is so that the output Vs of the oxygen sensor 1 changes suddenly at the target air-fuel ratio.
The air-fuel ratio is controlled to the target air-fuel ratio based on this sudden change in the output Vs.

しかしながら、このような従来の空燃比制御装
置にあつては、酸素センサ出力を比較基準値と比
較することにより、現在の空燃比が目標空燃比よ
りリツチであるかリーンであるかを判別して空燃
比を制御する構成となつており、目標からのずれ
の大きさを判別することができない。したがつ
て、ずれの程度に応じた補正割合で空燃比を制御
することができず応答性に欠けていた。
However, such conventional air-fuel ratio control devices determine whether the current air-fuel ratio is richer or leaner than the target air-fuel ratio by comparing the oxygen sensor output with a comparison reference value. The configuration is such that the air-fuel ratio is controlled, and the magnitude of the deviation from the target cannot be determined. Therefore, the air-fuel ratio could not be controlled at a correction rate that corresponded to the degree of deviation, resulting in a lack of responsiveness.

そこで、本発明の出願人は先に「空燃比制御装
置」(特願昭58−190129号参照)を出願しており、
第2図のように示される。第2図においては、1
は酸素センサであり、酸素センサ1は電流値検出
回路11に接続されている。電流値検出回路11
は酸素センサ出力Vsが目標電圧Va(酸素センサ
出力Vsの切り換り空燃比における急変電圧の略
中間値)となるように流し込み電流Isを供給する
とともに、この流し込み電流Isの値を検出して切
り換り空燃比を表す電圧信号Viを出力する。こ
の電圧信号Viは第3図に示すように空燃比
(A/F)に一義的に対応している(以下、これ
らの関係をVi−A/F特性という)。電圧信号Vi
は差動アンプ12に入力されており、差動アンプ
12にはさらに目標値設定手段13からの基準電
圧Vfが入力されている。目標値設定手段13は
運転状態に応じて目標空燃比を設定し、この目標
空燃比に対応する基準電圧Vfを出力する。差動
アンプ12は電圧信号Viから基準電圧Vfを減算
して差値ΔV(Δ=Vi−Vf)を補正係数設定回路
14に出力している。この差値ΔVは現空燃比の
目標空燃比からのずれの大きさを表している。補
正係数設定回路14は積分回路により構成されて
おり、差値ΔVを所定の積分定数で積分して空燃
比を目標空燃比に補正する補正係数αを演算して
いる。なお、補正係数αは積分I制御による演算
に限らず、例えば微分D制御あるいは比例P制御
により演算してもよい。補正係数αは燃料量補正
回路15に入力されており、燃料量補正回路15
には、さらに燃料量演算回路16から基本噴射量
Tpが入力されている。燃料量演算回路16はエ
ンジンの運転状態、例えば吸入空気量Qaと回転
数Nに基づいて基本噴射量Tp(Tp=K・Qa/
N,但しK:定数)を演算する。燃料量補正回路
15は基本噴射量Tpに補正係数αを乗じて最終
噴射量Tiを算出して燃料供給手段17に出力す
る。燃料供給手段17は例えば、エンジンの吸気
管に取り付けられたインジエクタであり、燃料量
補正回路15からの信号に基づいて作動し最終噴
射量Tiの燃料をエンジンに供給する。
Therefore, the applicant of the present invention had previously filed an application for an "air-fuel ratio control device" (see Japanese Patent Application No. 1981-190129).
It is shown as in FIG. In Figure 2, 1
is an oxygen sensor, and the oxygen sensor 1 is connected to a current value detection circuit 11. Current value detection circuit 11
supplies the inflow current Is so that the oxygen sensor output Vs becomes the target voltage Va (approximately the intermediate value of the sudden change voltage at the switching air-fuel ratio of the oxygen sensor output Vs), and detects the value of this inflow current Is. Outputs a voltage signal Vi representing the switching air-fuel ratio. This voltage signal Vi uniquely corresponds to the air-fuel ratio (A/F) as shown in FIG. 3 (hereinafter, these relationships will be referred to as Vi-A/F characteristics). Voltage signal Vi
is input to the differential amplifier 12, and the reference voltage Vf from the target value setting means 13 is further input to the differential amplifier 12. Target value setting means 13 sets a target air-fuel ratio according to the operating state, and outputs a reference voltage Vf corresponding to this target air-fuel ratio. The differential amplifier 12 subtracts the reference voltage Vf from the voltage signal Vi and outputs a difference value ΔV (Δ=Vi−Vf) to the correction coefficient setting circuit 14. This difference value ΔV represents the magnitude of the deviation of the current air-fuel ratio from the target air-fuel ratio. The correction coefficient setting circuit 14 is constituted by an integral circuit, and calculates a correction coefficient α for correcting the air-fuel ratio to the target air-fuel ratio by integrating the difference value ΔV with a predetermined integral constant. Note that the correction coefficient α is not limited to calculation by integral I control, but may be calculated by, for example, differential D control or proportional P control. The correction coefficient α is input to the fuel amount correction circuit 15.
In addition, the basic injection amount is determined from the fuel amount calculation circuit 16.
Tp is entered. The fuel amount calculation circuit 16 calculates the basic injection amount Tp (Tp=K・Qa/
N, where K: constant) is calculated. The fuel amount correction circuit 15 multiplies the basic injection amount Tp by the correction coefficient α to calculate the final injection amount Ti, and outputs the final injection amount Ti to the fuel supply means 17. The fuel supply means 17 is, for example, an injector attached to the intake pipe of the engine, and operates based on a signal from the fuel amount correction circuit 15 to supply the final injection amount Ti of fuel to the engine.

しかがつて、目標空燃比からのずれの大きさに
基づいて補正係数αが設定され、このずれの大き
さに応じた速度で空燃比が目標空燃比に制御され
る。
Therefore, the correction coefficient α is set based on the magnitude of the deviation from the target air-fuel ratio, and the air-fuel ratio is controlled to the target air-fuel ratio at a speed corresponding to the magnitude of this deviation.

ところで、このような先願に空燃比制御装置に
あつては、多孔質保護層を拡散する酸素分子の拡
散量を流し込み電流Isの値、すなわち電圧信号Vi
として検出し現空燃比を判断する構成となつてい
るため、理論空燃比よりリーンな空燃比(以下、
リーン空燃比という)にフイードバツク制御する
場合には好適であるが、その他の空燃比、例え
ば、理論空燃比あるいは理論空燃比よりリツチな
空燃比(以下、リツチ空燃比という)に制御しよ
うとする場合には空燃比制御の精度が低下するお
それがある。
By the way, in the case of an air-fuel ratio control device in such a prior application, the value of the current Is, that is, the voltage signal Vi, is calculated by injecting the amount of oxygen molecules diffusing through the porous protective layer.
Since it is configured to detect the current air-fuel ratio and determine the current air-fuel ratio, the air-fuel ratio (hereinafter referred to as
It is suitable for feedback control to a lean air-fuel ratio (referred to as a lean air-fuel ratio), but when attempting to control other air-fuel ratios, such as the stoichiometric air-fuel ratio or an air-fuel ratio richer than the stoichiometric air-fuel ratio (hereinafter referred to as a rich air-fuel ratio). There is a risk that the accuracy of air-fuel ratio control will decrease.

すなわち、電圧信号Viは第3図に示すように、
理論空燃比やリツチ空燃比ではその値が小さくな
つており、例えば、雑音等の影響を受けやすく空
燃比の検出精度が低下する。したがつて、このよ
うな電圧信号Viに基づいて現空燃比の目標空燃
比からのずれを判断すると、その判断誤差が大き
くなり空燃比制御の精度が低下する。また、電圧
信号Viは酸素分子の拡散量に対応していること
から、空燃比の急激な変化に対して比較的応答性
が遅い。このため、例えば特に応答性や制御精度
の高いことが要求される三元触媒を備えたエンジ
ンに本装置を適用して空燃比をフイードバツク制
御しようとする場合、適応性に欠ける。
That is, the voltage signal Vi is as shown in FIG.
At a stoichiometric air-fuel ratio or a rich air-fuel ratio, the value is small, and for example, it is susceptible to the influence of noise and the accuracy of air-fuel ratio detection decreases. Therefore, if the deviation of the current air-fuel ratio from the target air-fuel ratio is determined based on such a voltage signal Vi, the error in the determination increases and the accuracy of air-fuel ratio control decreases. Furthermore, since the voltage signal Vi corresponds to the amount of diffusion of oxygen molecules, it has a relatively slow response to sudden changes in the air-fuel ratio. For this reason, for example, when this device is applied to an engine equipped with a three-way catalyst that requires particularly high responsiveness and control accuracy to perform feedback control of the air-fuel ratio, it lacks adaptability.

(発明の目的) そこで本発明は、酸素センサを、排気中の酸素
濃度に対応した空燃比で出力電圧の急変するセン
サ部と、流し込み電流により該センサ部の測定電
極雰囲気を所定酸素濃度に維持するともに所定空
燃比でその両電極間の電圧(ポンプ電圧)が急変
するポンプ部と、で構成し、目標空燃比の値に応
じて流し込み電流あるいはポンプ電圧の値を択一
的に選択して空燃比を判断することにより、リツ
チ域からリーン域までの広範囲に亘る空燃比を連
続して精度よく検出するとともに、所定空燃比に
おける応答性と検出精度を高めて、空燃比制御の
精度を向上させることを目的としている。
(Object of the Invention) Therefore, the present invention provides an oxygen sensor with a sensor part whose output voltage changes suddenly at an air-fuel ratio corresponding to the oxygen concentration in exhaust gas, and a measurement electrode atmosphere of the sensor part that is maintained at a predetermined oxygen concentration by flowing current. and a pump part in which the voltage between both electrodes (pump voltage) changes suddenly at a predetermined air-fuel ratio, and the value of the injected current or pump voltage is selectively selected depending on the value of the target air-fuel ratio. By determining the air-fuel ratio, it can continuously and accurately detect air-fuel ratios over a wide range from rich to lean areas, and improve the accuracy of air-fuel ratio control by increasing responsiveness and detection accuracy at a given air-fuel ratio. The purpose is to

(発明の構成) 本発明による空燃比制御装置は、その全体構成
図を第4図に示すように、酸素イオン伝導性の固
体電解質を挟んで、一定酸素濃度の基準ガス側の
基準電極と被測定ガス側の測定電極とが配設さ
れ、両電極間の酸素分圧比に応じた電圧を出力す
るセンサ部と、測定電極を覆い測定電極の囲りに
酸素層を画成するとともに該酸素層と被測定ガス
との間の酸素分子の拡散量を制限する酸素層画成
部材と、ポンプ電極間に供給される流し込み電流
の値に応じて酸素層の酸素分圧を決定するポンプ
部と、を有する酸素センサと、前記センサ部の出
力電圧が所定値となるようにポンプ部に流し込み
電流を供給するとともに、この流し込み電流の値
を検出する電流値検出手段と、前記センサ部の出
力電圧が所定値となるようにポンプ部に流し込み
電流を供給した状態における前記ポンプ電極間の
電圧の値を検出するポンプ電圧検出手段と、運転
状態に応じて目標空燃比を設定する目標値設定手
段と、目標空燃比が理論空燃比である場合にはポ
ンプ電圧検出手段の出力を、目標空燃比が理論空
燃比でない場合には電流値検出手段の出力を択一
的に選択する選択手段と、選択手段および目標値
設定手段の出力に基づいて現空燃比と目標空燃比
の偏差を演算する差値演算手段と、差値演算手段
の出力に基づいて空燃比をフイードバツク制御す
る空燃比制御手段と、を備えており、所定空燃比
における応答性と制御精度を高めるものである。
(Structure of the Invention) As shown in FIG. 4, the air-fuel ratio control device according to the present invention connects a reference electrode on the reference gas side with a constant oxygen concentration and a reference electrode with an oxygen ion conductive solid electrolyte in between. A sensor section is provided with a measurement electrode on the measurement gas side and outputs a voltage according to the oxygen partial pressure ratio between both electrodes, and a sensor section that covers the measurement electrode and defines an oxygen layer around the measurement electrode, and a sensor section that covers the measurement electrode and defines an oxygen layer around the measurement electrode. an oxygen layer defining member that limits the amount of diffusion of oxygen molecules between the gas and the gas to be measured; a pump section that determines the oxygen partial pressure of the oxygen layer according to the value of the flowing current supplied between the pump electrodes; an oxygen sensor having an oxygen sensor, a current value detecting means for supplying current to the pump section so that the output voltage of the sensor section becomes a predetermined value, and detecting the value of the flowing current; pump voltage detection means for detecting the value of the voltage between the pump electrodes in a state where current is supplied to the pump section so as to reach a predetermined value; and target value setting means for setting a target air-fuel ratio according to the operating state. Selection means for selectively selecting the output of the pump voltage detection means when the target air-fuel ratio is the stoichiometric air-fuel ratio, and the output of the current value detection means when the target air-fuel ratio is not the stoichiometric air-fuel ratio; and a difference value calculation means for calculating the deviation between the current air-fuel ratio and the target air-fuel ratio based on the output of the target value setting means, and an air-fuel ratio control means for feedback-controlling the air-fuel ratio based on the output of the difference value calculation means. This system improves responsiveness and control accuracy at a predetermined air-fuel ratio.

(実施例) 以下、本発明を図面に基づいて説明する。(Example) Hereinafter, the present invention will be explained based on the drawings.

第5〜10図は本発明の第1実施例を示す図で
ある。まず、構成を説明すると、第5図は酸素セ
ンサの分解斜視図、第6図は酸素センサの断面図
である。これらの図において、21は電気絶縁性
の高い平板状のアルミナ基板であり、アルミナ基
板21の上面(図中上方の端面)にはヒータ22
を挾さんで基準ガス導入板23が積層される。基
準ガス導入板23の上面には基準ガス導入溝24
が形成されており、また基準ガス導入板23の上
面側には平板状の第1固体電解質25、隔壁板2
6および第2固体電解質27が略平行に順次積層
される。第1、第2固体電解質25,27は酸素
イオン伝導性の酸化ジルコニウム等を主成分とし
ている。第1固体電解質25の上、下面には何れ
も白金を主成分とする測定電極28および基準電
極29がそれぞれ印刷処理により積層されてお
り、これらの各電極28,29にはリード線3
0,31がそれぞれ接続される。また、第2固体
電解質27の上、下面にはそれぞれポンプ電極と
してのポンプアノード32およびポンプカソード
33が積層されており、これらの各電極32,3
3にはそれぞれリード線34,35が接続され
る。基準ガス導入板23と第1固体電解質25は
基準ガス導入部36を画成しており、基準ガス導
入部36には矢印AIRで示すように一定酸素濃度
の基準ガス、本実施例では大気が導かれる。
5 to 10 are diagrams showing a first embodiment of the present invention. First, to explain the configuration, FIG. 5 is an exploded perspective view of the oxygen sensor, and FIG. 6 is a sectional view of the oxygen sensor. In these figures, 21 is a flat alumina substrate with high electrical insulation, and a heater 22 is installed on the upper surface of the alumina substrate 21 (the upper end surface in the figures).
The reference gas introduction plate 23 is stacked by sandwiching the two. A reference gas introduction groove 24 is provided on the upper surface of the reference gas introduction plate 23.
is formed on the upper surface side of the reference gas introduction plate 23, and a flat first solid electrolyte 25, a partition plate 2
6 and the second solid electrolyte 27 are sequentially stacked substantially parallel to each other. The first and second solid electrolytes 25 and 27 are mainly composed of oxygen ion conductive zirconium oxide or the like. On the upper and lower surfaces of the first solid electrolyte 25, a measuring electrode 28 and a reference electrode 29, both of which are mainly composed of platinum, are laminated by printing process, and each of these electrodes 28, 29 is connected to a lead wire 3.
0 and 31 are connected respectively. Further, a pump anode 32 and a pump cathode 33 as pump electrodes are laminated on the upper and lower surfaces of the second solid electrolyte 27, respectively.
3 are connected to lead wires 34 and 35, respectively. The reference gas introduction plate 23 and the first solid electrolyte 25 define a reference gas introduction part 36, and the reference gas introduction part 36 is filled with a reference gas having a constant oxygen concentration, in this example, the atmosphere, as shown by the arrow AIR. be guided.

一方、第1固体電解質25、隔壁板26および
第2固体電解質27は測定電極28を覆つてこの
測定電極28の囲りに間隙部(酸素層)37を画
成する酸素層画成部材38を構成しており、この
酸素層画成部材38の第6図中左方に符号GAS
で示すように、被測定ガス、本実施例では排気が
導かれる。なお、間隙部37の間隔Lは極めて狭
く、例えばL=0.1mm程度に設定される。酸素層
画成部材38は排気中と間隙部37との間におけ
る単位時間当りの酸素分子の拡散量を規制してい
る。
On the other hand, the first solid electrolyte 25, the partition plate 26, and the second solid electrolyte 27 form an oxygen layer defining member 38 that covers the measuring electrode 28 and defines a gap (oxygen layer) 37 around the measuring electrode 28. The left side of this oxygen layer defining member 38 in FIG. 6 is marked with the symbol GAS.
As shown in , the gas to be measured, in this example, exhaust gas is introduced. Note that the distance L between the gap portions 37 is extremely narrow, and is set to approximately 0.1 mm, for example. The oxygen layer defining member 38 regulates the amount of oxygen molecules diffused per unit time between the exhaust gas and the gap 37.

上記、第1固体電解質25、測定電極28およ
び基準電極29はセンサ部39を構成しており、
第2固体電解質27、ポンプアノード32および
ポンプカソード33はポンプ部40を構成してい
る。したがつて、センサ部39はその基準電極2
9側が大気に接し、測定電極28側が間隙部37
に接する(すなわち、酸素層画成部材38を介し
て排気に接する)こととなり、酸素濃淡電池を形
成して両電極28,29間の酸素分圧比に応じた
起電力Eを発生する。この起電力Eはセンサ部3
9の出力Vsとして外部に取り出される。また、
ポンプ部40には後述する電流値検出手段から流
し込み電流(以下、ポンプ電流という)Ipが供給
されており、ポンプ電流Ipはポンプ電極32,3
3間を流れる。このとき、第2固体電解質27中
をポンプ電流Ipと逆方向に酸素イオンが移動し、
その移動量はポンプ電流Ipの値に比例する。した
がつて、ポンプ部40はポンプ電流Ipの値に応じ
て排気と間隙部37との間で酸素分子を移動させ
る(すなわち、酸素ポンプ作用を行う)。これら
のセンサ部39、ポンプ部40、酸素層画成部材
38および基準ガス導入板23は全体として酸素
センサ41を構成している。なお、ヒータ22は
第1、第2固体電解質25,27を適温に加熱し
それらの活性を保つている。
The first solid electrolyte 25, the measurement electrode 28, and the reference electrode 29 constitute a sensor section 39,
The second solid electrolyte 27, the pump anode 32, and the pump cathode 33 constitute a pump section 40. Therefore, the sensor section 39 has its reference electrode 2
The 9 side is in contact with the atmosphere, and the measurement electrode 28 side is in the gap 37.
(that is, in contact with the exhaust gas via the oxygen layer defining member 38), forming an oxygen concentration cell and generating an electromotive force E according to the oxygen partial pressure ratio between the electrodes 28 and 29. This electromotive force E is
It is taken out to the outside as the output Vs of 9. Also,
A flowing current (hereinafter referred to as pump current) Ip is supplied to the pump section 40 from a current value detection means to be described later, and the pump current Ip is supplied to the pump electrodes 32, 3.
It flows between 3. At this time, oxygen ions move in the second solid electrolyte 27 in the opposite direction to the pump current Ip,
The amount of movement is proportional to the value of pump current Ip. Therefore, the pump section 40 moves oxygen molecules between the exhaust gas and the gap section 37 according to the value of the pump current Ip (that is, performs an oxygen pumping action). These sensor section 39, pump section 40, oxygen layer defining member 38, and reference gas introduction plate 23 constitute an oxygen sensor 41 as a whole. Note that the heater 22 heats the first and second solid electrolytes 25 and 27 to an appropriate temperature to maintain their activity.

第7図は上記酸素センサ41を使用した空燃比
制御装置の回路図である。第7図において第2図
に示す回路と同一構成部分には同一符号を付して
その説明を省略する。第7図において、酸素セン
サ41はリード線30,31,34,35を介し
て電流値検出手段51に接続されており、電流値
検出手段51は、例えば第8図に詳細を示すよう
に構成される。
FIG. 7 is a circuit diagram of an air-fuel ratio control device using the oxygen sensor 41. In FIG. 7, the same components as those in the circuit shown in FIG. 2 are given the same reference numerals, and their explanation will be omitted. In FIG. 7, the oxygen sensor 41 is connected to a current value detection means 51 via lead wires 30, 31, 34, and 35, and the current value detection means 51 is configured as shown in detail in FIG. 8, for example. be done.

第8図において、酸素センサ41のポンプ部4
0には電流供給回路52からポンプ電流Ipが供給
されており、このポンプ電流Ipの値は電流値検出
回路53により検出されている。電流値検出回路
53はオペアンプOP1,OP2、抵抗R1,R
2,R3,R4,R5およびコンデンサC1によ
り構成されており、ポンプ電流Ipの値を抵抗R1
の両端間に電圧降下として検出し電圧信号Viを
出力している。この電圧信号Viはポンプ電流Ip
が図中矢印IL方向に供給されるとき正の値、矢印
IR方向に供給されるとき負の値となる(なお、第
6図参照)。電流供給回路52はオペアンプOP
3、トランジスタQ1,Q2、ダイオードD1,
D2、コンデンサC2および抵抗R6により構成
されており、差値検出回路54の出力ΔVsaの値
に応じてポンプ電流Ipの大きさおよびその向きを
制御している。すなわち、差値検出回路54はオ
ペアンプOP4,OP5、抵抗R7,R8,R9,
R10,R11,R12により構成されており、
センサ部39の出力電圧Vsから目標電圧Vaを減
算して差値ΔVsa(ΔVsa=K(Vs−Va)、但しK
は定数)を電流供給回路52に出力している。こ
の目標電圧Vaが、間隙部37の酸素濃度が所定
値に維持されているときのセンサ部出力Vsの急
変する電圧値の上限と下限の中間値であり、電源
電圧15Vを抵抗R7,R8で分圧し、例えば0.2V
という値に設定される。そして、センサ部出力
Vsは間隙部37の酸素濃度に対応し、目標電圧
Vaは上記所定値に対応しているから、差値ΔVsa
は間隙部37における現酸素濃度の所定値からの
ずれの大きさ、すなわち偏差を表わしている。し
たがつて、前記電流供給回路52は差値ΔVsaが
零となるように、すなわちセンサ部出力Vsが目
標電圧Vaと一致するようにトランジスタQ1,
Q2およびダイオードD1,D2によるコンプリ
メンタリ位相反転回路によりポンプ電流Ipの大き
さおよび向きを制御する。上記電流供給回路5
2、電流値検出回路53および差値検出回路54
は電流値検出手段55を構成しており、本実施例
ではこの電流値検出手段55がセンサ部39の出
力電圧Vsが所定値(目標電圧Va)となるように
ポンプ部40にポンプ電流Ipを供給するととも
に、このポンプ電流Ipの値を検出して空燃比を算
出している。
In FIG. 8, the pump section 4 of the oxygen sensor 41
0 is supplied with a pump current Ip from a current supply circuit 52, and the value of this pump current Ip is detected by a current value detection circuit 53. The current value detection circuit 53 includes operational amplifiers OP1 and OP2, and resistors R1 and R.
2, R3, R4, R5 and capacitor C1, and the value of pump current Ip is determined by resistor R1.
It detects the voltage drop between both ends of the line and outputs a voltage signal Vi. This voltage signal Vi is the pump current Ip
When is supplied in the direction of arrow I L in the figure, a positive value, arrow
When supplied in the I R direction, it becomes a negative value (see Figure 6). Current supply circuit 52 is operational amplifier OP
3, transistors Q1, Q2, diode D1,
D2, a capacitor C2, and a resistor R6, and controls the magnitude and direction of the pump current Ip according to the value of the output ΔVsa of the difference value detection circuit 54. That is, the difference value detection circuit 54 includes operational amplifiers OP4, OP5, resistors R7, R8, R9,
It is composed of R10, R11, and R12,
The target voltage Va is subtracted from the output voltage Vs of the sensor section 39 to obtain the difference value ΔVsa (ΔVsa=K(Vs−Va), where K
is a constant) is output to the current supply circuit 52. This target voltage Va is the intermediate value between the upper and lower limits of the voltage value at which the sensor output Vs suddenly changes when the oxygen concentration in the gap 37 is maintained at a predetermined value. divide the voltage, e.g. 0.2V
The value is set to . And sensor output
Vs corresponds to the oxygen concentration in the gap 37, and the target voltage
Since Va corresponds to the above predetermined value, the difference value ΔVsa
represents the magnitude of the deviation of the current oxygen concentration in the gap 37 from a predetermined value, that is, the deviation. Therefore, the current supply circuit 52 controls the transistors Q1 and 52 so that the difference value ΔVsa becomes zero, that is, so that the sensor output Vs matches the target voltage Va.
The magnitude and direction of the pump current Ip are controlled by a complementary phase inversion circuit including Q2 and diodes D1 and D2. The above current supply circuit 5
2. Current value detection circuit 53 and difference value detection circuit 54
constitutes a current value detection means 55, and in this embodiment, this current value detection means 55 applies a pump current Ip to the pump section 40 so that the output voltage Vs of the sensor section 39 becomes a predetermined value (target voltage Va). At the same time, the value of this pump current Ip is detected to calculate the air-fuel ratio.

再び第7図においては、56はポンプ電圧検出
手段であり、ポンプ電圧検出手段56は差動アン
プにより構成され、センサ部39の出力電圧Vs
が所定値となるようポンプ部40にポンプ電流Ip
を供給した状態において、ポンプ部40の各電極
32,33間の電圧(以下、ポンプ電圧という)
Vpの値を検出している。電流値検出手段51お
よびポンプ電圧検出手段56の各出力Vi,Vpは
選択手段57に入力されており、選択手段57は
アナログスイツチ58および選択信号発生回路5
9により構成されている。選択信号発生回路59
には目標値設定手段13からの基準電圧Vfが入
力されており、選択信号発生回路59は目標空燃
比の値に応じて〔H〕あるいは〔L〕レベルとな
る選択信号Scをアナログスイツチ58に出力す
る。選択信号Scは目標空燃比が理論空燃比に設
定されているとき〔L〕となり、理論空燃比以外
に設定されているとき〔H〕となる。選択信号
Scはアナログスイツチ58に入力されており、
アナログスイツチ58は選択信号Scが〔H〕の
とき電圧信号Viを、〔L〕のときポンプ電圧Vp
を差値演算手段60に出力する。差値演算手段6
0は差動アンプ12および目標値変換回路61に
より構成されており、目標値変換回路61は目標
値設定手段13からの基準電圧Vfを上記各電圧
Vi,Vpと比較可能な電圧レベルに変換してい
る。差動アンプ12にはアナログスイツチ58か
らの出力(ViおよびVp)および目標値変換回路
61からの出力Vfが入力される。したがつて、
差値演算手段60は目標空燃比が理論空燃比に設
定されているときポンプ電圧Vpから基準電圧Vf
を減算し、理論空燃比以外に設定されているとき
電圧信号Viから基準電圧Vfを減算して差値ΔV
(ΔV=Vp−VfあるいはΔV=Vi−Vf)を空燃比
制御手段62に出力する。空燃比制御手段62は
第2図に示したものと同様の機能を有する補正係
数設定回路14、燃料量補正回路15および燃料
量演算回路16により構成されている。
Again in FIG. 7, 56 is a pump voltage detection means, and the pump voltage detection means 56 is constituted by a differential amplifier, and the output voltage Vs of the sensor section 39 is
Pump current Ip is applied to the pump section 40 so that
is supplied, the voltage between each electrode 32 and 33 of the pump section 40 (hereinafter referred to as pump voltage)
Detecting the value of Vp. The outputs Vi and Vp of the current value detection means 51 and the pump voltage detection means 56 are input to the selection means 57, and the selection means 57 is connected to the analog switch 58 and the selection signal generation circuit 5.
9. Selection signal generation circuit 59
The reference voltage Vf from the target value setting means 13 is input to the selection signal generation circuit 59, and the selection signal generation circuit 59 sends to the analog switch 58 a selection signal Sc that is at the [H] or [L] level depending on the value of the target air-fuel ratio. Output. The selection signal Sc becomes [L] when the target air-fuel ratio is set to the stoichiometric air-fuel ratio, and becomes [H] when the target air-fuel ratio is set to a value other than the stoichiometric air-fuel ratio. selection signal
Sc is input to analog switch 58,
The analog switch 58 outputs the voltage signal Vi when the selection signal Sc is [H], and outputs the pump voltage Vp when the selection signal Sc is [L].
is output to the difference value calculation means 60. Difference value calculation means 6
0 is composed of a differential amplifier 12 and a target value conversion circuit 61, and the target value conversion circuit 61 converts the reference voltage Vf from the target value setting means 13 into each of the above voltages.
It is converted to a voltage level that can be compared with Vi and Vp. The output (Vi and Vp) from the analog switch 58 and the output Vf from the target value conversion circuit 61 are input to the differential amplifier 12. Therefore,
The difference value calculation means 60 calculates the reference voltage Vf from the pump voltage Vp when the target air-fuel ratio is set to the stoichiometric air-fuel ratio.
When the air-fuel ratio is set to a value other than the stoichiometric air-fuel ratio, subtract the reference voltage Vf from the voltage signal Vi to obtain the difference value ΔV.
(ΔV=Vp−Vf or ΔV=Vi−Vf) is output to the air-fuel ratio control means 62. The air-fuel ratio control means 62 includes a correction coefficient setting circuit 14, a fuel amount correction circuit 15, and a fuel amount calculation circuit 16, which have the same functions as those shown in FIG.

次に作用を説明する。 Next, the action will be explained.

一般に、拡散電流検出型の酸素センサは流し込
み電流(拡散電流)の酸素ポンプ作用によりセン
サ部の各電極間に所定の酸素濃度差を発生させ、
そのときの流し込み電流の値を被測定ガスの酸素
濃度に一義的に対応させて、酸素濃度を広範囲に
検出するという原理に基づいている。この場合、
流し込み電流の値は所定の酸素濃度差を維持する
ために必要なポンプエネルギの大きさを表してい
る。ところで、このようなポンプエネルギは、セ
ンサ部の各電極が直接被測定ガスに接している場
合、実際上かなりの大きさが必要であることか
ら、通常、センサ部の一方の電極側に酸素分子の
拡散を制限する制限部材(本実施例では酸素層画
成部材)を設けてポンプエネルギの大きさを小さ
くして制御性や酸素センサの耐久等性を高めてい
る。しかしながら、制限部材を拡散する酸素分子
量の検出は時間的な遅れを伴うため応答性に欠
け、またその検出精度も高いものとはいえない。
In general, a diffusion current detection type oxygen sensor generates a predetermined oxygen concentration difference between each electrode of the sensor section by the oxygen pumping action of an injected current (diffusion current).
It is based on the principle that the value of the injected current at that time uniquely corresponds to the oxygen concentration of the gas to be measured, and the oxygen concentration is detected over a wide range. in this case,
The value of the injected current represents the amount of pump energy required to maintain a predetermined oxygen concentration difference. By the way, such pump energy actually requires a considerable amount of energy when each electrode of the sensor section is in direct contact with the gas to be measured. A restricting member (in this embodiment, an oxygen layer defining member) that restricts the diffusion of oxygen is provided to reduce the amount of pump energy and improve controllability and durability of the oxygen sensor. However, detection of the molecular weight of oxygen diffusing through the restriction member is accompanied by a time delay, and therefore lacks responsiveness, and the detection accuracy cannot be said to be high.

そこで本実施例では、後述するように間隙部3
7の酸素分圧を理論空燃比に対応する値に維持す
るようにポンプ電流Ipを供給しているときポンプ
電圧Vpの値が理論空燃比を境に急変するという
特性と、この特性はいわゆる電圧検出型の酸素セ
ンサの出力特性と同様に応答性や検出精度が高い
という2点に着目して、目標空燃比の値に応じて
ポンプ電流Ipあるいはポンプ電圧Vpを択一的に
選択して空燃比を判断することで、理論空燃比に
おける応答性と検出精度を高めつつ、リツチから
リーンまでの広範囲な空燃比を連続して検出し、
空燃比制御の精度を向上させている。
Therefore, in this embodiment, the gap 3 is
7. When pump current Ip is supplied to maintain the oxygen partial pressure at a value corresponding to the stoichiometric air-fuel ratio, the value of pump voltage Vp changes suddenly after reaching the stoichiometric air-fuel ratio, and this characteristic is due to the so-called voltage Focusing on the two points of high responsiveness and detection accuracy as well as the output characteristics of a detection-type oxygen sensor, the pump current Ip or pump voltage Vp can be selectively selected depending on the target air-fuel ratio value. By determining the fuel ratio, it can continuously detect a wide range of air-fuel ratios from rich to lean while improving responsiveness and detection accuracy at the stoichiometric air-fuel ratio.
The accuracy of air-fuel ratio control has been improved.

すなわち、Vs=Vaとなるように酸素センサ4
1にポンプ電流Ipを供給すると、ポンプ電流Ipの
酸素ポンプ作用により間隙部37の酸素分圧が決
定される。いま、排気温度が1000°Kであるとき、
例えばVa=500mVに設定し間隙部37の酸素分
圧(測定電極28の酸素分圧Pb)を理論空燃比
に対応した値に維持しようとする場合、その値
Pbは前述したネルンストの式により求められ
Pb=0.206×10-10気圧となる。このポンプ電流Ip
の値は間隙部37の酸素分圧Pbを理論空燃比に
対応した上記所定値(Pb=0.206×10-10気圧)に
維持するために必要なポンプエネルギの大きさを
表しており、ポンプ電流Ipの変化は排気の酸素分
圧、すなわち排気中の酸素濃度の変化に対応した
ものとなる。そして、これら両者の関係は排気中
の酸素濃度を空燃比で表すと第9図に示すような
Ip−A/F特性になり、ポンプ電流Ipの値を電圧
信号Viとして検出することにより、空燃比を連
続して測定することができる。この電圧信号Vi
は、その大きさが空燃比に対して緩やかに変化し
ており、理論空燃比で零となる。なお、ポンプ電
流Ipの値は理論空燃比よりリーン域では排気中の
酸素分子O2の量に対応し、リツチ域では排気中
のCOやHC等の量(これらが酸素分子O2に変換
されるため)に対応したものとなり、理論空燃比
を境に流れる方向が反転する。したがつて、第3
図に示した先願例に比してリツチ域の空燃比を精
度よく検出することができる。
In other words, the oxygen sensor 4 is adjusted so that Vs=Va.
1, the oxygen partial pressure in the gap 37 is determined by the oxygen pumping action of the pump current Ip. Now, when the exhaust temperature is 1000°K,
For example, when setting Va = 500 mV and trying to maintain the oxygen partial pressure in the gap 37 (oxygen partial pressure Pb at the measurement electrode 28) at a value corresponding to the stoichiometric air-fuel ratio, the value
Pb is calculated using the Nernst equation mentioned above.
Pb=0.206×10 -10 atm. This pump current Ip
The value of represents the amount of pump energy required to maintain the oxygen partial pressure Pb in the gap 37 at the above predetermined value (Pb = 0.206 × 10 -10 atmospheres) corresponding to the stoichiometric air-fuel ratio, and the pump current Changes in Ip correspond to changes in the oxygen partial pressure of the exhaust gas, that is, changes in the oxygen concentration in the exhaust gas. The relationship between these two is as shown in Figure 9 when the oxygen concentration in the exhaust gas is expressed in terms of air-fuel ratio.
The Ip-A/F characteristic is obtained, and the air-fuel ratio can be continuously measured by detecting the value of the pump current Ip as the voltage signal Vi. This voltage signal Vi
The magnitude changes slowly with respect to the air-fuel ratio, and becomes zero at the stoichiometric air-fuel ratio. Note that the value of the pump current Ip corresponds to the amount of oxygen molecules O 2 in the exhaust gas in the lean range from the stoichiometric air-fuel ratio, and corresponds to the amount of CO, HC, etc. in the exhaust gas (when these are converted to oxygen molecules O 2 in the rich region). ), and the direction of flow reverses at the stoichiometric air-fuel ratio. Therefore, the third
Compared to the example of the prior application shown in the figure, the air-fuel ratio in the rich range can be detected with higher accuracy.

一方、ポンプ電圧Vpの値は間隙部37と排気
との間に酸素分圧比に対応したものとなり、ポン
プ電極32,33間に発生する起電力E、すなわ
ちネルンストの式においてPa=排気中の酸素
分圧、Pb=間隙部37の酸素分圧であるときの
起電力Eを外部から測定して、次式によつて表
される。
On the other hand, the value of the pump voltage Vp corresponds to the oxygen partial pressure ratio between the gap 37 and the exhaust, and the electromotive force E generated between the pump electrodes 32 and 33, that is, in the Nernst equation, Pa = oxygen in the exhaust The electromotive force E when the partial pressure, Pb=the oxygen partial pressure in the gap 37, is measured from the outside and is expressed by the following equation.

Vp=E+Ip・Rp …… 但し、Rp:ポンプ部4の内部抵抗、 この場合、間隙部37の酸素分圧はポンプ部40
に供給されるポンプ電流Ipにより常に理論空燃比
に対応した大きさに維持されている。また、排気
の酸素分圧はリツチ域では約10-20〜10-25気圧、
リーン域では約10-2気圧程度なる。したがつて、
ポンプ電圧Vpは第10図に示すように理論空燃
比を境にその大きさが急変したもの(以下、第1
0図に示す特性をVp−A/F特性という)とな
り、その応答性は極めて速くかつ検出精度も高
い。これは、ポンプ部40のポンプアノード32
が排気に直接接しており、排気中の酸素濃度変化
に対して即座にかつ正確に反応するからである。
Vp=E+Ip・Rp... However, Rp: Internal resistance of the pump section 4. In this case, the oxygen partial pressure in the gap section 37 is equal to the pump section 40.
The pump current Ip supplied to the air-fuel ratio is always maintained at a level corresponding to the stoichiometric air-fuel ratio. In addition, the partial pressure of oxygen in the exhaust gas is approximately 10 -20 to 10 -25 atm in the rich region.
In the lean region, the pressure is approximately 10 -2 atmospheres. Therefore,
As shown in Fig. 10, the pump voltage Vp suddenly changes in magnitude at the stoichiometric air-fuel ratio (hereinafter referred to as the first voltage).
The characteristic shown in FIG. This is the pump anode 32 of the pump section 40.
This is because it is in direct contact with the exhaust gas and reacts immediately and accurately to changes in oxygen concentration in the exhaust gas.

なお、ポンプ部40の内部抵抗Rpは温度依存
性が高いため、ポンプ部40の精密な温度制御を
行わなければポンプ電圧Vpによる理論空燃比以
外の空燃比判断は不向きである。
Note that, since the internal resistance Rp of the pump section 40 is highly temperature dependent, it is not suitable to judge air-fuel ratios other than the stoichiometric air-fuel ratio based on the pump voltage Vp unless precise temperature control of the pump section 40 is performed.

選択手段37は目標空燃比が理論空燃比以外に
設定されているときには電圧信号Viを差値演算
手段60に出力している。したがつて、理論空燃
比を除きリツチ域からリーン域までの広範囲な空
燃比を精度よく検出して、空燃比を目標空燃比に
精度よく制御することができる。
The selection means 37 outputs the voltage signal Vi to the difference value calculation means 60 when the target air-fuel ratio is set to a value other than the stoichiometric air-fuel ratio. Therefore, it is possible to accurately detect a wide range of air-fuel ratios from a rich range to a lean range, excluding the stoichiometric air-fuel ratio, and to accurately control the air-fuel ratio to the target air-fuel ratio.

一方、選択手段57は目標空燃比が理論空燃比
に設定されているときにはポンプ電圧Vpを差値
演算手段60に出力する。したがつて、理論空燃
比における応答性と検出精度を高めて、空燃比を
精度よく理論空燃比に制御することができる。そ
の結果、三元触媒を備えたエンジンに本装置を適
用した場合、例えば低速定常走行では空燃比をリ
ーン空燃比に制御して燃費の向上を図りつつ、必
要なときには応答性よくかつ高精度で空燃比を理
論空燃比にフイードバツク制御することができ、
三元触媒に転化率を高めて排気エミツシヨンを低
減させることができる。
On the other hand, the selection means 57 outputs the pump voltage Vp to the difference value calculation means 60 when the target air-fuel ratio is set to the stoichiometric air-fuel ratio. Therefore, the responsiveness and detection accuracy at the stoichiometric air-fuel ratio can be improved, and the air-fuel ratio can be accurately controlled to the stoichiometric air-fuel ratio. As a result, when this device is applied to an engine equipped with a three-way catalyst, it is possible to improve fuel efficiency by controlling the air-fuel ratio to a lean air-fuel ratio during low-speed, steady-state driving, while providing responsive and highly accurate control when necessary. Feedback control of the air-fuel ratio to the stoichiometric air-fuel ratio is possible,
A three-way catalyst can increase the conversion rate and reduce exhaust emissions.

第11図は本発明の第2実施例を示す図であ
り、本実施例は酸素センサの構造を変更したもの
である。第11図において、第1固体電解質25
の上面側には隔壁板71および第2固体電解質7
2が順次積層されており、第2固体電解質72に
は小孔72aが、また、隔壁板71には大きな矩
形の貫通孔71aがそれぞれ形成されている。貫
通孔71aに対向する第2固体電解質72の上、
下面にはそれぞれポンプ電極としてのポンプアノ
ード73およびポンプカソード74が積層されて
おり、これらの各電極73,74は小孔72aと
同一軸線上にそれぞれ小孔73a,74aが形成
されるとともにリード線75,76が接続され
る。第2固体電解質72と隔壁板71は測定電極
28を覆つてこの電極28の囲りに空間部(酸素
層)77を画成しており、第2固体電解質72の
図中上方には符号GASで示すように排気が導か
れる。前記小孔72a〜74aは拡散孔78を構
成しており、拡散孔78は排気中と空間部77を
連通している。隔壁板71および第2固体電解質
72は酸素層画成部材79を構成しており、酸素
層画成部材79は排気中と空間部77との間にお
ける単位時間当りの酸素分子の拡散量を規制して
いる。その他の第1実施例と同様である。
FIG. 11 is a diagram showing a second embodiment of the present invention, in which the structure of the oxygen sensor is changed. In FIG. 11, the first solid electrolyte 25
On the upper surface side, a partition plate 71 and a second solid electrolyte 7 are provided.
A small hole 72a is formed in the second solid electrolyte 72, and a large rectangular through hole 71a is formed in the partition plate 71. On the second solid electrolyte 72 facing the through hole 71a,
A pump anode 73 and a pump cathode 74 as pump electrodes are laminated on the lower surface, and each of these electrodes 73 and 74 has a small hole 73a and 74a formed on the same axis as the small hole 72a, and a lead wire. 75 and 76 are connected. The second solid electrolyte 72 and the partition plate 71 cover the measurement electrode 28 and define a space (oxygen layer) 77 around the electrode 28. Exhaust air is directed as shown. The small holes 72a to 74a constitute a diffusion hole 78, and the diffusion hole 78 communicates the exhaust gas with the space 77. The partition plate 71 and the second solid electrolyte 72 constitute an oxygen layer defining member 79, and the oxygen layer defining member 79 regulates the amount of diffusion of oxygen molecules per unit time between the exhaust gas and the space 77. are doing. The rest is similar to the first embodiment.

上記第2固体電解質72、ポンプアノード73
およびポンプカソード74はポンプ部80を構成
しており、また、ポンプ部80、センサ部39、
酸素層画成部材79および基準ガス導入板23は
全体として酸素センサ81を構成している。
The second solid electrolyte 72 and the pump anode 73
and the pump cathode 74 constitute a pump section 80, and the pump section 80, the sensor section 39,
The oxygen layer defining member 79 and the reference gas introduction plate 23 constitute an oxygen sensor 81 as a whole.

したがつて、本実施例においてはVs=Vaとな
るように供給されるポンプ電流Ipにより空間部7
7の酸素分圧が理論空燃比に対応した値に維持さ
れる。その結果、ポンプ電流Ipおよびポンプ電圧
Vpの値を検出することにより第1実施例と同様
に理論空燃比における応答性と検出精度を高めつ
つ、空燃比を精度よく目標空燃比に制御すること
ができる。
Therefore, in this embodiment, the space portion 7 is pumped by the pump current Ip supplied so that Vs = Va.
The oxygen partial pressure of 7 is maintained at a value corresponding to the stoichiometric air-fuel ratio. As a result, pump current Ip and pump voltage
By detecting the value of Vp, the air-fuel ratio can be accurately controlled to the target air-fuel ratio while improving responsiveness and detection accuracy at the stoichiometric air-fuel ratio, as in the first embodiment.

(効果) 本発明によれば、所定空燃比における応答性と
検出精度を高めつつ空燃比をリツチ域からリーン
域まで広範囲に亘り精度よくフイードバツク制御
することができ、特に三元触媒を備えたエンジン
への適応性を高めることができる。
(Effects) According to the present invention, it is possible to accurately feedback control the air-fuel ratio over a wide range from a rich range to a lean range while improving responsiveness and detection accuracy at a predetermined air-fuel ratio, and is particularly suitable for engines equipped with a three-way catalyst. can increase adaptability to

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の酸素センサの断面図、第2、3
図は先願の空燃比制御装置を示す図であり、第2
図はその回路構成図、第3図はそのVi−A/F
特性を示す図、第4図は本発明の全体構成図、第
5〜10図は本発明の第1実施例を示す図であ
り、第5図はその酸素センサの分解斜視図、第6
図はその酸素センサの断面図、第7図はその回路
構成図、第8図はその電流値検出手段の詳細な回
路図、第9図はそのVi−A/F特性を示す図、
第10図はそのVp−A/F特性を示す図、第1
1図は本発明の第2実施例を示すその酸素センサ
の断面図である。 13……目標値設定手段、25……第1固体電
解質、27……第2固体電解質、28……測定電
極、29……基準電極、37……間隙部(酸素
層)、38……酸素層画成部材、39……センサ
部、40……ポンプ部、41,81……酸素セン
サ、51……電流値検出手段、56……ポンプ電
圧検出手段、57……選択手段、60……差値演
算手段、62……空燃比制御手段。
Figure 1 is a cross-sectional view of a conventional oxygen sensor, Figures 2 and 3
The figure shows the air-fuel ratio control device of the prior application, and the second
The figure is its circuit configuration diagram, and Figure 3 is its Vi-A/F
FIG. 4 is a diagram showing the characteristics, and FIG. 4 is an overall configuration diagram of the present invention. FIGS. 5 to 10 are diagrams showing the first embodiment of the present invention. FIG. 5 is an exploded perspective view of the oxygen sensor, and FIG.
Figure 7 is a cross-sectional view of the oxygen sensor, Figure 7 is its circuit configuration diagram, Figure 8 is a detailed circuit diagram of its current value detection means, Figure 9 is a diagram showing its Vi-A/F characteristics,
Figure 10 shows the Vp-A/F characteristics.
FIG. 1 is a sectional view of an oxygen sensor showing a second embodiment of the present invention. 13...Target value setting means, 25...First solid electrolyte, 27...Second solid electrolyte, 28...Measurement electrode, 29...Reference electrode, 37...Gap (oxygen layer), 38...Oxygen Layer defining member, 39... sensor section, 40... pump section, 41, 81... oxygen sensor, 51... current value detection means, 56... pump voltage detection means, 57... selection means, 60... Difference value calculation means, 62...Air-fuel ratio control means.

Claims (1)

【特許請求の範囲】 1 (a) 酸素イオン伝導性の固体電界質を挟ん
で、一定酸素濃度の基準ガス側の基準電極と被
測定ガス側の測定電極とが配設され、両電極間
の酸素分圧比に応じた電圧を出力するセンサ部
と、測定電極を覆い測定電極の囲りに酸素層を
画成するとともに該酸素層と被測定ガスとの間
の酸素分子の拡散量を制限する酸素層画成部材
と、ポンプ電極間に供給される流し込み電流の
値に応じて酸素層の酸素分圧を決定するポンプ
部と、を有する酸素センサと、 (b) 前記センサ部の出力電圧が所定値となるよう
にポンプ部に流し込み電流を供給するととも
に、この流し込み電流の値を検出する電流値検
出手段と、 (c) 前記センサ部の出力電圧が所定値となるよう
にポンプ部に流し込み電流を供給した状態にお
ける前記ポンプ電極間の電圧の値を検出するポ
ンプ電圧検出手段と、 (d) 運転状態に応じて目標空燃比を設定する目標
値設定手段と、 (e) 目標空燃比が理論空燃比である場合にはポン
プ電圧検出手段の出力を、目標空燃比が理論空
燃比でない場合には電流値検出手段の出力を択
一的に選択して出力する選択手段と、 (f) 選択手段および目標値設定手段の出力に基づ
いて現空燃比と目標空燃比の偏差を演算する差
値演算手段と、 (g) 差値演算手段の出力に基づいて空燃比をフイ
ードバツク制御する空燃比制御手段と、 を備えたことを特徴とする空燃比制御装置。
[Scope of Claims] 1 (a) A reference electrode on the side of a reference gas having a constant oxygen concentration and a measurement electrode on the side of the gas to be measured are arranged with an oxygen ion conductive solid electrolyte in between, and a A sensor unit that outputs a voltage according to the oxygen partial pressure ratio, and a sensor unit that covers the measurement electrode to define an oxygen layer around the measurement electrode and limits the amount of diffusion of oxygen molecules between the oxygen layer and the gas to be measured. an oxygen sensor comprising an oxygen layer defining member and a pump section that determines the oxygen partial pressure of the oxygen layer according to the value of the injected current supplied between the pump electrodes; (b) an output voltage of the sensor section; (c) current value detection means for supplying a current to the pump section so that the current is a predetermined value, and detecting the value of the current; (d) a target value setting means for setting a target air-fuel ratio according to an operating state; (f) selection means for selectively selecting and outputting the output of the pump voltage detection means when the target air-fuel ratio is the stoichiometric air-fuel ratio, and the output of the current value detection means when the target air-fuel ratio is not the stoichiometric air-fuel ratio; (g) an air-fuel ratio that performs feedback control of the air-fuel ratio based on the output of the difference value calculation means; An air-fuel ratio control device comprising: a control means;
JP59088115A 1984-05-01 1984-05-01 Air-fuel ratio controller Granted JPS60230537A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP59088115A JPS60230537A (en) 1984-05-01 1984-05-01 Air-fuel ratio controller
US06/729,058 US4658790A (en) 1984-05-01 1985-04-30 Air/fuel ratio detecting device and control system using same
DE19853515588 DE3515588A1 (en) 1984-05-01 1985-04-30 AIR / FUEL RATIO DETECTOR AND THIS CONTROLLING SYSTEM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59088115A JPS60230537A (en) 1984-05-01 1984-05-01 Air-fuel ratio controller

Publications (2)

Publication Number Publication Date
JPS60230537A JPS60230537A (en) 1985-11-16
JPH0428899B2 true JPH0428899B2 (en) 1992-05-15

Family

ID=13933889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59088115A Granted JPS60230537A (en) 1984-05-01 1984-05-01 Air-fuel ratio controller

Country Status (1)

Country Link
JP (1) JPS60230537A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2548131B2 (en) * 1986-03-04 1996-10-30 本田技研工業株式会社 Control method of oxygen concentration sensor
JP2513350B2 (en) * 1990-02-28 1996-07-03 三菱自動車工業株式会社 Air-fuel ratio detector
JPH0469565A (en) * 1990-07-10 1992-03-04 Mitsubishi Motors Corp Fault decision device for air fuel ratio sensor
JPH0469567A (en) * 1990-07-10 1992-03-04 Mitsubishi Motors Corp Fault decision device for air fuel ratio sensor
JPH06137193A (en) * 1992-10-23 1994-05-17 Nippondenso Co Ltd Air-fuel ratio control device for internal combustion engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5859332A (en) * 1981-10-05 1983-04-08 Toyota Motor Corp Air-fuel ratio control device in internal-combustion engine
JPS58143108A (en) * 1982-02-19 1983-08-25 Toyota Motor Corp Air-fuel ratio control method for internal-combustion engine
JPS58153155A (en) * 1982-03-09 1983-09-12 Ngk Spark Plug Co Ltd Oxygen sensor
JPS5967455A (en) * 1982-10-08 1984-04-17 Hitachi Ltd Air/fuel ratio sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5859332A (en) * 1981-10-05 1983-04-08 Toyota Motor Corp Air-fuel ratio control device in internal-combustion engine
JPS58143108A (en) * 1982-02-19 1983-08-25 Toyota Motor Corp Air-fuel ratio control method for internal-combustion engine
JPS58153155A (en) * 1982-03-09 1983-09-12 Ngk Spark Plug Co Ltd Oxygen sensor
JPS5967455A (en) * 1982-10-08 1984-04-17 Hitachi Ltd Air/fuel ratio sensor

Also Published As

Publication number Publication date
JPS60230537A (en) 1985-11-16

Similar Documents

Publication Publication Date Title
US4658790A (en) Air/fuel ratio detecting device and control system using same
KR910006224B1 (en) Air fuel ratio detector
US4905652A (en) Device for measuring a component of a gaseous mixture
US4629535A (en) Method for detecting an air-fuel ratio
US7017567B2 (en) Device and method for measuring element temperature of air-fuel ratio sensor, and device and method for controlling heater of air-fuel ratio sensor
US4723521A (en) Air/fuel ratio control system for an internal combustion engine
JPH0428899B2 (en)
JP2929038B2 (en) Air-fuel ratio sensor drive circuit
JPS60224051A (en) Air-fuel ratio detecting device
JPS60144655A (en) Air-fuel ratio detector
JPH0436341B2 (en)
JPS60144657A (en) Air-fuel ratio controller
JPS6135347A (en) Heater for oxygen sensor
JPS61100651A (en) Apparatus for measuring concentration of oxygen
JPS60200162A (en) Apparatus for measuring concentration of oxygen
JPS59211737A (en) Air-fuel ratio control device
JP3734685B2 (en) Sensor element temperature detection device for air-fuel ratio sensor
JPS60186750A (en) Device for measuring oxygen concentration
JPS60216043A (en) Air-fuel ratio controller
JPS60195447A (en) Oxygen concentration detector
JPS60238755A (en) Air fuel ratio detecting device
JPS60231160A (en) Oxygen concentration measuring apparatus
JPH04204371A (en) Driving circuit for air-fuel ratio sensor
JP2001355505A (en) Air-fuel ratio detecting device for internal combustion engine
JPS59215935A (en) Air-fuel ratio control device