JPS59200040A - Air-fuel ratio controller - Google Patents

Air-fuel ratio controller

Info

Publication number
JPS59200040A
JPS59200040A JP58074617A JP7461783A JPS59200040A JP S59200040 A JPS59200040 A JP S59200040A JP 58074617 A JP58074617 A JP 58074617A JP 7461783 A JP7461783 A JP 7461783A JP S59200040 A JPS59200040 A JP S59200040A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
fuel
output
oxygen sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58074617A
Other languages
Japanese (ja)
Inventor
Kimitake Sone
曾根 公毅
Takeshi Kitahara
剛 北原
Hatsuo Nagaishi
初雄 永石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP58074617A priority Critical patent/JPS59200040A/en
Publication of JPS59200040A publication Critical patent/JPS59200040A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1477Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation circuit or part of it,(e.g. comparator, PI regulator, output)
    • F02D41/1479Using a comparator with variable reference
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control

Abstract

PURPOSE:To secure an accurate air-fuel ratio in all driving range, by controlling a fuel feed quantity to feed back to a control-desired air-fuel ratio varying according to a driving state on the basis of the output of an oxygen sensor at all times. CONSTITUTION:In time of acceleration and so on, if it is rarer than a theoretical air-fuel ratio as a fuel feed quantity runs short, the output of an oxygen sensor 23 comes to low, and a compartor 35 outputs a low level signal to a control circuit 20 whereby a command for fuel increment is transmitted to a feedback control part 22, and in contrast with this, if the air-fuel ratio is denser than it, the output of the oxygen sensor 23 rises and at the point that exceeds comparative reference voltage of the comparator 35, the output of the comparator 35 is changed over to a high level so that the control circuit 20 makes the control part 22 so as to reduce the fuel quantity to some extent. These operations are repeated but in an extemely short period of time, therefore the air-fuel ratio of mixture in time of acceleration is accurately controlled to converge on the desired value.

Description

【発明の詳細な説明】 本発明は排気中の酸素濃度を検出しながら内燃機関の燃
料供給mをフィードバック制御する空燃比制御装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air-fuel ratio control device that performs feedback control on fuel supply m to an internal combustion engine while detecting oxygen concentration in exhaust gas.

内燃機関に供給づる燃料量、換言すると混合気の空燃比
を精度よく目標値に制御づることにより、燃費、Dl−
気組成の向上がはかれることは既に良く知られている。
By accurately controlling the amount of fuel supplied to the internal combustion engine, in other words, the air-fuel ratio of the air-fuel mixture, to the target value, fuel efficiency and Dl-
It is already well known that the gas composition can be improved.

そこで、供給混合気の空燃比ど密接な相関関係をもつ排
気中の酸素81度を検出し、この検出結果にもとづいて
燃料供給量をフィードバック制御するようにした装置が
、既に実用化されている。
Therefore, a device that detects 81 degrees of oxygen in the exhaust gas, which is closely correlated with the air-fuel ratio of the supplied air-fuel mixture, and controls the fuel supply amount based on this detection result has already been put into practical use. .

ところが、酸素センサの出ツノ特性は、排気中に酸素が
存在するか否かを境にして、つまり混合気が理論空燃比
よりも濃いか薄いかによって出力が大きく変化し、それ
以外では出力変化率が極めて小さくその判断が難しいた
めに、通常制御目標値となる空燃比は理論空燃比とせざ
るを1!!なかった。
However, the output characteristic of an oxygen sensor is that the output changes greatly depending on whether or not there is oxygen in the exhaust gas, that is, whether the air-fuel mixture is richer or leaner than the stoichiometric air-fuel ratio; otherwise, the output changes. Since the air-fuel ratio is extremely small and difficult to judge, the air-fuel ratio that is normally the control target value must be the stoichiometric air-fuel ratio. ! There wasn't.

これに対して、例えば特開昭56−254.8号、特開
昭56−105634号公報などにみられるように、酸
素濃度の検出特性が、理論空燃比よりも稀薄側において
、排気中に含まれる酸素濃度値に対応して出力が比較的
大きく変動゛する傾斜型酸素センサを用い、空燃比を稀
薄側の所定値にフィードバック制御する装置が提案され
ている。しかしながらこの場合、酸素センサの出力の絶
対値が経時的に変化Jることがあって、同一の目標空燃
比に対J−る出力値が異なることから、種々の補正を施
J−にして−b長期にわたり安定した制御を維持するこ
とはテ「シいという欠点があった。
On the other hand, as seen in, for example, JP-A-56-254.8 and JP-A-56-105634, the detection characteristics of oxygen concentration in the exhaust gas are A device has been proposed that uses a tilted oxygen sensor whose output fluctuates relatively largely in accordance with the oxygen concentration value, and performs feedback control of the air-fuel ratio to a predetermined value on the lean side. However, in this case, the absolute value of the output of the oxygen sensor may change over time, resulting in different output values for the same target air-fuel ratio. b) It had the disadvantage that it was difficult to maintain stable control over a long period of time.

ところが最近、通常の成型酸素センサであっても、電極
間に電流を流し込むことにより、またその電流値に応じ
て酸素センサの出力急変点が、理論空燃比よりも稀薄側
において変化することに着目して、稀薄空燃比を検出可
能とした装置が、特願昭5 /1.−164’ 822
 @とじて提案された。
However, recently, researchers have noticed that even with regular molded oxygen sensors, when a current is passed between the electrodes, the point at which the output suddenly changes depending on the current value changes on the lean side of the stoichiometric air-fuel ratio. A device capable of detecting a lean air-fuel ratio was published in a patent application published in 1973, January 1, 1983. -164' 822
It was proposed as @.

これを第1図、第2図に示づと、第1図は、酸素センサ
素子1の縦断面7莫型的結線図、第2図は第1図の酸素
センサ素子1の種型的分解斜視図であって、隔膜層2は
アルミナ、ムライト、スピネル等の絶縁性物質からなり
、その内部には発熱体3を設けると共に、MA造基体と
しての強度を保持している。この隔膜m2の表面上には
、二つに分けた基準電極電子伝HH’J4.5を積層し
、さらにその上に酸素イオン伝導性固体電解質層6を積
層している。この固体電解質層6の累月としては、Y2
O,やCaOで安定化したZrO2その仙既知のものを
採用することができる。この固体電解質層6の表面には
測定極電子伝導層7を積層し、この測定極電子伝導層7
と前記一方の基準極電子伝導層4との間に電圧J(q定
手段8を接続して起電力Eの測定を可能にすると共に、
測定極電子伝導層7と前記他方の基準極電子伝導層5と
の間に電流供給回路9を接続している。このとき、基準
極電子伝導層4,5および測定極電子伝導層7には触媒
活性の白金を用いるのが望ましく、その他白金と白金族
元素との合金その他の材料を適宜選定して使用するのが
良い。また、上記各電子伝導層4.5.7および固体電
解質層6を積層するに際しては、たとえばそれらの粉末
をペースト状にしてスクリーン印刷し、その後焼成する
手段などを用いることができ、その他の手段によること
も可能である。また、発熱体3には加熱用電源1oを 
  ゆ接続して酸素センサ素子の温度を制御させうるよ
うにしている。さらに、前記測定極電子伝導層7上には
、被検ガスから流入する酸素分子の拡散を制御しうる拡
Wi、層11を設け、この拡散層11を被検ガスと接触
可能にしている。この拡散層11の累月どしては、たと
えばムライ1〜、スピネル、)Aルステライ(〜、カル
シウムジルコネートなどを使用づ−ることができ、粉末
を用いたスクリーン印刷法や客用法などによって積層づ
る。
This is shown in Fig. 1 and Fig. 2. Fig. 1 is a longitudinal section 7 of the oxygen sensor element 1, and Fig. 2 is an exploded diagram of the oxygen sensor element 1 shown in Fig. 1. This is a perspective view, and the diaphragm layer 2 is made of an insulating material such as alumina, mullite, spinel, etc. A heating element 3 is provided inside the diaphragm layer 2, and it maintains the strength as an MA base. On the surface of this diaphragm m2, a two-part reference electrode electron conductor HH'J4.5 is laminated, and an oxygen ion conductive solid electrolyte layer 6 is further laminated thereon. The cumulative period of this solid electrolyte layer 6 is Y2
ZrO2 stabilized with O, or CaO, which is well known in the art, can be used. A measurement electrode electron conduction layer 7 is laminated on the surface of this solid electrolyte layer 6.
and the one reference electrode electron conductive layer 4, a voltage J (q constant means 8 is connected to enable measurement of the electromotive force E, and
A current supply circuit 9 is connected between the measurement electrode electron conduction layer 7 and the other reference electrode electron conduction layer 5. At this time, it is desirable to use catalytically active platinum for the reference electrode electron conductive layers 4 and 5 and the measurement electrode electron conductive layer 7, and other materials such as an alloy of platinum and a platinum group element may be selected and used as appropriate. is good. Further, when laminating the electron conductive layers 4.5.7 and the solid electrolyte layer 6, for example, a method may be used in which powders thereof are made into a paste, screen printed, and then fired, or other methods may be used. It is also possible to do so. In addition, a heating power source 1o is connected to the heating element 3.
The temperature of the oxygen sensor element can be controlled by connecting the oxygen sensor element. Further, on the measurement electrode electron conduction layer 7, there is provided a diffusion layer 11 capable of controlling the diffusion of oxygen molecules flowing from the test gas, and this diffusion layer 11 is made to be in contact with the test gas. The material of this diffusion layer 11 can be made of, for example, Murai 1~, spinel, )A Lusterai (~), calcium zirconate, etc., and can be formed by a screen printing method using powder or a custom-made method. Laminated vines.

そこで、上記酸素センυ素子1を用い、電流供給回路9
の正極側を他方の基準極電子伝導層5に接続して電流を
供給づると、前記測定極電子伝導層7から基Q−極電子
伝導層5に向けて強制的に酸素イオンの移動を生ずる。
Therefore, using the oxygen sensor υ element 1, the current supply circuit 9
When the positive electrode side of the electrode is connected to the other reference electrode electron conductive layer 5 and a current is supplied, oxygen ions are forcibly moved from the measurement electrode electron conductive layer 7 to the base Q electrode electron conductive layer 5. .

このとぎ、拡1’lk 1m 11の存在によって被検
ガスからの酸素分子の流入拡散が制御されているため、
測定極酸素分圧は被検ガス中の酸素分圧よりも低下する
。他方、基L$極電子伝導層5に向けて酸素イオンが流
れることにより基準極酸素分圧が高められるが、この基
準極電子伝導層5に存在する酸素分子は、隔膜層2が多
孔性の場合に前記隔膜層2内を拡散して、あるいは隔膜
層2がち密で固体電解質層6が多孔性の場合に前記固体
電解質層6内を拡散して、もしくは両方を拡散して、前
記酸素イオンの流入と前記酸素分子の拡散との均衡した
状態の基準極酸素分圧が維持される。そこで、前記被検
ガス中の酸素分圧よりも低下した測定極酸素分圧と上記
基準極酸素分圧との差に対応して発生する起電力Eを電
圧測定手段8によって測定すれば、前記測定極酸素分圧
が被検ガス中の酸素分圧よりも低下した関係を維持しつ
つ被検ガス中の酸素分圧の変化に応じて上記測定極酸素
分圧も変化するため、理論空燃比よりも稀@な空燃比の
検出が可能になる。
At this point, the inflow and diffusion of oxygen molecules from the sample gas is controlled by the presence of 1'lk 1m 11.
The measured polar oxygen partial pressure is lower than the oxygen partial pressure in the test gas. On the other hand, the reference electrode oxygen partial pressure is increased by the flow of oxygen ions toward the base L$ electrode electron conductive layer 5, but the oxygen molecules present in the reference electrode electron conductor layer 5 are When the diaphragm layer 2 is dense and the solid electrolyte layer 6 is porous, the oxygen ions are diffused through the solid electrolyte layer 6, or both. A reference polar oxygen partial pressure is maintained in which the inflow of oxygen and the diffusion of oxygen molecules are balanced. Therefore, if the voltage measuring means 8 measures the electromotive force E generated in response to the difference between the measured polar oxygen partial pressure, which is lower than the oxygen partial pressure in the test gas, and the reference polar oxygen partial pressure, While maintaining a relationship in which the measured polar oxygen partial pressure is lower than the oxygen partial pressure in the test gas, the measured polar oxygen partial pressure changes according to changes in the oxygen partial pressure in the test gas, so the theoretical air-fuel ratio This makes it possible to detect air-fuel ratios that are rarer than those described above.

第3図は基準極電子伝導層5から測定極電子伝導層7に
向けて流し込む電流を、それぞれI、〜1、と変えたと
きの、センサ出力Vと空燃比の関係を示すものである。
FIG. 3 shows the relationship between the sensor output V and the air-fuel ratio when the current flowing from the reference electrode electron conductive layer 5 to the measurement electrode electron conductive layer 7 is changed from I to 1, respectively.

流し込み電流が少ないときは、センサ出力が急変する空
燃比は理論空燃比に近づき、流し込み電流が増加するほ
ど出力急変空燃比は稀薄側へと移行することが分かる。
It can be seen that when the injected current is small, the air-fuel ratio at which the sensor output suddenly changes approaches the stoichiometric air-fuel ratio, and as the injected current increases, the air-fuel ratio that suddenly changes the output shifts to the lean side.

したがってこのような装置によれば、理論空燃比よりも
稀薄側の混合気であっても、正確に空燃比を判断するこ
とができる。
Therefore, according to such a device, even if the air-fuel mixture is leaner than the stoichiometric air-fuel ratio, it is possible to accurately determine the air-fuel ratio.

内燃機関の燃費率は、理論空燃比よりもやや稀薄側にお
いて最良となることは、既に良く知られているところで
あるが、(大関出力を高めるためには、理論空燃比ある
いはそれよりもやや濃い混合気が必要である。このよう
に機関に要求される混合気tよそのときどきの運転条件
によって種々に変化するのであり、いずれに対しても正
確に目標値通りに空燃比が制御されることが好ましいの
であるが、従来は、例えば運転頻度の高い部分負荷域で
所定の空燃比が得られるJ:うに、上述した酸素センサ
を用いて燃料供給量をフィードバック制御していても、
全負荷域ではフィードバック制御を一時的に停止してオ
ープンループ制御により空燃比を濃クシていたため、か
かる領域での制御精度は必ずしも高いものではなく、無
駄に燃料を消費するなどの傾向があった。
It is already well known that the fuel efficiency of internal combustion engines is best when the air-fuel ratio is slightly leaner than the stoichiometric air-fuel ratio. The air-fuel mixture required for the engine changes in various ways depending on the operating conditions at the time, and the air-fuel ratio must be controlled accurately to the target value in any case. However, conventionally, for example, a predetermined air-fuel ratio can be obtained in a part load region where operation is frequently performed, but even if the fuel supply amount is feedback-controlled using the oxygen sensor described above,
In the full load range, feedback control was temporarily stopped and open-loop control was used to enrich the air-fuel ratio, so control accuracy in this range was not necessarily high and there was a tendency for fuel to be wasted. .

本発明はこのような問題に着目してなされたもので、内
燃機関の運転状態に応じて異なってくる種々の要求空燃
比に対し、それぞれ燃料供給量をフィードバック制御す
ることにより精度よく対応させ、全ゆる運転域で燃費を
より一層改善することを目的とする。
The present invention has been made with attention to such problems, and it accurately responds to various required air-fuel ratios that vary depending on the operating state of the internal combustion engine by feedback-controlling the fuel supply amount. The aim is to further improve fuel efficiency in all driving ranges.

そこで本発明は、センサ流し込み電流値に応じて空燃比
(酸素濃度)に対するセンサ出力電圧の急変点が変化す
る酸素センサと、機関運転状態を検出して最適な制御目
標空燃比をそのとぎときで決定する手段と、最適な制御
目標空燃比に応じた電流を上記酸素センサに流し込む手
段とを備え、運転状態に応じて変化する制御目標空燃比
に対し、常に酸素センサの出力にもとづいて燃料供給量
をフィードバック制御し、全運転域において精度のよい
空燃比が得られるようにした。
Therefore, the present invention provides an oxygen sensor in which the sudden change point of the sensor output voltage with respect to the air-fuel ratio (oxygen concentration) changes according to the sensor current value, and an oxygen sensor that detects the engine operating state and determines the optimum control target air-fuel ratio at that moment. The device is equipped with a means for determining the optimum control target air-fuel ratio and a means for flowing a current into the oxygen sensor according to the optimum control target air-fuel ratio, and constantly supplies fuel based on the output of the oxygen sensor in response to the control target air-fuel ratio that changes depending on the operating state. Feedback control is applied to the air-fuel ratio to ensure a highly accurate air-fuel ratio throughout the entire operating range.

以下、本発明の実施例を図面にもとづいて説明する。Embodiments of the present invention will be described below based on the drawings.

第4図は、本発明に用いる脱型酸素センサの具体的な構
造を示している。               ・1
酸素センサ素子1゛はホルダ17の内部に収められ、先
端部に形成した小孔11をもつルーバ部12から排気ガ
スが流入する。
FIG. 4 shows the specific structure of the demolded oxygen sensor used in the present invention.・1
The oxygen sensor element 1'' is housed inside a holder 17, and exhaust gas flows into it through a louver section 12 having a small hole 11 formed at its tip.

酸素センサ素子1はこの排気ガス中に露呈され、排気中
の酸素濃度に応じて出力を発生ずる。
The oxygen sensor element 1 is exposed to this exhaust gas and generates an output depending on the oxygen concentration in the exhaust gas.

13〜15はそれぞれセンサ出力取出用リード線、ヒー
タ用リード線、共通アース用リード線を示し、排気ガス
が漏洩ブるのを防ぐために、絶縁管18の内部にガス漏
れ防止用充填材1つが封止される。
Reference numerals 13 to 15 indicate a sensor output lead wire, a heater lead wire, and a common ground lead wire, respectively.In order to prevent exhaust gas from leaking, a gas leakage prevention filler is provided inside the insulating tube 18. sealed.

16は結線用のコネクタを示す。16 indicates a connector for wiring.

なお、内燃機関の排気管(図示せず)に対しては、図中
A−A線より左側の部分が挿入されることになる。
Note that the portion to the left of line A-A in the figure is inserted into the exhaust pipe (not shown) of the internal combustion engine.

第5図は制御回路をあられすもので、2oは機関に供給
づ”る燃料量を含めて機関に必要な種々の要素をコント
ロールする、例えばマイコンなどで構成された制御回路
であって、この実施例においては、運転状態を代表する
ものとして機関負荷検出手段(例えば吸入負圧センサ、
吸入空気量センサ等)21の検出信号から運転状態を判
別し、この運転状態に対応して空燃比の制御目標値を決
定する。
Figure 5 shows the control circuit, and 2o is a control circuit composed of a microcomputer, etc., which controls various elements necessary for the engine, including the amount of fuel supplied to the engine. In the embodiment, engine load detection means (e.g. suction negative pressure sensor,
The operating state is determined from the detection signal of the intake air amount sensor, etc.) 21, and a control target value for the air-fuel ratio is determined in accordance with this operating state.

25は酸素はンザ23に対応する流し込み電流を、上記
制御目標値に応じて増減する回路で、前記制御回路20
からの信号S、がハイレベルj’−1−I Jのときに
導通するトランジスタ26と、同じくローレベルrLJ
のときに導通づるトランジスタ27、及びこれらトラン
ジスタ26.27に直列に接続され、センサ流し込み電
流の大きさを変える抵抗28.29とから構成される。
Reference numeral 25 denotes a circuit that increases or decreases the current flowing into the oxygen sensor 23 according to the control target value, and the control circuit 20
The transistor 26 conducts when the signal S from J is at high level j'-1-IJ, and the transistor 26 is conductive when the signal S is at high level rLJ
It consists of a transistor 27 that is conductive when , and resistors 28 and 29 connected in series with these transistors 26 and 27 to change the magnitude of the current flowing into the sensor.

30は酸素センサ23の出力を増幅して取出すアンプ、
35は酸素センサ出力の変化から目標空燃比J:りも濃
いか薄いかを判断する比較器である。
30 is an amplifier that amplifies and extracts the output of the oxygen sensor 23;
Reference numeral 35 is a comparator that determines whether the target air-fuel ratio J: is rich or lean based on changes in the oxygen sensor output.

第3図にも示すように、センサ流し込み電流によって酸
素センサの出力急変する空燃比が稀薄側にずれるが、同
時にセンサ出力電圧も相対的(変化(空燃比が稀薄側へ
移行するほど出力電圧が上昇)するため、上記比較器3
5の比較電圧〈スライスレベル)を目標空燃比の切換え
に伴って切換える必要がある。
As shown in Figure 3, the air-fuel ratio at which the output of the oxygen sensor suddenly changes due to the current flowing into the sensor shifts toward the lean side, but at the same time, the sensor output voltage also changes relatively (as the air-fuel ratio shifts toward the lean side, the output voltage increases). ), the comparator 3 above
It is necessary to switch the comparison voltage (slice level) of No. 5 along with the switching of the target air-fuel ratio.

36はこのための切換回路であって、上記制御回路20
からの信号S、が[]」」のときに導通して比較電圧設
定部33からの電圧を比較器35に印加する[〜ランジ
メタ32から構成される。
36 is a switching circuit for this purpose, which is connected to the control circuit 20.
When the signal S, from .

22は燃料供給mのフィードバック制御部で、比較器3
5の出力にもとづいて制御回路2oがら出力される信号
$2により、供給mを増減補正づる。24はセンサに内
蔵される発熱体(ヒータ)である。
22 is a feedback control unit for fuel supply m, and comparator 3
The supply m is increased or decreased by a signal $2 outputted from the control circuit 2o based on the output of the control circuit 2o. 24 is a heating element (heater) built into the sensor.

次に作用について第6図を含めて説明づる。Next, the operation will be explained with reference to FIG.

酸素センサ23に電流を流し込むことにより、測定極電
子伝導層7から基準極電子伝導層5に向けて酸素イオン
が移動し、外側にある測定極側の酸素分圧が低下し、こ
れに伴って第3図のように空燃比に対するセンサ出力の
急変点が変化することは、前述した通りである。
By flowing a current into the oxygen sensor 23, oxygen ions move from the measurement electrode electron conduction layer 7 to the reference electrode electron conduction layer 5, and the oxygen partial pressure on the outside measurement electrode side decreases. As mentioned above, the sudden change point of the sensor output with respect to the air-fuel ratio changes as shown in FIG.

具体的には上記流し込み電流を大さくするほとセンサ出
力の急変点は、稀薄空燃比側へと移行し、したがってそ
の電流値に応じた空燃比を境にして、それよりも空燃比
が濃いか薄いかで、センサ出力は大幅に変化することか
ら、理論空燃比以外の空燃比についても検出できるので
ある。
Specifically, as the above-mentioned injected current is increased, the abrupt change point of the sensor output shifts to the lean air-fuel ratio side, and therefore, the air-fuel ratio becomes richer than the air-fuel ratio corresponding to the current value. Since the sensor output changes significantly depending on whether the temperature is high or low, air-fuel ratios other than the stoichiometric air-fuel ratio can also be detected.

制御回路20は、運転状態検出手段としての負荷検出手
段21からの信号にもとづき運転状態を判断し、加速、
高負荷時に制御目標空燃比を瀧くするための信号S、と
してrHJを出力し、アイドル、低負荷時には目標空燃
比を薄りするためrLJを出力する。
The control circuit 20 determines the operating state based on the signal from the load detecting means 21 as the operating state detecting means, and accelerates,
rHJ is output as a signal S for increasing the control target air-fuel ratio during high load, and rLJ is output for reducing the target air-fuel ratio during idle and low load.

いま加速運転状態に移り信号S、が「ト1」になったと
すると、電流供給回路25のトランジスタ26がONに
なり、抵抗28を介して電流I、が酸素センサ23に供
給され、これにより酸素センサ23は、本実施例では理
論空燃比を境にして出ノjが急変する特性となる。
Assuming that the acceleration operation state has now started and the signal S becomes "T1", the transistor 26 of the current supply circuit 25 is turned on, and the current I is supplied to the oxygen sensor 23 via the resistor 28, which causes the oxygen In this embodiment, the sensor 23 has a characteristic that the output j suddenly changes after reaching the stoichiometric air-fuel ratio.

また、信@$1のf[Jにより、比較電圧切換回路36
では、トランジスタ31のONに伴い電圧設定部33の
出力が、比較器35の比較基準電圧として入力される。
Also, due to f[J of signal @$1, comparison voltage switching circuit 36
Then, when the transistor 31 is turned on, the output of the voltage setting section 33 is inputted as the comparison reference voltage of the comparator 35.

したがって、このような加速時などに、燃料量給量が不
足して理論空燃比よりも稀薄ならば、酸素センサ23の
出力は低く、比較器35はローレベルの信号を制御回路
20に出力するため、燃料供給Mのフィードバック制御
部22には燃料を増量するような指令が送られるし、逆
に空燃比が濶(〕れば酸酸素センサ3の出力が立上がり
、比較器35の比較基準電圧を越えた時点で比較器35
の出力がハイレベルに切JIりり、制御回路2oは燃料
を減ωするように制御部22を作動させるのであり、実
際にはこれらの動作が極めて短時間の周期をもって繰り
返られるため、加速時の混合気の空燃比は、目標値であ
る理論空燃比に精度よく収束制御される。
Therefore, during such acceleration, if the amount of fuel supplied is insufficient and the fuel is leaner than the stoichiometric air-fuel ratio, the output of the oxygen sensor 23 is low and the comparator 35 outputs a low level signal to the control circuit 20. Therefore, a command to increase the amount of fuel is sent to the feedback control unit 22 of the fuel supply M, and conversely, when the air-fuel ratio rises, the output of the oxygen sensor 3 rises, and the comparison reference voltage of the comparator 35 increases. Comparator 35 when exceeds
The output of JI is cut to a high level, and the control circuit 2o operates the control unit 22 to reduce the fuel consumption.Actually, these operations are repeated at extremely short intervals, so that during acceleration The air-fuel ratio of the air-fuel mixture is precisely controlled to converge to the stoichiometric air-fuel ratio, which is the target value.

これに対して運転状態が変化し、例えば低負荷運転に移
行したとすると、制御回路2oがらの信号S、はrLJ
に切換わり、これに伴い電流供給回路25のトランジス
タ27がONになり、抵抗29を介して例えば空燃比A
/F=20に相当する電流I2を酸素センサ23に流し
込む。
On the other hand, if the operating state changes and, for example, shifts to low-load operation, the signal S from the control circuit 2o will be rLJ
Accordingly, the transistor 27 of the current supply circuit 25 is turned on, and the air-fuel ratio A is changed via the resistor 29.
A current I2 corresponding to /F=20 is applied to the oxygen sensor 23.

このため酸素センサ23は上記した理論空燃比よりも稀
薄なA/F=20を境にして出力が急変する特性に切換
わる。
For this reason, the oxygen sensor 23 switches to a characteristic in which the output changes suddenly at A/F=20, which is leaner than the stoichiometric air-fuel ratio.

同時に比較器35の比較基I#−電圧も、トランジスタ
32のONに伴い電圧設定部34の1出力に切換わり、
したがってこんどは制御目標空燃比としてA/F=20
を境にして、空燃比がそれよりも濃いか薄いかの判断が
行なわれるのである。
At the same time, the comparison base I#- voltage of the comparator 35 is also switched to the 1 output of the voltage setting section 34 as the transistor 32 is turned on.
Therefore, this time, the control target air-fuel ratio is A/F=20.
A decision is made as to whether the air-fuel ratio is richer or leaner than that.

これらの結果、制御回路20は空燃比A/F=20とな
るように燃料供給量の制御部22に補正信号を出力づる
As a result, the control circuit 20 outputs a correction signal to the fuel supply amount control section 22 so that the air-fuel ratio A/F=20.

このようにして、運転状態に応じて変化づる目標空燃比
に対応して、それぞれ燃料供給量をフィードバック制御
するために、正確で精度の高い空燃比制御が実現できる
のである。
In this way, since the fuel supply amount is feedback-controlled in response to the target air-fuel ratio that changes depending on the operating state, accurate and highly accurate air-fuel ratio control can be realized.

なお、第6図においては、運転状態をあられすものとし
て、時間経過に対する車速の変化を示しており、燃料の
供給は吸気ポートに設けた燃料噴射弁を介して行なう場
合を例示しである。
In addition, in FIG. 6, changes in vehicle speed over time are shown under the assumption that the driving state is poor, and the case where fuel is supplied through a fuel injection valve provided at an intake port is illustrated.

ところで燃料噴射弁から噴射供給される燃料量は、基本
的には機関吸入空気色や回転数に対応して、上記した運
転状態によって所定の空燃比、すなわち加速時には理論
空燃比、低負荷時にはA/F=20の稀薄空燃比となる
ように演算されるのであり、このJ、うにして決められ
た燃料供給mが、上記の通り酸素セン1ノ出力にもとづ
いて補正制御されると、非常に精度よく目標値と一致J
るようになるのである。
By the way, the amount of fuel injected and supplied from the fuel injection valve basically corresponds to the color of the engine intake air and the engine speed, and is set at a predetermined air-fuel ratio depending on the above-mentioned operating conditions. /F = 20, and when this J and the fuel supply m determined in this way are corrected and controlled based on the output of the oxygen sensor 1 as described above, an emergency Accurately matches the target value
As a result, it becomes possible to

空燃比の制御目標値は、上記した各値に限定されるわけ
ではなく、内燃機関の特性や仕様条件などに応じて自由
に設定できることは明白であるし、またアイドル低、中
、高負荷など種々の運転状態に応じてそれぞれ最適空燃
比となるように空燃比を切換えてもよい。
It is clear that the control target value of the air-fuel ratio is not limited to each value mentioned above, and can be freely set according to the characteristics and specification conditions of the internal combustion engine, and can also be set at low idle, medium, high load, etc. The air-fuel ratio may be switched to the optimum air-fuel ratio depending on various operating conditions.

以上のように本発明にJ、れば、運転状態に応じて異な
る要求空燃比に対し、それぞれ精度よく燃料供給■をフ
ィードバック制御づ−ることかでき、とくに稀薄混合気
による運転時の燃焼安定性を高め、燃費の一層の向上が
はかれる。
As described above, according to the present invention, fuel supply can be accurately feedback-controlled for different required air-fuel ratios depending on operating conditions, and combustion can be stabilized especially when operating with a lean mixture. performance, and fuel efficiency is further improved.

また、甲−の酸素センサにより、種々の空燃比を検出し
て任意な値となるように空燃比制御を行なうので、構成
部品が少なくコス1〜の低減にもつながる。
In addition, since the oxygen sensor shown in A-1 detects various air-fuel ratios and controls the air-fuel ratio to an arbitrary value, the number of components is small and the cost can be reduced by 1.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の酸素センサをあられず縦断面膜壁的結線
図、第2図は同じくその分解斜視図、第3図はセンサ流
し込み電流を変化させたときのセンサ出力ど空燃比の関
係を示す特性図である。第4図は本発明の酸素センサの
構造を示す断面図、第5図は同じく空燃比制御回路図、
第6図は空燃比制御状態を示すタイムチレートである。 20・・・制御目標値の決定回路、21・・・運転状態
(負荷)検出手段、22・・・燃料供給mのフィードバ
ック制御部、23・・・酸素センサ、25・・・酸素セ
ンリ−流し込み電流供給回路、35・・・比較器(空燃
比判断手段)、36・・・比較電圧切換回路。 特許出願人   日産自動車株式会社
Figure 1 shows a longitudinal cross-sectional membrane wall connection diagram of a conventional oxygen sensor, Figure 2 shows an exploded perspective view of the same, and Figure 3 shows the relationship between the sensor output and air-fuel ratio when the current flowing into the sensor is changed. It is a characteristic diagram. FIG. 4 is a sectional view showing the structure of the oxygen sensor of the present invention, FIG. 5 is an air-fuel ratio control circuit diagram,
FIG. 6 is a time chill rate showing the air-fuel ratio control state. 20... Control target value determination circuit, 21... Operating state (load) detection means, 22... Feedback control unit for fuel supply m, 23... Oxygen sensor, 25... Oxygen sensor inflow Current supply circuit, 35... Comparator (air-fuel ratio judgment means), 36... Comparison voltage switching circuit. Patent applicant Nissan Motor Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] センザ流し込み電流に応じて空燃比に対づるセンサ出力
の急変点が変化する酸素センサと、機関の運転状態を検
出する手段と、運転状態に応じて最適な制御目標空燃比
を決定する手段と、この制御目標空燃比に対応する電流
を前記酸素センサに流し込む手段と、酸素センサの出力
変化にもとづいて空燃比を判GM−る手段と、該判断結
果にもとづいて制御目標空燃比と一致するように燃料供
給量をフィードバック制御する手段とを備えたことを特
徴とする空燃比制御装置。
an oxygen sensor in which a sudden change point of a sensor output with respect to an air-fuel ratio changes according to a sensor current; a means for detecting an engine operating state; and a means for determining an optimal control target air-fuel ratio according to the operating state; A means for flowing a current corresponding to the control target air-fuel ratio into the oxygen sensor, a means for determining the air-fuel ratio based on a change in the output of the oxygen sensor, and a GM-means for determining the air-fuel ratio to match the control target air-fuel ratio based on the determination result. 1. An air-fuel ratio control device comprising: a means for feedback controlling a fuel supply amount;
JP58074617A 1983-04-27 1983-04-27 Air-fuel ratio controller Pending JPS59200040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58074617A JPS59200040A (en) 1983-04-27 1983-04-27 Air-fuel ratio controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58074617A JPS59200040A (en) 1983-04-27 1983-04-27 Air-fuel ratio controller

Publications (1)

Publication Number Publication Date
JPS59200040A true JPS59200040A (en) 1984-11-13

Family

ID=13552311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58074617A Pending JPS59200040A (en) 1983-04-27 1983-04-27 Air-fuel ratio controller

Country Status (1)

Country Link
JP (1) JPS59200040A (en)

Similar Documents

Publication Publication Date Title
US6258232B1 (en) Gas component concentration measuring apparatus
US20090090339A1 (en) Dual Mode Oxygen Sensor
US4430191A (en) System for feedback control of air/fuel ratio in IC engine with means to control current supply to oxygen sensor
US4580539A (en) Air-fuel ratio control apparatus
JPH073403B2 (en) Abnormality detection method for oxygen concentration sensor
JPH079417B2 (en) Abnormality detection method for oxygen concentration sensor
JPS62247142A (en) Air-fuel ratio controller for internal combustion engine
US7017567B2 (en) Device and method for measuring element temperature of air-fuel ratio sensor, and device and method for controlling heater of air-fuel ratio sensor
JPH073405B2 (en) Abnormality detection method for oxygen concentration sensor
JPH0260142B2 (en)
US4566419A (en) Apparatus and method for controlling air-to-fuel ratio for an internal combustion engine
JP3744761B2 (en) Correction device for air-fuel ratio detection device
US4706633A (en) Air/fuel ratio feedback control system adapted to temporary open-loop control under transient conditions
JP4228488B2 (en) Gas concentration sensor heater control device
JPS58143108A (en) Air-fuel ratio control method for internal-combustion engine
JPS59200040A (en) Air-fuel ratio controller
JP3845998B2 (en) Gas component concentration measuring device
JP3869629B2 (en) Air-fuel ratio sensor activity determination device
JP3734685B2 (en) Sensor element temperature detection device for air-fuel ratio sensor
JPS59211737A (en) Air-fuel ratio control device
JP4051742B2 (en) Gas component concentration measuring device
JPS60202348A (en) Control apparatus of heater for oxygen sensor
JPH0454056B2 (en)
JPS59215935A (en) Air-fuel ratio control device
JPS60144656A (en) Air-fuel ratio controller