JPS59211737A - Air-fuel ratio control device - Google Patents

Air-fuel ratio control device

Info

Publication number
JPS59211737A
JPS59211737A JP58085585A JP8558583A JPS59211737A JP S59211737 A JPS59211737 A JP S59211737A JP 58085585 A JP58085585 A JP 58085585A JP 8558583 A JP8558583 A JP 8558583A JP S59211737 A JPS59211737 A JP S59211737A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
fuel
control target
target air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58085585A
Other languages
Japanese (ja)
Inventor
Kimitake Sone
曾根 公毅
Takeshi Kitahara
剛 北原
Hatsuo Nagaishi
初雄 永石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP58085585A priority Critical patent/JPS59211737A/en
Publication of JPS59211737A publication Critical patent/JPS59211737A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • F02D41/1475Regulating the air fuel ratio at a value other than stoichiometry
    • F02D41/1476Biasing of the sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • F02D41/1498With detection of the mechanical response of the engine measuring engine roughness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1015Engines misfires

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To improve a fuel cost by providing a means to increase or decrease a fuel volume temporarily when a control target air-fuel ratio is changed for controlling a fuel supply volume of an internal combustion engine precisely. CONSTITUTION:An acute output changing point of an oxygen sensor 23 is moved to a lean air-fuel ratio side according to an electric current sent to the sensor. An air-fuel ratio judging unit 35 judges whether the detected air-fuel ratio is richer or leaner than a control target air-fuel ratio. A means 2 to increase a fuel volume temporarily when the control target air-fuel ratio is switched to the rich side and a means 43 to decrease the fuel volume temporarily when it is switched to the lean side are provided. This construction permits to control the supply volume of the fuel efficiently according to the various air-fuel ratios required.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は排気中の酸素濃度を検出しながら内燃機関の□
燃料供給量をフィードバック制御づる空燃比制御装置に
関する。 内□燃機関に供給する燃料績、換言すると混合気の空燃
比を・精度よく目eiiaに制御することにより、燃費
、排気組成の向上がはかれることは既に良く知られてい
る。 そこで供給混合気の空燃比と密接な相関関係をもつ排気
中の酸素111M[を検出し、この検出結果にもとづい
て燃料供給mをフィードバック制御するようにした装置
が、既に実用化されている。 ところが、′酸素センサの出力特性は、排気中に酸素が
存在するか否かを境にして、つまり泄合気が理論空燃比
よりも濃いか薄いかによって出力が大きく変化し、それ
以外では出力変化率が極めて小さくその判断が離しいた
めに、通常、制御目標値となる空燃比は理論空燃比とせ
ざるを得なh\つた。 これに対して、例えば特開昭56−2548号、特IJ
IIn!(56−105634号公報などにみられるよ
うに、酸素濃度の検出特性が、理論空燃比より−し希薄
側において、排気中に含まれる酸素′a麿値に対応して
出)jが比較的大きく変動づる傾斜型酸素センサを用い
、空燃比を希薄側の所定値にフィードバック制御する装
置が提案されている。しかしながらこの場合、酸itセ
ンサ出力の絶対値が経時的に変化することがあって、同
一の目標空燃比に対づる出力値が異なることがら、種々
の補正を施すにしても長期にわたり安定した制御を維持
することは難しいという欠点があった。 ところが最近、通常の膜帯酸素センサであっても、電極
間に電流を流し込むことにより、またその電流値に応じ
て酸素センサの出力急変点が、理論空燃比よりも希薄側
において変化Jることに着目して、希薄空燃比を検出可
能とした装置が、特願昭54−164822号として提
案された。 これを第1図、第2図に示すと、第1図は酸素センサ素
子1の縦断面模型的結線図、第2図は第1図の酸素セン
サ素子1の模型的分解斜視図であって、隔膜層2はアル
ミナ、ムライト、スピネル等の絶縁性物質からなり、そ
の内部には発熱体3を設
The present invention detects the oxygen concentration in the exhaust gas while controlling the internal combustion engine.
The present invention relates to an air-fuel ratio control device that performs feedback control of fuel supply amount. It is already well known that fuel efficiency and exhaust composition can be improved by precisely controlling the fuel efficiency supplied to an internal combustion engine, in other words, the air-fuel ratio of the air-fuel mixture. Therefore, a device that detects oxygen 111M in the exhaust gas, which has a close correlation with the air-fuel ratio of the supplied air-fuel mixture, and feedback-controls the fuel supply m based on this detection result has already been put into practical use. However, the output characteristics of the oxygen sensor vary greatly depending on whether or not there is oxygen in the exhaust gas, that is, whether the exhaust gas is richer or thinner than the stoichiometric air-fuel ratio; Since the rate of change is extremely small and difficult to judge, the air-fuel ratio that becomes the control target value usually has to be the stoichiometric air-fuel ratio. On the other hand, for example, Japanese Patent Application Laid-Open No. 56-2548, Special IJ
IIn! (As seen in Publication No. 56-105634, the oxygen concentration detection characteristic is expressed in correspondence to the value of oxygen contained in the exhaust gas on the lean side of the stoichiometric air-fuel ratio.) A device has been proposed that uses a tilted oxygen sensor that fluctuates widely to feedback control the air-fuel ratio to a predetermined value on the lean side. However, in this case, the absolute value of the acid IT sensor output may change over time, and the output value for the same target air-fuel ratio will differ, so even if various corrections are made, stable control over a long period of time cannot be achieved. The disadvantage was that it was difficult to maintain. However, recently, even with ordinary membrane oxygen sensors, by flowing a current between the electrodes, and depending on the current value, the point of sudden change in the output of the oxygen sensor can change on the lean side of the stoichiometric air-fuel ratio. Focusing on this, a device capable of detecting a lean air-fuel ratio was proposed in Japanese Patent Application No. 164822/1983. This is shown in FIGS. 1 and 2. FIG. 1 is a vertical cross-sectional schematic wiring diagram of the oxygen sensor element 1, and FIG. 2 is a schematic exploded perspective view of the oxygen sensor element 1 of FIG. , the diaphragm layer 2 is made of an insulating material such as alumina, mullite, spinel, etc., and a heating element 3 is installed inside it.

【プると共に、構造基体として
の強度を保持している。この隔膜層2の表面十には、二
つに分()た基準極電子伝導層4.5を積層し、さらに
その上に酸素イオン伝導性固体電解質層6を積層してい
る。この固体電解質層6の素材どしては、Y。 O8やCaOで安定化したZrO2その他既知のものを
採用することができる。この固体電解質層6の表面には
測定極電子伝導層7を積層し、この測定極電子伝導層7
と前記一方の基準極電子伝導層4との間に電圧測定手段
8を接続して起電力Fの測定を可能にづると共に、測定
極電子伝導層7と前記他方の基準極電子伝導層5との間
に電流供給回路9を接続している。このとき、基準極電
子伝導層4,5および測定極電子伝導層7には触媒活性
の白金を用いているのが望ましく、そのほか白金と白金
族元素との合金その他の材料を適宜選定して使用づるの
が良い。また、上記各電子伝導層4.5.7および固体
電解質層6を積層するに際しては、たとえばそれらの粉
末をペース1〜状にしてスクリーン印刷し、その後焼成
する手段などを用いることができ、その他の手段ににる
ことも可能である。また、発熱体3には加熱用電源10
を接続して酸素センサ素子の8i!度を制御さゼうるよ
うにしている。さらに、前記測定極電子伝導層7上には
、被検ガスから流入Jる酸素分子の拡散を制御しつる拡
散層11を設け、この拡散層11を被検ガスと接触可能
にしている。この拡散層11の素材としては、たとえば
ムライト、スピネル、フォルステライト、カルシウムジ
ルコネートなどを使用づることができ、粉末を用いたス
クリーン印刷法や客側法などによって積層づる。 そこで、上記酸素センリー素子1を用い、電流供給回路
9の正極側を他方の基準極電子伝#B5に接続して電流
を供給すると、前記測定極電子伝導層7から基準極電子
伝導層5に向【プ゛(強制的に酸素イAンの移動を生ず
る。このとき、拡散層11の存在ににって被検ガスから
の酸素分子の流入拡散が制御されでいるため、測定極酸
素分圧は被検ガス中の酸素分圧にりも低下する。他方、
13準極電子伝導層5に向けて酸素イオンが流れること
により基準酸素分圧が高められるが、この基準極電子伝
導層5に存在する酸素分子は、隔膜層2が多孔性の場合
に前記隔膜F12内を拡散して、あるいは隔膜層2がち
密で固体電解質層6が多孔性の場合に前記固体電解質層
6内を拡散して、もしくは両方を拡散して、前記酸素イ
オンの流入と前記酸素分子の拡散との均衡した状態の基
準極酸素分圧が維持される。そこで、前記被検ガス中の
酸素分圧よりも低下した測定極酸素分圧と上記基?#極
酸素分圧との差に対応して発生する起電力Eを電圧測定
手段8によって測定すれば、前記測定極酸素分圧が被検
ガス中の酸素分圧よりも低下した関係を維持しつつ被検
ガス中の酸素分圧の変化に応じて上記測定極酸素分圧も
変化するため、理論空燃比よりも希薄な空燃比の検出が
可能になる。 第3図は基準極電子伝導層5から測定極電子伝導層7に
向けて流し込む電流を、それぞれI、〜I、と変えたと
きの、センサ出力Vと空燃比の関係を承りものである。 流し込み電流が少ないどきは、センサ出力が急変づる空
燃比は理論空燃比に近づき、流し込み電流が増加りるほ
と出力急変空燃比は希薄側へと移行することが分かる。 したがってこのような装置によれば、理論空燃比J:り
も希薄側の混合気であっても、正確に空燃比を判断する
ことができる。 内燃機関の燃費率は、J!II論空燃比よりもやや希薄
側において最良となることは、既に良く知られていると
ころであるが、機関出力を高めるためには、理論空燃比
あるいはそれよりもやや濃い混合気が必要である。この
ように機関に要求される混合気はそのときどきの運転条
件によって種々に変化するのであり、いずれに対しくも
正確に目標値通りに空燃比が制御されることが好ましい
のであるが、従来は、例えば運転類磨の高い部分負荷域
で所定の空燃比が得られるように、上述した酸素センサ
を用いて燃料供給■をフィードバック制御していても、
全負荷1或ではフィードバック制御を一時的に停止して
、A−プンループ制御ににり空燃比を濃くしていたため
、かかる領域での制御精度は必ずしも高いものではなく
、9しく駄に燃料を消費する傾向があった。 本発明はかかる問題に着目してなされたもので、内燃機
関の運転状態によって異なる種々の要求空燃比に対して
、常に燃料供給量をフィードバック制御することにより
精度よく対応させ、かつ空燃比の切換時の応答性を高め
、全ゆる運転域で燃費のより一層の改善と、運転動力性
能の向1をはかることを目的とする。 そこで本発明は、センサ流し込み電流に応じてセンサ出
力の急変点が希薄空燃比側へと移行覆る酸素センサと、
機関の運転状態を検出づる手段と、運転状態に応じて最
適な制御目標空燃比を決定J−る手段と、この制御目標
空燃比が得られるように燃料噴射量を演算する手段と、
同じく制御目標空燃比に応じた電流を前記酸素センサに
流し込む手段と、酸素センサの出力にもとづいて検出空
燃比が制御目標空燃比よりも濃いか薄いかを判断する手
段と、該判断結果にもとづいて制御目標空燃比と一致す
るJ:うに前記燃料供給量を補正】−るフィードバック
制御手段と、制御目標空燃比が濃側へ切換わるときに一
時的に燃料増量する手段と、同じく制御目標空燃比が薄
側へ切換わるときに一時的に燃料減量する手段とを備え
ている。−したがって制御目標空燃比が切換わるときは
、基本的な燃料供給量の相対的増減に加えて、切換わる
瞬間に一時的に燃y!+1の増mまたは減、■分が上乗
ゼされるために、切換後、速やかに目標空燃比に近づり
られるのであり、また同一空燃比のどきは通常のフィー
ドバック制御により正確に目標空燃比を維持することが
できる。 以下、本発明の実施例を図面にもとづいて説明づる。 第4図は、本発明に用いる脱型酸素センサの具体的な構
造を示している。 酸素センサ素子1はホルダ17の内部に収められ、先端
部に形成した小孔11をもつルーバ部12から排気ガス
が流入する。 酸素センサ素子1はこの排気ガス中に露?され、排気中
の酸素濃度に応じて出ノJを発生ずる。 13〜15はそれぞれセンサ出力取出用リード線、ヒー
タ用リード線、共通アース用リード線を示し、排気ガス
が漏洩するのを防ぐために、絶縁管18の内部にガス漏
れ防止用充填材19が11止される。 16は結線用のコネクタを示1゜ なお、内燃機関の排気管(図示せず)にえ[しては、図
中、A−A線より左側の部分が挿入されることになる。 第5図は制御回路をあられ1もので、20は1幾関に供
給する燃料量を含めて機関に必要な種々の要素をコント
ロールづる、例えばマイコンなどで構成された制御回路
であって、この実施例においては、運転状態を代表づる
ものとして機関負荷検出手段(例えば吸入負圧センサ、
吸入空気a tン丈等)21の検出信号から運転状態を
判別し、この運転状態に対応して後述するように空燃比
の制御目標値を決定したり、燃料供給mを制御したりす
る。 25は酸素センサ−23に対す゛る流し込み電流を、上
記制御目標値に応じて増減する回路で、前記制御回路2
0からの信号S、がハイレベル「ト1」のときに導通す
るトランジスタ26と、同じくローレベル「1−」のと
きに導通づるトランジスタ27、及びこれらトランジス
タ26.27に直列に接続され、センサ流し込み電流の
大きさを変える抵抗28.29とから構成される。 30は酸素センサ23の出力を増幅して取出づアンプ、
35は酸素センサ出力の変化から目標空燃比J:りも濃
いか薄いかを判断する比較器である。 第3図にもポリ゛ように、センサ流し込み電流によって
酸素センサの出力急変Jる空燃比が希薄側にずれるが、
同時にセンサ出力電圧も相対的に変化(゛空燃比が希薄
側へ移行づるほど出力電圧が上昇)するため、上記比較
器35の比較電圧(スライスレベル)を目標空燃比の切
換えに伴って切換える必要がある。 36はこのための切換回路であって、上記制御回路20
からの信号S、が「I]]のときに導通して比較電圧設
定部33からの電圧を比較器;35に印加するトランジ
スタ31と、同じ< (a 舅S l がrLJのとき
に導通して比較電圧設定部34からの電圧を比較器35
に印加するトランジスタ32から構成される。 22は燃料供給量のフィードバック制御部で、比較器3
5の出力にもとづいて制御回路20から出力される信号
S、により、供給量を増減補正りる。 24はセンサに内蔵される発熱体(ヒータ)である。と
ころで、第6図にも示すように、制御回路20は前述し
たように運転状態に応じて最適な制御目標空燃比を決定
する回路40の他、次にような構成要素を含んでいる。 41は制御目標空燃比が決定されると、この空燃比が待
られるように、吸入空気量、機関回転数などの検出信号
にもとJいて基本的な燃料噴!)111を演算する演算
回路である。 42は制御目標空燃比が運転状態の変化に伴って濃側へ
切換わるときに、一時的に燃料供給量を増m−tする回
路、43は同じく薄側へり換わるときに一時的に燃料供
給量を減量する回路であり、具体的には通常の空燃比フ
ィードバック制御の手法として用いられるPI(比例・
積分)制御における、比例制御分を同一空燃比での制御
時に比べて、空燃比切換時に大きくするものである。 空燃比の切換時は基本的な燃料噴射量も変化づるが、こ
れを排気中の酸素濃度として検出してから補正を行なう
ため、切換直後にはどうしても応答遅れが大きくなる。 そこで、空燃比を切換える瞬間に、予め所定りだけ燃料
を増量もしくは減量することにより、できるだけ速やか
に目標空燃比に近づけられるようにしたのである。 44は補正回路であって、基本的な燃料供給m信号を、
比較器35からの信号にもとづいて上記の通り制御目標
空燃比が得られるように補正し、また、前記燃料の増量
または減量回2842.43からの(g号が入力すると
、ただちにこれらを上乗せして燃料のフィードバック制
御部22に燃料供給量補正信号を出力づる。 次に作用について第7図を含めて説明する。 酸素センサ23に電流を流し込むことにより、測定極電
子伝導層7から基準極電子伝導層5に向けて酸素イオン
が移動し、外側にある測定極側の酸素分圧が低下し、こ
れに伴って第3図のように空燃比に対するセンサ出力の
急変点が変化づることは、前述した通りである。 具体的には上記流し込み電流を大きくづるほとセンサ出
力の急変点は、希薄空燃比側へと移行し、したがってそ
の電流10に応じた空燃比を境にし−(、それよりも空
燃比が濃いか簿いかで、センサ出力は大幅に変化するこ
とから、理論空燃比以外の空燃比についても検出できる
のである。 制御回路20は、運転状態検出手段としての負荷検出手
段21からの信号にもとづき運転状態を判断し、加速、
高負荷時に制御I II 4ff空燃比を濃くするため
の信号S、としてrHJを出力し、アイドル、低負荷時
には目標空燃比をS<tするためrLlを出力する。 いま加速運転状態に移り信号S、がr I−I Jにな
ったどすると、電流供給回路25のトランジスタ26が
ONになり、抵抗28を介して電流1.が酸素センナ2
3に供給され、これにより酸素センナ23は、本実施例
では理論空燃比を境にして出力が急変する特性となる。 また、信号S、の「]]」により、比較電圧切換回路3
6では、トランジスタ31のONに伴い電圧設定部33
の出力が、比較器35の比較基準電圧どして入力される
。 したがって、このような加速時などに、燃料供給量が不
足して理論空燃比よりも希薄ならば、酸素センサ23の
出力は低く、比較器35は1コーレベルの信号を制御回
路2oに出力するため、燃料供給用のフィードバック制
御部22には燃料を増量するように指令が送られるし、
逆に空燃比が濃【ノれば酸素センサ23の出力が立上が
り、比較器35の比較基準電圧を越えた時点で比較器3
5の出力がハイレベルに切換わり、同じく燃料を減らす
制御が行なわれ、実際にはこれらの動作が極め′C短時
間のうちに繰り返されるため、混合気を[1標値である
理論空燃比に精度よく収束させられるのである。 ところで、運転状態が加速運転へ移行して制御目標空燃
比が園側へ切換わると、これと同時に増量回路42によ
り切換わった瞬間に一時的に燃料噴射量が所定値だけ増
量される。 このため、切換俊速やかに空燃比は理論空燃比に向けて
移行し、加速応答性が向上する。 この増量は切換時に瞬間的に行なわれるだけであるが、
同時に燃料演算回路41が吸入空気量や機関回転数信号
などにもとづい−C理論空燃比を得るのに必要な燃料噴
射量を演算し、それまでの希薄空燃比に比較して燃料を
相対的に増やすため、いわばこれに上乗せしたかたちで
燃料が増やされることになる。 燃料演算回路41による基本燃料噴用舟の演算及び酸素
センサ23の出力にもとづくフィードバック制御は、空
燃比゛を切換えた瞬間には応答遅れが避けられないが、
このようにフィードバック制御とは無関係に一時的に燃
料を増やすことで、この制御遅れを解消することができ
る。 次いで運転状態が変化し、例えば低負荷運転へ移行した
とすると、制御回路20の制御目標空燃比決定回路40
からの信号S、はr L Jに切換わり、これに伴い電
流供給回路25のトランジスタ27がONになり、抵抗
29を介して例えば空燃比△、−’ F = 20に相
当する電流I2を酸素センサ23に流し込む。 このため酸素センサ23は上記した理論空燃比よりも希
薄なΔ/F=20を境にして出力が急変覆る特性に切換
わる。 同時に比較器35の設定基準電圧も、トランジスタ32
のONに伴い電圧設定部34がらの出力に切換ねり、し
たがって、こんどは制御目標空燃比としてΔ、/ F 
== 20を境にして空燃比がそれよりも濃いか薄いか
の判断が行なわれ、結局A/F=20の空燃比が得られ
るように燃料供給量のフィードバック制御が行なわれる
のである。 そして、この制御目標空燃比の切換時にも、前記と同様
にして、こんどは減量回路43からの信号で一時的に燃
料が所定値だけ減量され、空燃比は速やかに希薄目標空
燃比へと近づく。 なお、第、7図において、制御目標空燃比は2種の切換
えが行なわれ、定常走行時には空燃比A7・′F=20
で、加速時には理論空燃比となるように制御される。 空燃比の切換時には燃料噴射m補正信すの比例制御分が
大きく変化しているため、酸素(02)センサ出力が若
干遅れて変化しているにもかかわらず、制御空燃比は応
答よく目標値に向けて収束する。 ところで第8図は、制御回路20におりる一連の制御を
マイクロコンピュータを用いて行なう場合のフローチャ
ートを示すもので、制御目標空燃比が理論空燃比(A/
F=14.7)のときと、A/F=20のときとで、そ
れぞれ同一状態を維持している場合と、制御目標空燃比
の切換を行なうときとを判別して、空燃比切換時にはそ
のときだけそれぞれ比例制御分を通常時より大きく設定
している。 Δ/F=14.7からA/F=20に切換ったときは、
燃料を減らづ方向へ制御するため、下り[)(比例)制
御を通常1fl J、りもαだ【プ大きくし、逆に△/
F=20からA/F=14.7に切換ったときは、燃料
を増やす方向へ制御部るために、上りP制御を通常値よ
りもαだけ大きくしている。 なお、°ノローチャートにおいて、第1段及び第2段の
判別は、制御目標空燃比が、Δ/ F = 20かA/
F=14.7であるかを判断し、それぞれその次からは
各目標空燃比に対して濃いl)か薄いくし、)かの判断
を行なっている。 下りl制御とは燃料減聞方向への積分制御、上りl制御
とは同じく増量方向への積分制御をあられしている。 以上説明したにうに本発明によれば、運転状態に応じて
異なる要求空燃比に対して、それぞれ精度よく燃料供給
mを制御りることが可能であって、とくに希薄混合気に
よる運転域での燃焼安定性の向上に大きく寄与し、燃費
の一層の改善がはかれる。 また、制御目標空燃比の切換時には、燃l!Iを瞬間的
に増量または減帛するので、切換直後の空燃比の収束応
答性にJぐれ、機関の加速性能舌の向上がはかれるとい
う効果がある。
[It also maintains its strength as a structural base.] On the surface of this diaphragm layer 2, a two-part reference electrode electron conductive layer 4.5 is laminated, and an oxygen ion conductive solid electrolyte layer 6 is further laminated thereon. The material of this solid electrolyte layer 6 is Y. ZrO2 stabilized with O8 or CaO or other known materials can be used. A measurement electrode electron conduction layer 7 is laminated on the surface of this solid electrolyte layer 6.
A voltage measuring means 8 is connected between the reference electrode electron conducting layer 7 and the one reference electrode electron conducting layer 4 to enable the measurement of the electromotive force F, and the measuring electrode electron conducting layer 7 and the other reference electrode electron conducting layer 5 A current supply circuit 9 is connected between them. At this time, it is desirable to use catalytically active platinum for the reference electrode electron conductive layers 4, 5 and the measurement electrode electron conductive layer 7, and in addition, alloys of platinum and platinum group elements and other materials are appropriately selected and used. It's good to read. Further, when laminating each of the electron conductive layers 4.5.7 and the solid electrolyte layer 6, it is possible to use a method in which, for example, these powders are formed into pastes 1 to 1, screen printed, and then fired, etc. It is also possible to take the following measures. In addition, the heating element 3 is provided with a heating power source 10.
Connect the oxygen sensor element 8i! I try to control the amount of water. Furthermore, a diffusion layer 11 is provided on the measurement electrode electron conduction layer 7 to control the diffusion of oxygen molecules flowing from the test gas, and this diffusion layer 11 is made to be in contact with the test gas. As the material of this diffusion layer 11, for example, mullite, spinel, forsterite, calcium zirconate, etc. can be used, and it is laminated by a screen printing method using powder or a customer side method. Therefore, when using the above-mentioned oxygen sensory element 1 and connecting the positive electrode side of the current supply circuit 9 to the other reference electrode electron conductor #B5 to supply a current, from the measurement electrode electron conductive layer 7 to the reference electrode electron conductive layer 5. (Forcibly causes the movement of oxygen ions. At this time, the presence of the diffusion layer 11 controls the inflow and diffusion of oxygen molecules from the sample gas, so the oxygen content at the measurement pole is The pressure also decreases due to the partial pressure of oxygen in the test gas.On the other hand,
13 The reference oxygen partial pressure is increased by the flow of oxygen ions toward the quasi-electrode electron-conducting layer 5. When the diaphragm layer 2 is porous, the oxygen molecules present in the reference-electrode electron-conducting layer 5 The influx of oxygen ions and the oxygen A reference polar oxygen partial pressure is maintained in equilibrium with molecular diffusion. Therefore, what is the measured polar oxygen partial pressure that is lower than the oxygen partial pressure in the test gas and the above group? #If the electromotive force E generated in response to the difference with the polar oxygen partial pressure is measured by the voltage measuring means 8, the relationship that the measured polar oxygen partial pressure is lower than the oxygen partial pressure in the test gas is maintained. At the same time, since the measured polar oxygen partial pressure also changes in accordance with changes in the oxygen partial pressure in the test gas, it becomes possible to detect an air-fuel ratio leaner than the stoichiometric air-fuel ratio. FIG. 3 shows the relationship between the sensor output V and the air-fuel ratio when the current flowing from the reference electrode electron conductive layer 5 to the measurement electrode electron conductive layer 7 is changed from I to I, respectively. It can be seen that when the injected current is small, the air-fuel ratio at which the sensor output suddenly changes approaches the stoichiometric air-fuel ratio, and as the injected current increases, the air-fuel ratio that suddenly changes the output shifts to the lean side. Therefore, according to such a device, even if the air-fuel mixture is on the lean side than the stoichiometric air-fuel ratio J, it is possible to accurately determine the air-fuel ratio. The fuel efficiency rate of internal combustion engines is J! It is already well known that the best air-fuel ratio is slightly leaner than the stoichiometric air-fuel ratio, but in order to increase engine output, a mixture that is at or slightly richer than the stoichiometric air-fuel ratio is required. In this way, the air-fuel mixture required by the engine changes in various ways depending on the operating conditions at the time, and it is desirable to control the air-fuel ratio accurately to the target value. For example, even if the fuel supply ■ is feedback-controlled using the oxygen sensor mentioned above so that a predetermined air-fuel ratio can be obtained in a part-load region with high driving performance,
At full load 1, the feedback control was temporarily stopped and the air-fuel ratio was enriched using A-pun loop control, so the control accuracy in such a region was not necessarily high, and the fuel was consumed unnecessarily. There was a tendency to The present invention has been made with attention to this problem, and it is possible to accurately respond to various required air-fuel ratios that vary depending on the operating state of the internal combustion engine by constantly feedback controlling the fuel supply amount, and to switch the air-fuel ratio. The aim is to improve fuel efficiency in all driving ranges, and improve driving power performance. Therefore, the present invention provides an oxygen sensor in which the sudden change point of the sensor output shifts to the lean air-fuel ratio side according to the sensor current;
means for detecting the operating state of the engine; means for determining the optimum control target air-fuel ratio according to the operating state; and means for calculating the fuel injection amount so as to obtain the control target air-fuel ratio;
Similarly, means for flowing a current corresponding to the control target air-fuel ratio into the oxygen sensor, means for determining whether the detected air-fuel ratio is richer or leaner than the control target air-fuel ratio based on the output of the oxygen sensor, and based on the determination result. A feedback control means that corrects the fuel supply amount to match the control target air-fuel ratio when the control target air-fuel ratio switches to the rich side; and means for temporarily reducing the amount of fuel when the fuel ratio is switched to the lean side. - Therefore, when the control target air-fuel ratio changes, in addition to the basic relative increase/decrease in the fuel supply amount, there is a temporary increase or decrease in fuel consumption at the moment of the change. Since the increase or decrease of +1 m or ■ is added, the target air-fuel ratio can be quickly approached after switching, and the same air-fuel ratio can be accurately set to the target air-fuel ratio by normal feedback control. can be maintained. Embodiments of the present invention will be described below based on the drawings. FIG. 4 shows the specific structure of the demolded oxygen sensor used in the present invention. The oxygen sensor element 1 is housed inside a holder 17, and exhaust gas flows into the louver section 12 having a small hole 11 formed at its tip. Is oxygen sensor element 1 exposed to this exhaust gas? and generates an output depending on the oxygen concentration in the exhaust gas. Reference numerals 13 to 15 indicate a sensor output lead wire, a heater lead wire, and a common ground lead wire, respectively. In order to prevent exhaust gas from leaking, a gas leakage prevention filler 19 is provided inside the insulating tube 18. be stopped. Reference numeral 16 denotes a connector for wiring, and the part to the left of line A--A in the figure is inserted into the exhaust pipe (not shown) of the internal combustion engine. Figure 5 shows the control circuit 20, which is composed of a microcomputer, etc., and controls various elements necessary for the engine, including the amount of fuel supplied to the engine. In the embodiment, engine load detection means (for example, suction negative pressure sensor,
The operating state is determined from the detection signal of the intake air (intake air length, etc.) 21, and the control target value of the air-fuel ratio is determined and the fuel supply m is controlled in accordance with the operating state, as will be described later. 25 is a circuit that increases or decreases the current flowing into the oxygen sensor 23 according to the control target value;
A transistor 26 is conductive when the signal S from 0 is at a high level "T1", a transistor 27 is conductive when the signal S is at a low level "1-", and these transistors 26 and 27 are connected in series, and the sensor It is composed of resistors 28 and 29 that change the magnitude of the flowing current. 30 is an amplifier for amplifying and extracting the output of the oxygen sensor 23;
Reference numeral 35 is a comparator that determines whether the target air-fuel ratio J: is rich or lean based on changes in the oxygen sensor output. As shown in Figure 3, the output of the oxygen sensor suddenly changes due to the sensor current, and the air-fuel ratio shifts to the lean side.
At the same time, the sensor output voltage also changes relatively (the output voltage increases as the air-fuel ratio shifts to the leaner side), so it is necessary to switch the comparison voltage (slice level) of the comparator 35 in conjunction with switching the target air-fuel ratio. There is. 36 is a switching circuit for this purpose, which is connected to the control circuit 20.
The transistor 31 is conductive when the signal S from is ``I'' and applies the voltage from the comparison voltage setting section 33 to the comparator; The voltage from the comparison voltage setting section 34 is transferred to the comparator 35.
It is composed of a transistor 32 that applies an voltage to the voltage. 22 is a feedback control unit for fuel supply amount, and comparator 3
The supply amount is corrected to increase or decrease based on the signal S output from the control circuit 20 based on the output of the control circuit 20. 24 is a heating element (heater) built into the sensor. By the way, as shown in FIG. 6, the control circuit 20 includes the following components in addition to the circuit 40 that determines the optimum control target air-fuel ratio according to the operating state as described above. 41, when the control target air-fuel ratio is determined, basic fuel injection is performed based on detection signals such as intake air amount and engine speed so that this air-fuel ratio is waited for! )111. 42 is a circuit that temporarily increases the fuel supply amount m-t when the control target air-fuel ratio switches to the rich side due to a change in the operating condition, and 43 is a circuit that temporarily increases the fuel supply amount when the control target air-fuel ratio switches to the lean side. It is a circuit that reduces the amount of air, and specifically, it is a circuit that reduces the amount of
In integral) control, the proportional control component is made larger when switching the air-fuel ratio compared to when controlling at the same air-fuel ratio. When switching the air-fuel ratio, the basic fuel injection amount also changes, but since this is detected as the oxygen concentration in the exhaust gas and then corrected, the response delay inevitably increases immediately after switching. Therefore, at the moment when the air-fuel ratio is switched, the amount of fuel is increased or decreased by a predetermined amount in advance, so that the air-fuel ratio can be brought close to the target air-fuel ratio as quickly as possible. 44 is a correction circuit, which converts the basic fuel supply m signal into
Based on the signal from the comparator 35, it is corrected so that the control target air-fuel ratio is obtained as described above, and when (g) is input from the fuel increase or decrease time 2842.43, these are added immediately. and outputs a fuel supply amount correction signal to the fuel feedback control section 22.Next, the operation will be explained with reference to FIG. Oxygen ions move toward the conductive layer 5, the oxygen partial pressure on the outside measurement electrode side decreases, and as a result, the sudden change point of the sensor output with respect to the air-fuel ratio changes as shown in Figure 3. As mentioned above, specifically, as the above-mentioned injected current increases, the sharp change point of the sensor output shifts to the leaner air-fuel ratio side, and therefore, the air-fuel ratio corresponding to the current 10 is the boundary - (, Since the sensor output changes significantly depending on whether the air-fuel ratio is higher or lower than the stoichiometric air-fuel ratio, it is possible to detect air-fuel ratios other than the stoichiometric air-fuel ratio. The driving status is determined based on the signal from the
rHJ is output as the signal S to enrich the control I II 4ff air-fuel ratio during high load, and rLl is output to make the target air-fuel ratio S<t during idle and low load. Now, when the accelerating operation state is entered and the signal S becomes r I-I J, the transistor 26 of the current supply circuit 25 is turned on, and the current 1. is oxygen senna 2
As a result, in this embodiment, the oxygen senna 23 has a characteristic in which the output suddenly changes after reaching the stoichiometric air-fuel ratio. In addition, the comparison voltage switching circuit 3
6, as the transistor 31 turns on, the voltage setting section 33
The output of the comparator 35 is inputted as a comparison reference voltage. Therefore, during such acceleration, if the fuel supply amount is insufficient and the air-fuel ratio is leaner than the stoichiometric air-fuel ratio, the output of the oxygen sensor 23 is low and the comparator 35 outputs a signal of 1 core level to the control circuit 2o. , a command is sent to the fuel supply feedback control unit 22 to increase the amount of fuel,
On the other hand, if the air-fuel ratio is rich, the output of the oxygen sensor 23 rises and the comparator 3
The output of No. 5 switches to high level, and control to reduce the fuel is also carried out. In reality, these operations are repeated in an extremely short period of time, so the air-fuel mixture is reduced to the stoichiometric air-fuel ratio, which is the target value. can be converged with high accuracy. By the way, when the operating state shifts to accelerated operation and the control target air-fuel ratio is switched to the low side, the fuel injection amount is temporarily increased by a predetermined value by the increase circuit 42 at the moment of switching. Therefore, the air-fuel ratio quickly shifts toward the stoichiometric air-fuel ratio during switching, improving acceleration response. This increase is only instantaneous at the time of switching, but
At the same time, the fuel calculation circuit 41 calculates the fuel injection amount necessary to obtain the -C stoichiometric air-fuel ratio based on the intake air amount, engine speed signal, etc., and compares the fuel with the previous lean air-fuel ratio. In order to increase this, fuel will be added on top of this, so to speak. Feedback control based on the basic fuel injection calculation by the fuel calculation circuit 41 and the output of the oxygen sensor 23 inevitably causes a response delay at the moment the air-fuel ratio is switched.
In this way, by temporarily increasing the amount of fuel regardless of feedback control, this control delay can be eliminated. Next, if the operating state changes and, for example, shifts to low-load operation, the control target air-fuel ratio determining circuit 40 of the control circuit 20
The signal S, from , is switched to r L J, and accordingly, the transistor 27 of the current supply circuit 25 is turned on, and the current I2 corresponding to, for example, the air-fuel ratio Δ, -' F = 20 is supplied to oxygen via the resistor 29. Pour into sensor 23. For this reason, the oxygen sensor 23 switches to a characteristic in which the output changes abruptly at Δ/F=20, which is leaner than the stoichiometric air-fuel ratio. At the same time, the set reference voltage of the comparator 35 is also set by the transistor 32.
As the voltage setting unit 34 turns on, the output is switched to Δ, /F as the control target air-fuel ratio.
==20, it is determined whether the air-fuel ratio is richer or leaner than that, and feedback control of the fuel supply amount is performed so that the air-fuel ratio of A/F=20 is obtained. When switching the control target air-fuel ratio, the fuel is temporarily reduced by a predetermined value in response to a signal from the reduction circuit 43 in the same manner as described above, and the air-fuel ratio quickly approaches the lean target air-fuel ratio. . In addition, in FIG. 7, the control target air-fuel ratio is switched between two types, and during steady running, the air-fuel ratio is A7・'F=20.
During acceleration, the air-fuel ratio is controlled to be at the stoichiometric air-fuel ratio. When switching the air-fuel ratio, the proportional control component of the fuel injection m correction signal changes significantly, so even though the oxygen (02) sensor output changes with a slight delay, the controlled air-fuel ratio responds well to the target value. converge towards. By the way, FIG. 8 shows a flowchart when a microcomputer is used to perform a series of controls in the control circuit 20, and the control target air-fuel ratio is the stoichiometric air-fuel ratio (A/
F=14.7) and A/F=20, it is determined whether the same state is maintained or when the control target air-fuel ratio is to be switched, and when the air-fuel ratio is switched, Only in that case, the proportional control portion is set larger than in normal times. When switching from Δ/F=14.7 to A/F=20,
In order to control the fuel in the direction without reducing it, the downhill [) (proportional) control is normally set at 1 fl J, and the limit is increased, and vice versa △/
When switching from F=20 to A/F=14.7, the upstream P control is made larger than the normal value by α in order to increase the amount of fuel. In addition, in the ° flow chart, the first stage and second stage are determined whether the control target air-fuel ratio is Δ/F = 20 or A/
It is determined whether F=14.7, and from then on, a determination is made as to whether the target air-fuel ratio should be rich (1) or thin (1). Downward l control refers to integral control in the direction of fuel depletion, and upward l control refers to integral control in the direction of increase. As explained above, according to the present invention, it is possible to control the fuel supply m with high precision for different required air-fuel ratios depending on the operating conditions, especially in the operating range with a lean mixture. This greatly contributes to improving combustion stability and further improves fuel efficiency. Also, when switching the control target air-fuel ratio, the fuel l! Since I is increased or decreased instantaneously, the convergence response of the air-fuel ratio immediately after switching is affected, and the acceleration performance of the engine is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の酸素センサをあられづ断面図、第2図は
同じくその分解斜視図、第3図はセンリ゛流し込み電流
を変化さけたときのセンリー出力と空燃比の関係を示す
特性図である。第4図は本発明の酸素レンVの構造断面
図、第5図は空燃比制御回路の回路図、第6図は同じく
ブロック回路図、第7図は空燃比制御状態をあられづタ
イムチ亀・−ト、第8図は空燃比制御のフローチャート
である。 20・・・空燃比制御回路、21・・・運転状態検出手
段、22・・・燃料供給量のフィードバック制御部、2
3・・・酸素センサ、25・・・酸素センザ流し込み電
流制御回路、35・・・比較器(空燃比判断手段)、3
6・・・比較電圧切換回路、40・・・制御目標空燃比
決定回路、41・・・燃料噴!)1!演算回路、42・
・・燃料増重回路、43・・・燃料減m回路。 特許出願人   日産自動車株式会社
Figure 1 is a cross-sectional view of a conventional oxygen sensor, Figure 2 is an exploded perspective view of the same, and Figure 3 is a characteristic diagram showing the relationship between sensor output and air-fuel ratio when the sensor current is varied. be. FIG. 4 is a cross-sectional view of the structure of the oxygen tank V of the present invention, FIG. 5 is a circuit diagram of the air-fuel ratio control circuit, FIG. 6 is a block circuit diagram, and FIG. FIG. 8 is a flowchart of air-fuel ratio control. 20...Air-fuel ratio control circuit, 21...Operating state detection means, 22...Fuel supply amount feedback control unit, 2
3...Oxygen sensor, 25...Oxygen sensor inflow current control circuit, 35...Comparator (air-fuel ratio judgment means), 3
6... Comparison voltage switching circuit, 40... Control target air-fuel ratio determining circuit, 41... Fuel injection! )1! Arithmetic circuit, 42・
...Fuel increase circuit, 43...Fuel reduction m circuit. Patent applicant Nissan Motor Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] センザ流し込み電流に応じてセンサ出力の急変点が希薄
空燃比側へと移行する酸素Lンサと、機関の運転状態を
検出する手段と、運転状態に応じて最適な制御目標空燃
比を決定する手段と、この制御目標空燃比が得られるよ
うに燃料供給量を演算する手段と、同じく制御目標空燃
比に応じた電流を前記酸素センサに流し込む手段と、酸
素センサの出力にもとづいて検出空燃比が制御目標空燃
比よりも淵いか薄いかを判11iする手段と、該判断結
果にもとづいて制御目標空燃比と一致するように前記燃
ヤ1供給(4)を補正づるフィードバック制御手段と、
制御目標空燃比が濃側へ切換わるときに一時的に燃料を
増mづ゛る手段と、同じく制御目標空燃比が薄側へ切換
わるときに一時的に燃料を減m−tする手段とを備えた
ことを特徴とづる空燃比制御装置。
An oxygen L sensor whose sensor output suddenly shifts to a leaner air-fuel ratio depending on the sensor current, a means for detecting the operating state of the engine, and a means for determining the optimum control target air-fuel ratio according to the operating state. and a means for calculating the fuel supply amount so as to obtain the control target air-fuel ratio, a means for flowing a current corresponding to the control target air-fuel ratio into the oxygen sensor, and a means for calculating the detected air-fuel ratio based on the output of the oxygen sensor. A means for determining whether the air-fuel ratio is at the edge or thinner than the control target air-fuel ratio; and a feedback control means for correcting the fuel supply (4) so as to match the control target air-fuel ratio based on the determination result;
A means for temporarily increasing the amount of fuel (m-t) when the control target air-fuel ratio switches to the rich side, and a means for temporarily decreasing the fuel (m-t) when the control target air-fuel ratio also switches to the lean side. An air-fuel ratio control device characterized by comprising:
JP58085585A 1983-05-16 1983-05-16 Air-fuel ratio control device Pending JPS59211737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58085585A JPS59211737A (en) 1983-05-16 1983-05-16 Air-fuel ratio control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58085585A JPS59211737A (en) 1983-05-16 1983-05-16 Air-fuel ratio control device

Publications (1)

Publication Number Publication Date
JPS59211737A true JPS59211737A (en) 1984-11-30

Family

ID=13862886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58085585A Pending JPS59211737A (en) 1983-05-16 1983-05-16 Air-fuel ratio control device

Country Status (1)

Country Link
JP (1) JPS59211737A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62251441A (en) * 1986-04-25 1987-11-02 Fuji Heavy Ind Ltd Air fuel ratio controller of lean burn engine
JPS62251442A (en) * 1986-04-25 1987-11-02 Fuji Heavy Ind Ltd Air fuel ratio controller of lean burn engine
JP2011033506A (en) * 2009-08-03 2011-02-17 Yazaki Corp Redox determining sensor, oxygen sensor, redox determining method and method for measuring oxygen concentration of oxygen sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62251441A (en) * 1986-04-25 1987-11-02 Fuji Heavy Ind Ltd Air fuel ratio controller of lean burn engine
JPS62251442A (en) * 1986-04-25 1987-11-02 Fuji Heavy Ind Ltd Air fuel ratio controller of lean burn engine
JP2011033506A (en) * 2009-08-03 2011-02-17 Yazaki Corp Redox determining sensor, oxygen sensor, redox determining method and method for measuring oxygen concentration of oxygen sensor

Similar Documents

Publication Publication Date Title
KR870001890B1 (en) Exhaust gas e.g.r.control apparatus
US4707241A (en) Air/fuel ratio control system including means to well time start of feedback
US4905652A (en) Device for measuring a component of a gaseous mixture
KR880000160B1 (en) Control apparatus of air-fuel ratio for engine
JPH073403B2 (en) Abnormality detection method for oxygen concentration sensor
KR100355133B1 (en) Limit Current Sensor for Determining Lambda Values in Gas Mixtures
EP0153731A2 (en) Air-fuel ratio sensor
JPH0260142B2 (en)
US7017567B2 (en) Device and method for measuring element temperature of air-fuel ratio sensor, and device and method for controlling heater of air-fuel ratio sensor
US4566419A (en) Apparatus and method for controlling air-to-fuel ratio for an internal combustion engine
US4723521A (en) Air/fuel ratio control system for an internal combustion engine
JP4872198B2 (en) Gas concentration detector
JPH0447783B2 (en)
US4706633A (en) Air/fuel ratio feedback control system adapted to temporary open-loop control under transient conditions
JPS59211737A (en) Air-fuel ratio control device
JPH0529776B2 (en)
JP5067469B2 (en) Gas concentration detector
JP2929038B2 (en) Air-fuel ratio sensor drive circuit
JPS60230537A (en) Air-fuel ratio controller
JPS59215935A (en) Air-fuel ratio control device
JPS59213937A (en) Air-fuel ratio controller
JP3734685B2 (en) Sensor element temperature detection device for air-fuel ratio sensor
JPS59200040A (en) Air-fuel ratio controller
JP2002005882A (en) Apparatus for determining activity of air/fuel ratio sensor
JPH0627724B2 (en) Air-fuel ratio detector